
Deterministic Multi-Core Parallel Routing for FPGAs

Marcel Gort and Jason H. Anderson

Dept. of Electrical and Computer Engineering, University of Toronto
Toronto, Ontario, Canada

{gortmarc|janders}@eecg.utoronto.ca

Abstract—We consider coarse and fine-grained techniques for
parallel FPGA routing on modern multi-core processors. In the
coarse-grained approach, sets of design signals are assigned to
different processor cores and routed concurrently. Communica-
tion between cores is through the MPI (message passing interface)
communications protocol. In the fine-grained approach, the task
of routing an individual load pin on a signal is parallelized using
threads. Specifically, as FPGA routing resources are traversed
during maze expansion, delay calculation, costing and priority
queue insertion for these resources execute concurrently. The
proposed techniques provide deterministic/repeatable results.
Moreover, the coarse and fine-grained approaches are not mutu-
ally exclusive and can be used in tandem. Results show that on
a 4-core processor, the techniques improve router run-time by
∼2.1×, on average, with no significant impact on circuit speed
performance or interconnect resource usage.

I. INTRODUCTION

The run-time of field-programmable gate array (FPGA)
CAD tools is a major concern for FPGA vendors and their
customers. Two factors are at play in worsening run-times
for the largest designs. First, high current density in modern
processors has created a “power wall”, limiting the rate of
increase of clock speeds in processors, and spawning the multi-
core era. Second, Moore’s Law charges onward – state-of-the-
art chips contain two billion transistors and continue to double
in size every two years. There is, consequently, a widening
gap between the size of chips, and the ability of CAD tools
to handle them.

The largest industrial FPGA designs take hours or days to
compile from HDL-to-bitstream, with placement and routing
being the most run-time intensive steps of the CAD flow. Long
run-times reduce engineering productivity, raise cost, and are
a strong impediment to the widespread adoption of FPGAs
by software developers, who are accustomed to compilation
times in seconds or minutes. Improving the value proposition
of FPGAs and expanding their user-base are paramount aims
for commercial FPGA vendors, and lower tool run-time is key
to enabling progress on these fronts. A promising direction
to address the run-time challenge is to accelerate CAD tools
through parallel computing. Today’s FPGA CAD tools are
frequently run on commodity processors with 4 cores, and
8 and 16-core commodity processors are not far down the
road. Such processors offer significant potential for run-time
reduction through parallelization. By and large, however, the
underlying CAD algorithms in today’s FPGA tools are single-
threaded, and do not take advantage of the available processing
power. The importance of leveraging multi-core parallelism

was underscored recently by Altera, who published techniques
for multi-core parallel placement [2].

In this paper, we present techniques for parallel FPGA
routing. Two different approaches are proposed, which we
refer to as coarse and fine-grained. Our coarse-grained ap-
proach aligns closely with what one would intuitively think
of as parallel routing: design signals are partitioned into
sets, each of which is routed by a different processor core.
Intermittent communication between processor cores is used
to communicate routing results, thereby giving each core a
global picture of the intermediate routing state. We use MPI
(message passing interface) as the communication protocol
in our coarse-grained approach [1], [20]. In the fine-grained
approach, we parallelize the routing of an individual load
pin on a signal. Specifically, we parallelize aspects of the
low-level maze expansion search (exploration) of the FPGA
routing fabric. Threads are used as the fine-grained parallel
programming paradigm. Both approaches offer determinis-
tic/repeatable results. We implement and demonstrate both
approaches using the VPR framework [12].

In this paper, we make several key contributions:
• The first work on parallel FPGA routing for modern

multi-core processors.
• The first deterministic FPGA routing parallelization ap-

proach for non-planar FPGA routing architectures.
• A novel parallelization approach that combines coarse

and fine-grained parallelism.
• The first work to use MPI for parallel FPGA routing.
• A detailed evaluation of load-balancing techniques for

parallel negotiated congestion routing.
Experimental results demonstrate the efficacy of the pro-

posed techniques and suggest that both coarse and fine-
grained approaches are viable, depending on the memory
architecture of the processor on which the router is executed.
The remainder of this paper is organized as follows: Section II
provides relevant background on FPGA routing algorithms,
parallel routing, and introduces the parallel programming
techniques used in this work: threads and MPI. The proposed
parallel routing techniques are described in Section III. An
experimental study is presented in Section IV. Conclusions
and suggestions for future work are offered in Section V.

II. BACKGROUND

A. FPGA Routing

The two largest FPGA vendors, Xilinx and Altera, use a
variant of the PathFinder negotiated congestion routing algo-



Placed design

Route all signals
(permit shorts)

Shorts remain?

Increase penalties
for shorts

Route all signals

yes
no

Routed design

Fig. 1. Negotiated congestion routing flow.

rithm [14] in their commercial routers [17], [16]. PathFinder
is also used in the publicly-available VPR FPGA placement
and routing framework [12], which we parallelize in this
work. Fig. 1 gives an overview of the negotiated congestion
approach. First, all signals in a placed design are routed in
the best manner possible (e.g. minimum delay or minimum
resource usage), permitting shorts between the signals (mean-
ing that two different signals may use the same wire on the
FPGA). After initial routing, each signal is routed with its
ideal routing solution, albeit infeasible, owing to the shorts.
Then, the penalties associated with shorts are increased, and
the signals are re-routed with consideration of the increased
penalties. The process of increasing the penalties for shorts and
re-routing the signals continues iteratively until all shorts are
removed and the routing is feasible. One pass through the loop
of Fig. 1 is referred to as a PathFinder iteration. In essence,
signals negotiate amongst themselves for which signal gets
to keep a popular/shared FPGA resource. Our coarse-grained
approach to parallelization accelerates the “route all signals”
step in the negotiated congestion flow.

At the heart of negotiated congestion routing is maze
expansion [11] – the algorithm used to route a load pin on a
signal and the most computationally expensive aspect of FPGA
routing. An understanding of our fine-grained parallelization
approach depends on knowing the details of maze expansion,
so we review the basics here. The routing resources in the
FPGA are represented as a graph, G(V, E), called the routing
resource graph, where each vertex, v ∈ V , represents a
routing conductor, i.e. a metal wire segment or a pin on a
block. Each edge, e ∈ E, represents a programmable routing
switch in the FPGA that may be turned on to electrically
connect a pair of conductors. To route a load pin on a signal,
maze expansion begins by adding the vertex, s, corresponding
to the signal’s source pin, to a priority queue. The algorithm
then enters a while loop that executes as follows: the lowest
cost node, u, is removed from the priority queue. If u is
the target load pin, then a path from source to target has
been found and the expansion terminates (exit the while
loop). Otherwise, the nodes adjacent to u in G are identified
and added to the priority queue. The process of removing a
node from the priority queue and expanding it to visit its
neighbors continues until the target pin is reached (drawn
from the priority queue). The costs assigned to nodes in

the priority queue can be based on any number of criteria,
e.g. delay, capacitance, distance to the target pin, and the
number of signals contending to use a node. Node costing
itself can be compute-intensive, especially if sophisticated RC
delay modelling is used. Our fine-grained approach to parallel
routing accelerates the maze expansion used to route a load
pin.

B. Parallel FPGA Routing

Chan and Schlag were the first to parallelize negotiated
congestion FPGA routing [7], showing impressive speed-up
results of 2.5× using 3 processors. Their work bears some
similarity to our coarse-grained approach, with three key
differences: First, they target a distributed computing frame-
work of networked workstations, and not a modern multi-core
processor. Second, we take a more sophisticated approach to
load balancing among processors. Third, and most important,
their results are not deterministic – different routing results
are produced each time the router is executed, making the
approach impractical in an industrial context, where vendors
and users expect identical results to be produced each time the
tools are executed. Repeatability is especially crucial in early
design development and debugging.

Another work by Cabral et al. described parallel FPGA
routing specifically for a “planar” routing architecture [5]. In
a planar architecture, wires in the i’th routing track within a
channel may only be programmably connected to other wires
that are also on the i’th routing track. Consequently, routing
tracks can be viewed as “planes” that do not intersect with
one another. Planarity simplifies the parallelization problem,
as processor cores can operate independently on each plane,
reducing the need for inter-processor data sharing. While early
FPGAs (such as the Xilinx XC4000 [21]) used planar routing,
it has since been shown to negatively impact routability.
Modern FPGA interconnect is not planar [3], [22], making
Cabral’s work inapplicable today.

There is considerable prior work on parallelizing the single
source shortest path problem [15], [8], [9] which is related to
maze routing, however, these parallelization techniques are not
intended to be used in a highly directed (A*) graph search,
which is typically used in FPGA routing. In [18], it is observed
that in practice, the run-time difference between a directed
and breadth first search for FPGA routing is ∼53×, which
far exceeds the speed-ups observed with parallel shortest path
algorithms. In this paper, our speed-ups are in addition to the
algorithmic speed-ups achieved in [18].

C. Parallel Programming Environments

We use two parallel programming models in our parallel
router: threads and MPI. Threads are a popular way to
parallelize the execution of several tasks within a single
process. The threads within a process share memory, which
can lead to race conditions and unpredictable behavior when
multiple threads read/write the same memory location in
non-deterministic ways. Semaphores and barriers are used to
manage access to shared memory, and synchronize thread



execution at specific program points. The attraction of threads
stems from their lightweight nature – threads can be created
rapidly, and context switching between threads on a processor
is faster than context switching between entire processes.

MPI is a widely used communications protocol that enables
separate processes to communicate with one another. The
processes may be running on separate cores within a multi-
core processor, or may even run on entirely separate proces-
sors across a network. Unlike threads, concurrently running
processes do not share memory. Communication in MPI,
therefore, is handled explicitly through messages between
processes, rather than through access to shared variables in
memory. In particular, processes send and receive messages
with one another, and such sends and receives can be either
non-blocking or blocking. Blocking messages are used for
process synchronization. For example, if a process A issues
a blocking send to a process B, process A must wait for a
corresponding receive from process B before A continues ex-
ecution. When non-blocking messages are used, the initiating
process does not wait for the destination process to respond
– execution continues immediately in the initiating process.
We found MPI to be convenient for implementing our coarse-
grained parallel routing approach.

III. MULTI-CORE PARALLEL ROUTING

A. Coarse-Grained Parallel Routing

Our coarse-grained approach is to partition the signals into
sets, which are then assigned to separate instances of VPR,
with each instance running as a separate process on a separate
processor. Each VPR instance routes its own set of signals
and maintains its own data structures, including a routing
resource graph and associated congestion information. The
different VPR instances use MPI messages to communicate
intermediate routing results with one another and synchronize
their respective views of the overall routing state. By using
MPI, we avoided both having to alter most of the data struc-
tures in VPR, and the requirement that many VPR functions
be made thread-safe. MPI provides a mechanism whereby all
VPR instances (processes) can be invoked simultaneously.

Synchronization and Load Balancing: For PathFinder to
converge to a short-free routing for all signals, each VPR
instance must have a relatively accurate picture of the conges-
tion contributed by all signals. Simply put, to route signals in a
short-free manner, one must know which routing resources are
used by other signals and must avoid using such already-used
resources. In our router, after a VPR instance routes a signal, it
issues a non-blocking send message to all other VPR instances,
meaning that it does not need to wait for other VPR instances
to receive the update before continuing with its execution.
The message contains the new route for the signal, as well
as load balancing information (described later). Once such an
update is sent, it is held in a queue by MPI, available to be
received by a destination VPR instance. The key to achieving
deterministic results is the use of blocking receive calls in
the destination VPR instances. Blocking receives are issued
by each VPR instance at specific/fixed points during routing.

A detailed explanation is given below, but the main idea is
that each VPR instance routes one or more of its own signals,
then receives updates about other signals (from other VPR
instances) before it proceeds to route additional signals. The
point at which a VPR instance receives the updates and the
specific signals about which it receives updates is identical
from run-to-run, making our router deterministic.

Ideally, when a VPR instance wants to receive an update
about the routing state of other signals, that update will already
have been sent by some other VPR instance, and will be
available for “pick-up” in an MPI messaging queue. However,
if the update has not already been sent, since the receive is
blocking, the VPR instance will stall its execution until the
update is available (i.e. until the message is sent and arrives).
As with any parallel algorithm, it is desirable to minimize
processor stall time. In our router, this goal translates into
balancing the amount of work between VPR instances, and
only issuing a blocking receive at points when it is likely that
an update has already been sent.

To balance the amount of work among VPR instances, we
must estimate the time needed to route a signal. We considered
three different prediction metrics for a signal’s route time:

1) Number of loads. Fanout was also used as the prediction
metric in [6].

2) Bounding box. We expect that signals with a large
bounding box have a larger distance between pins,
implying a longer routing time.

3) Number of routing resource graph nodes visited during
maze routing in the previous PathFinder iteration. For
each signal, we keep track of the total number of nodes
visited during maze routing for the signal in the previous
PathFinder iteration; we use this to predict the time
needed for the signal in the current iteration.

At the beginning of each PathFinder iteration, we partition the
signals into N sets, where N is the number of VPR instances
(# of processor cores). Partitioning into signal sets is done such
that the sum of the prediction metrics for the signals in each
set is approximately equal. Each set is assigned to one VPR
instance. Note that metrics #1 and #2 above do not change
between PathFinder iterations, so the partitioning of signals is
unchanged across PathFinder iterations when either of these
metrics are used. Metric #3, on the other hand, is affected
by routing congestion and consequently, when this metric is
used, the signals may be partitioned into sets differently across
successive PathFinder iterations1. Note that we cannot use
the wall clock time needed to route a signal in the previous
iteration as a prediction metric, as wall clock time is non-
deterministic.

Having partitioned the signals into sets, parallel routing
commences – the VPR instances begin routing their respective
signal sets. After a VPR instance routes a signal, it sends a
non-blocking update to all of the other VPR instances. The

1When metric #3 is used, there is no history available in the first PathFinder
iteration, so we assign each process an equal number of signals in that
iteration.



update message contains the signal’s routing (as well as the
number of routing resource nodes visited while maze routing
the signal, if metric #3 above is being used). Since the send is
non-blocking, the VPR instance may continue routing signals
in its set, or it may decide to receive an update from other
VPR instances. The decision on whether to receive an update
is based on predicting whether the other VPR instances have
indeed already sent an update, and, such a prediction is made
using knowledge of which signals are being routed by the
other instances, as well as the prediction metrics above.

Each VPR instance maintains work counters that estimate
the amount of work performed by other VPR instances as
they route their respective signal sets. A VPR instance uses its
counters to predict whether updates have been sent by another
VPR instance and whether to issue a blocking receive. We
provide an example in Fig. 2. In this example, the number of
loads on a signal is used to predict a signal’s routing time. A
set of 5 signals is split between two processes so that VPR
instance (process) A has 2 signals and VPR instance (process)
B has 3 signals. The figure shows two arrays, indexed by
variable i, containing the number of loads on the signals each
process is responsible for. The figure shows that the first signal
belonging to process A has 6 loads, and the second signal has
2 loads. Arrows in the figure correspond to updates sent by
process B and received by process A.

We refer to the work counters for processes A and B as
WorkA and WorkB , respectively. At the beginning of a
PathFinder iteration, the work counters are initialized to the
number of loads on the first signal for each VPR instance,
making WorkA = 6 and WorkB = 3. Once the first signal
is routed by process A, the new route is sent to process B
(arrow not shown), though it is not necessarily immediately
received. Then, process A compares WorkB with its own
work counter, WorkA, to determine whether it is likely that
process B has sent any updates. Since WorkB is smaller
than WorkA, process A assumes process B has already sent
an update for its first signal. A blocking receive is issued
for B’s first signal. Once the update is received, WorkB is
incremented by the number of loads on the next signal in
process B, making WorkB = 3 + 2 = 5. Since 5 is also
smaller than WorkA, another blocking receive is issued for
the second signal of process B. Process A then updates the
work counter associated with process B with process B’s third
signal so that WorkB = 5+3 = 8. Since 8 is greater or equal
to WorkA, it is unlikely that process B has sent an update for
its third signal. No receive is issued and process A proceeds
to route its second signal (with 2 loads). Once it is finished
routing this signal, it sends a non-blocking route update, and
updates WorkA with the number of loads on the signal that
was just routed, making WorkA = 6 + 2 = 8. In this case,
WorkB is not less than WorkA, but process A would still like
to receive an update since it has no more signals to route2.

The pseudo-code for our parallel PathFinder implementation

2We synchronize processes at the end of each PathFinder iteration to ensure
that all VPR instances are working on the same iteration at the same time.

Fig. 2. Blocking receives issued by processes during a PathFinder iteration
using number of loads as signal run-time prediction metric.

is shown in Fig. 3. Note that Fig. 3 only shows the portion
of the router relevant to the parallelization. It does not, for
example, show code responsible for updating the congestion
costs. The code is written from the perspective of one of N
processors participating in the routing. We use the variable
j to refer to a processor index; local is the index of the
local processor on which the algorithm in Fig. 3 executes.
SigSet[j] represents the set of signals assigned to processor j
for routing. The N -element array work holds work counters
for each processor. The N -element array sig holds estimates
of which signal is currently being routed by each processor.
The predict(sig) function estimates the amount of work
necessary to route a signal sig. The firstSig(SigSet[j])
function returns the first signal in processor j’s set of signals
to route. Each successive call to the nextSig(SigSet[j])
function returns the next signal to be routed by processor j.

Lines 1 and 20 in Fig. 3 define a while loop which has
so far been referred to as an iteration of PathFinder. Line 2
divides the signals into N partitions, where N is the number
of processors. Each processor is aware of the set of signals
belonging to every other processor. For each processor j aside
from the local processor, lines 3 to 6 initialize the sig[j]
variable to the first signal in SigSet[j], and then update the
work[j] using the predict function. Line 7 initializes the local
work counter to 0. Lines 8 and 19 define a while loop which
executes once for each signal in the local processor’s set of
signals. Line 9 routes a local signal called sigLocal. Line 10
sends a non-blocking update to all other processor containing
the sigLocal’s updated route and some load-balancing infor-
mation. On Line 11, the predict function is used to update
the local work counter with the signal that was just routed
(sigLocal). Lines 12 and 18 define a loop which executes
once for each processor, j, aside from local. This loop is
responsible for requesting and receiving any blocking updates
from other processors that are predicted to have already been
sent. Line 13 ensures that an update is only requested if it has
likely already been sent. Line 14 receives a blocking update
(i.e. line 15 will not execute until an update has been received).
Lines 15 and 16 update the sig[j] and work[j] variables so
that they reflect the next signal to route in SigSet[j]. Updates
are requested from processor j until the work counters indicate
that all sent updates have been received.

Figs. 4 and 5 illustrate the effectiveness of the different
signal time prediction metrics for two benchmark circuits:
clma and cf_fir_20_16_16. The vertical axis shows the
average stall time over all VPR instances as a percentage



1: while shorts exist do
2: partition signals into N sets
3: for all j such that j �= local do
4: sig[j] = firstSig(SigSet[j])
5: work[j] = predict(sig[j])
6: end for
7: work[local] = 0
8: for all sigLocal ∈ SigSet[local] do
9: route sigLocal

10: send non-blocking update for sigLocal
11: work[local] += predict(sigLocal)
12: for all j such that j �= local do
13: while work[j] < work[local] do
14: receive blocking update from processor j for signal sig[j]
15: sig[j] = nextSig(SigSet[j])
16: work[j] += predict(sig[j])
17: end while
18: end for
19: end for
20: end while

Fig. 3. Pseudo-code for multi-core PathFinder with load balancing from the
perspective of processor # local.

2 3 4

Number of Processes

0

10

20

30

40

50

St
al

l t
im

e 
(%

)

num sinks
bounding box
num nodes explored
time

Fig. 4. Stall time (%) for signal route time prediction metrics for clma.

of the total time needed to route all signals. Stall time was
measured using the hardware counters internal to an Intel Core
2 Quad microprocessor. There are four curves on each figure,
corresponding to four different prediction metrics: number
of loads, bounding box, number of nodes visited in maze
routing, and wall clock time. Wall clock time is included
for comparison only, as using this metric would lead to non-
determinism. Results are given for 2, 3 and 4 VPR instances
(processes).

The figures show that the best metric for predicting the run-
time needed to route a signal is the number of routing resource
graph nodes visited in maze routing the signal in the prior
PathFinder iteration. This metric leads to the lowest amount
of stall time (aside from wall clock time), and it is therefore
the best proxy for run-time. We observed the same trends for
other benchmark circuits and therefore, we use the number of
nodes metric for load balancing in all of the results presented
in Section IV.

1) Assuring Convergence: Near the end of negotiated con-
gestion routing, when most shorts between signals have been
resolved, it becomes more important for VPR instances to have
an up-to-date picture of the overall routing solution for all
signals. Without this, PathFinder may not converge to a short-
free state. With this in mind, we may decrease the number of
active VPR instances towards the end of routing if we deem

2 3 4

Number of Processes

0

10

20

30

40

50

60

70

80

St
al

l t
im

e 
(%

)

num sinks
bounding box
num nodes explored
time

Fig. 5. Stall time (%) for signal route time prediction metrics for
cf_fir_24_16_16.

that PathFinder is not making adequate progress. When the
number of shorts between signals falls below an empirically-
determined threshold of 50×N , we begin monitoring the rate
of decrease in shorts between PathFinder iterations. If shorts
decrease by less than 5%, we reduce the number of active
VPR instances by one (of course, we always keep at least one
VPR instance alive). Eventually, we may be left with a single
VPR instance – sequential routing. The motivation for this is
that at the end of routing, there is little work left to be done so
there is little downside to using fewer processes. By reducing
the number of active processes, we reduce the possibility of
convergence problems.

B. Fine-Grained Parallel Routing

Our fine-grained approach is to parallelize maze routing
itself. We profiled the benchmark circuits used in our ex-
perimental study and found that ∼68% of routing time is
consumed by costing the neighbors of a node during maze
routing expansion, and then inserting the neighbors into the
priority queue. Costing comprises RC delay calculation and
congestion costing (evaluating the number of shorts). The
priority queue in VPR is implemented using a binary heap,
which exhibits O(log m) insertion time, where m is the
number of items in the queue.

Posix threads (pthreads) are used in our fine-grained parallel
routing approach. If there are N processor cores available, we
establish one main thread and N −1 helper threads. The main
thread executes the serial portion of maze routing and 1/N th
of the parallel portion of the algorithm. The helper threads are
only created once, and “busy-wait” during the serial portions
of the algorithm (described below).

Sequential maze routing uses one priority queue to maintain
the list of nodes waiting to be expanded. In our fine-grained
parallel router, we use N separate priority queues – one
associated with each thread. Each thread only adds nodes to
its own priority queue. As a result, the queues are completely
privatized during the parallel portion of the algorithm. Pri-
vatization is a standard parallel programming technique for
achieving thread-safety.

The fine-grained parallel routing flow, shown in Fig. 6, is
as follows:



Fig. 6. Fine-grained algorithm flow.

• The main thread peeks at the nodes at the front of the N
priority queues (O(N) time) and pops the one with the
lowest cost.

• The main thread “expands” the node to visit its neighbors,
distributes the neighbors among all threads, then signals
the helper threads that new nodes are ready to be operated
on (using a barrier3).

• All threads, including the main one, cost and add their
share of the nodes to their own priority queue. Since each
thread has its own priority queue, no mutual exclusion or
locks are needed.

• Once the main thread has finished costing and adding
nodes to its priority queue, it waits in a second barrier for
all other threads to be finished before again looking for
the lowest cost node in the priority queues and repeating
the loop.

Synchronization and Load Balancing: Two barriers are used
in the fine-grained router: the first barrier indicates to the
helper threads that work is ready; the second indicates to
the main thread that the helper threads have finished their
work. Typically, if a thread enters a barrier and cannot proceed
past it, the operating system will put the thread to sleep.
It will wake when it can safely exit the barrier. This is the
case in C’s pthreads library, where barriers are implemented
using mutexes, rather than using spin locks. The time re-
quired to sleep/wake a thread is significant, especially when
the granularity of parallelization is very fine. In our router
implementation, using the pthread library barriers resulted in
an order of magnitude slow down in routing time. Therefore,
we implemented a low-overhead barrier using a busy-wait
loop: threads “spin” until they can proceed through the barrier.

A round-robin approach is used to split the expansion
neighbors between the threads. We found that this approach
works well if the time needed to add a node to a priority queue
is consistent across the threads. Unfortunately, the time needed
for queue insertion depends on the number of elements in the
queue, which may differ for each of the N queues. The priority
queue imbalance is partly because the number of neighbors of
any given node in the routing resource graph is not necessarily

3A barrier is a thread synchronization construct placed at a particular
location in a multi-threaded program. All threads must reach the location
before any are allowed to proceed past the location.

TABLE I
RUN-TIMES FOR COARSE-GRAINED APPROACH. *2 QUAD CORE SYSTEMS

ACROSS A NETWORK.

Number of Processes
Benchmark 1 2 3 4 2×4*

cf cordic v 18 18 18 8.2 5.5 4.8 4.1 6.2
cf fir 24 16 16 39.7 26.1 19.7 16.8 14.2

clma 23.5 17.0 13.5 11.8 9.8
des perf 9.2 4.7 5.0 4.1 3.8
ex1010 13.9 9.4 8.4 6.2 5.3

frisc 10.2 6.4 5.5 4.7 3.8
mac2 26.8 20.9 19.8 17.9 15.2

paj raygentop
hierarchy no mem 21.4 17.5 15.5 12.8 13.2

pdc 23.3 15.6 12.3 9.5 7.6
rs decoder 2 12.1 7.2 6.2 5.3 4.3

s38417 8.2 5.5 5.1 3.6 3.9
spla 12.2 9.0 6.9 5.0 5.4

geomean 15.3 10.3 8.9 7.2 6.8
speed-up 1.00 1.49 1.72 2.11 2.26

TABLE II
RUN-TIMES FOR COARSE-GRAINED APPROACH ON INTEL CORE I5.

Number of Processes
Benchmark 1 2 3 4

cf cordic v 18 18 18 10.1 5.6 6.1 4.9
cf fir 24 16 16 44.0 32.1 25.7 21.0

clma 24.8 15.9 12.9 15.0
des perf 8.8 5.4 5.7 4.5
ex1010 14.8 9.7 8.6 7.1

frisc 10.2 7.9 5.8 5.2
mac2 26.9 20.2 18.9 17.8

paj raygentop
hierarchy no mem 22.4 16.6 15.8 14.9

pdc 23.4 13.3 11.9 11.4
rs decoder 2 12.7 7.8 8.7 5.5

s38417 8.8 6.3 5.6 4.8
spla 13.4 8.4 8.2 6.1

geomean 16.1 10.7 9.8 8.4
speed-up 1.00 1.51 1.64 1.92

divisible by the number of threads (N ). To combat this, we
assign work to helper threads in a cyclic fashion, making each
thread responsible for handling “extra” nodes periodically, and
thereby better balancing the queue sizes across threads.

IV. EXPERIMENTAL STUDY

Experiments were run on a system running Linux (Debian
2.6.26-21) with a Core 2 Quad Q9550 processor and 3 GB of
memory. The Core 2 Quad has 4 processors. Processors with
IDs 0 and 1 share a first 6 MB of L2 cache, while processors
with IDs 2 and 3 share a second 6 MB of L2 cache. The
Linux sched_setaffinity command was used to ensure
that, when possible, threads were assigned to processors that
share an L2 cache, promoting faster communication between
threads. An Intel Core i5 system running Linux (Ubuntu
2.6.31-20) is also used for comparison. Although the focus
of this paper is on parallelization for chip multiprocessors,
since the coarse-grained parallel router uses MPI, it can work
over a network and remains deterministic. Two networked
Core 2 Quad systems were used together when the number
of threads/processes exceeds 4.

The benchmark circuits were selected from the 20 largest
MCNC benchmarks commonly used in FPGA CAD research,
and also from the set of benchmarks that are packaged with
VPR 5.0 [12]. Circuits were mapped into 4-input LUTs using



TABLE III
RUN-TIMES FOR FINE-GRAINED APPROACH.

Number of Threads
Benchmark 1 2 3 4

cf cordic v 18 18 18 8.2 7.4 12.6 12.7
cf fir 24 16 16 39.7 36.6 72.4 78.3

clma 23.5 19.8 32.7 38.4
des perf 9.2 7.6 12.8 14.4
ex1010 13.9 10.7 20.6 21.1

frisc 10.2 8.0 13.7 15.3
mac2 26.8 21.2 39.0 42.6

paj raygentop
hierarchy no mem 21.4 17.7 37.3 42.5

pdc 23.3 17.7 29.6 33.8
rs decoder 2 12.1 10.3 16.5 20.3

s38417 8.2 6.7 12.8 13.6
spla 12.2 9.1 16.8 20.4

geomean 15.3 12.4 22.4 25.1
speed-up 1.00 1.22 0.68 0.61

ABC [19], then clustered using T-Vpack [13] into logic blocks
with 10 4-LUTs and 22 inputs. The FPGA routing architecture
targeted contains unidirectional wire segments that span 2
logic block tiles. Across all runs, each circuit was routed
using a fixed channel width of 1.3× the minimum channel
width needed to route the circuit in the single-core case. As
it is more important to achieve run-time reductions on large
circuits, only those circuits with single-core run-times of more
than 10 seconds were included in our experiments; smaller
circuits were excluded. The run-times presented correspond to
the time spent routing all signals in the PathFinder algorithm,
which represents 86% of total router run-time, on average. The
remaining 14% of router time includes loading the benchmark
circuit, building the routing resource graph device model, and
final post-routing timing analysis.

Table I shows the run-time (in seconds) as a function of the
number of VPR instances (processes) for the coarse-grained
parallel routing approach. The first column of the table gives
the name of each circuit. The next five columns present the
run-time needed to route each circuit with a given number
of processes (processor cores). The 2×4 case corresponds
to using two Core 2 Quad processors across a network –
this column is for comparison only and is not indicative of
scalability. Each data point in the table is an average over 5
runs. We reinforce that for a given number of processes, our
router produces the same routing results from run-to-run – it
is deterministic. The second last row of the table provides the
mean run-time across all circuits for a particular number of
processes. The last row gives the speed-up relative to serial
(non-parallel) routing. Speed-ups of 1.5×, 1.7×, 2.1× are
achieved with 2, 3 and 4 processor cores, respectively. We
consider the results encouraging and we believe they should
keenly interest FPGA vendors and users. For comparison, we
note that Altera reported a similar speed-up of 2.2× using 4
cores in their recent parallel placer work [2]. Results are also
provided for an Intel Core i5 processor system in Table II.
Similar speed-ups are achieved on the Core i5. The Core i5 is
a stand-alone (non-networked) machine, and hence 2×4 results
are not shown for this processor.

Turning to the results for the fine-grained parallel router,
Table III shows run-times as a function of the number of

TABLE IV
RUN-TIMES RESULTS FOR FINE-GRAINED APPROACH INTEL CORE I5.

Number of Threads
Benchmark 1 2 3 4

cf cordic v 18 18 18 10.1 8.7 7. 8.4
cf fir 24 16 16 44.0 43.2 48.5 58.7

clma 24.8 21.8 21.9 24.0
des perf 8.8 9.2 7.3 9.0
ex1010 14.8 12.3 13.1 14.6

frisc 10.2 12.3 10.2 9.8
mac2 26.9 25.7 23.8 26.7

paj raygentop
hierarchy no mem 22.4 20.6 23.9 29.0

pdc 23.4 19.3 19.5 21.1
rs decoder 2 12.7 11.7 10.4 13.4

s38417 8.8 8.4 8.1 8.7
spla 13.4 10.4 12.8 11.3

geomean 16.1 14.9 14.6 16.2
speed-up 1.00 1.08 1.11 1.00

threads used. A speed-up of 1.2× is achieved with two threads;
slow downs are observed with more than two threads. The
data shows that the suitability of the fine-grained approach
depends on the memory architecture of the computer on which
routing is executed: In the Core 2 Quad, pairs of cores share
an L2 cache. When two threads are used, the threads can
communicate with one another through the shared cache.
However, when three or four threads are used, communication
between some threads must happen through main memory
(there is no L3 cache), eliminating the chance for speed-up.

Table IV shows results for the fine-grained approach using
the Core i5 system. The Core i5 has a unified L3 cache shared
among all four processors, but cores do not share an L2 cache.
The results indicate a less significant speed-up than the Core
2 Quad for two threads (because L3 cache is used instead
of L2 cache), but better speed-up for more than two threads,
because threads on the Core i5 do not have to communicate
through main memory. Nevertheless, the speed-up results for
fine-grained parallel routing are poor in comparison with those
for coarse-grained parallel routing. Coarse-grained parallel
routing appears to be the superior parallelization approach.
New computer architectures from both Intel [10] and AMD [4]
that feature point-to-point connections between cores may
provide better performance in the fine-grained case.

Table V shows the run-time results using a combination of

TABLE V
RUN-TIMES FOR COMBINED COARSE AND FINE-GRAINED APPROACH. *2

QUAD CORE SYSTEMS ACROSS A NETWORK.

Number of Processes/
Threads (coarse, fine)

Benchmark 1,1 2,2 4,2*
cf cordic v 18 18 18 8.2 5.7 4.0

cf fir 24 16 16 39.7 25.0 15.4
clma 23.5 13.2 13.8

des perf 9.2 6.0 3.8
ex1010 13.9 7.5 5.3

frisc 10.2 5.1 5.3
mac2 26.8 16.7 15.8

paj raygentop
hierarchy no mem 21.4 14.4 13.3

pdc 23.3 10.5 7.5
rs decoder 2 12.1 6.7 4.4

s38417 8.2 4.3 3.6
spla 12.1 6.6 7.1

geomean 15.3 8.8 7.1
speed-up 1.00 1.74 2.16



TABLE VI
NUMBER OF WIRE SEGMENTS FOR COARSE-GRAINED PARALLEL

ROUTING. *2 QUAD CORE SYSTEMS ACROSS A NETWORK.

Number of Processes
Benchmark 1 2 3 4 2×4*

cf cordic v 18 18 18 19306 19451 19386 19521 19508
cf fir 24 16 16 19776 19741 19633 19736 19659

clma 38771 39196 39006 39013 38955
des perf 22931 22819 22972 22994 22932
ex1010 23349 23462 23691 23734 23410

frisc 14485 14490 14684 14673 14691
mac2 42435 42731 42930 43110 43405

paj raygentop
hierarchy no mem 19144 19066 19079 18927 19107

pdc 27876 27688 27810 27822 27489
rs decoder 2 11143 11218 11238 11265 11169

s38417 17132 17105 17217 17138 17227
spla 17684 17767 17849 17733 17876

geomean 21311 21352 21421 21425 21403
relative to serial 1.000 1.002 1.005 1.005 1.004

coarse and fine-grained parallel routing. In particular, we use
multiple VPR instances that communicate with MPI (coarse-
grained approach), where the router in each VPR instance
is multi-threaded (fine-grained approach). The (2,2) column
corresponds to two parallel VPR instances (processes), each
of which is dual-threaded – 4 cores are used in total. The
(4,2) column corresponds to four parallel VPR instances
(processes), each of which is dual-threaded – 8 cores are used
in total. Mean speed-ups of 1.7× and 2.2× are realized in
the (2,2) and (4,2) scenarios, respectively. It is interesting to
compare the (4,2) results with the 2×4 results in Table I, as
they both use the same number of processor cores. Using 8
VPR instances provides slightly better results, however, we
believe that depending on the memory architecture of the
processor on which routing is executed, using a combination of
fine and coarse-grained parallelism could offer the best speed-
up. Perhaps in the future we will see programs where the
approach to parallelization is chosen dynamically, depending
on the processor being used.

In our coarse-grained parallel routing approach, the VPR
instances executing concurrently operate with slightly stale
congestion information, and consequently, it is conceivable
that quality-of-result could be adversely impacted. In our fine-
grained approach, we expect no quality degradation, however,
the routing results are changed as a consequence of splitting
the router’s priority queue into N queues – nodes with the
same cost that reside in different priority queues may be drawn
in a different order. We studied the impact on quality-of-result
using two metrics: 1) the total number of used FPGA wire
segments after routing, and 2) the post-routing critical path
delay. The number of wire segments is a proxy for the total
capacitance of the routing for all design signals.

Tables VI, VII and VIII show the number of used
wire segments for coarse-grained, fine-grained and combined
coarse/fine-grained parallel routing, respectively. The last row
of each of these tables gives change in the number of wire seg-
ments versus using serial (non-parallel) routing. Observe that
in all cases, the average change to the number of used wire seg-
ments is less than 0.5%. Tables IX, X and XI provide critical
path delay results for coarse, fine, and combined coarse/fine-

TABLE VII
NUMBER OF WIRE SEGMENTS FOR FINE-GRAINED PARALLEL ROUTING.

Number of Threads
Benchmark 1 2 3 4

cf cordic v 18 18 18 19306 19339 19386 19230
cf fir 24 16 16 19776 19802 19863 19840

clma 38771 38665 38743 38697
des perf 22931 22965 23157 22844
ex1010 23349 23208 23192 23028

frisc 14485 14484 14501 14422
mac2 42435 42315 42426 42278

paj raygentop
hierarchy no mem 19144 18988 19262 18948

pdc 27876 27893 27946 27705
rs decoder 2 11143 11179 11196 11221

s38417 17132 17186 17201 17085
spla 17684 17659 17636 17730

geomean 21311 21294 21358 21244
relative to serial 1.000 0.999 1.002 0.997

TABLE VIII
NUMBER OF WIRE SEGMENTS USING COMBINED COARSE AND

FINE-GRAINED PARALLEL ROUTING. *2 QUAD CORE SYSTEMS ACROSS A

NETWORK.

Number of Processes/
Threads (coarse, fine)

Test scenario 1,1 2,2 4,2*
cf cordic v 18 18 18 19306 19405 19494

cf fir 24 16 16 19776 19729 19746
clma 38771 38940 38933

des perf 22931 23065 22918
ex1010 23349 23456 23345

frisc 14485 14548 14632
mac2 42435 42942 43129

paj raygentop
hierarchy no mem 19144 19045 19010

pdc 27876 27831 27945
rs decoder 2 11143 11157 11300

s38417 17132 17132 17262
spla 17684 17877 17872

geomean 21311 21381 21428
relative to serial 1.000 1.003 1.005

grained parallel routing. We actually observe improved critical
path delay in some cases (numbers < 1), however, we believe
this is due to noise in the routing algorithm, which is heuristic.
Looking at the last row in each of the critical path delay
tables, we see that critical path delay was never worsened by
more than 1%, on average. From the wire segment usage and
critical path delay results, we conclude that the approaches to
parallelization do not significantly impact the router’s quality-
of-result.

V. CONCLUSIONS AND FUTURE WORK

Parallel computing is a promising avenue for reducing the
run-time of FPGA CAD tools. In this paper, we presented
two approaches for deterministic parallel FPGA routing. In
the coarse-grained approach, processor cores route different
signals concurrently and communicate with one another using
MPI. In the fine-grained approach, the maze router expansion
for an individual pin is accelerated using threads. The coarse
and fine-grained approaches can be used in tandem. Results
show that the coarse-grained approach provides 2.1× speed-up
using 4 processor cores. Neither of the proposed techniques
impact quality-of-result. We further showed that the memory
architecture of the processor on which the router executes
can significantly affect the results achieved and we expect



TABLE IX
CRITICAL PATH DELAY (NS) FOR COARSE-GRAINED PARALLEL ROUTING.

Number of Processes
Benchmark 1 2 3 4 2×4*

cf cordic v 18 18 18 5.949 5.949 5.949 5.949 5.949
cf fir 24 16 16 12.779 12.780 12.783 12.781 12.780

clma 12.529 12.531 12.529 12.637 12.534
des perf 6.173 6.170 6.179 6.179 6.174
ex1010 9.605 9.711 9.607 9.801 9.820

frisc 11.037 10.828 10.819 10.828 10.829
mac2 30.936 30.834 30.833 30.833 30.727

paj raygentop
hierarchy no mem 11.115 11.219 11.114 11.115 11.530

pdc 10.455 9.895 9.887 9.678 10.201
rs decoder 2 19.116 18.985 19.406 19.203 19.101

s38417 7.049 7.047 7.047 7.047 7.129
spla 7.681 8.100 8.505 8.192 8.363

geomean 10.726 10.716 10.761 10.725 10.820
relative to serial 1.000 0.999 1.003 1.000 1.009

TABLE X
CRITICAL PATH DELAY (NS) FOR FINE-GRAINED PARALLEL ROUTING.

Number of Threads
Benchmark 1 2 3 4

cf cordic v 18 18 18 5.949 5.949 5.949 5.949
cf fir 24 16 16 12.779 12.780 12.780 12.780

clma 12.529 12.525 12.530 12.637
des perf 6.173 6.177 6.177 6.069
ex1010 9.605 9.605 9.603 9.603

frisc 11.037 10.935 10.829 10.935
mac2 30.936 30.833 30.833 30.828

paj raygentop
hierarchy no mem 11.115 11.110 11.114 11.115

pdc 10.455 9.578 9.203 10.290
rs decoder 2 19.116 18.796 18.796 19.223

s38417 7.049 7.044 7.049 7.049
spla 7.681 8.047 7.676 7.781

geomean 10.726 10.662 10.578 10.710
relative to serial 1.000 0.994 0.986 0.998

that both parallelization techniques may benefit from new
processor architectures that feature improved point-to-point
communication between cores.

A direction for future work relates to how signals are
partitioned in the coarse-grained parallel approach. We can
partition signals into sets based on pin locations to reduce
the likelihood that signals in different sets would short with
one another (i.e. geographically-based partitioning). In so
doing, we expect that less frequent update messages between
processes would be needed, reducing overhead and improving
speed-up. Moreover, each process could work on a reduced-
size routing graph, lowering peak memory requirements. A
second future direction is to modify our algorithms to be
serially equivalent. Specifically, while our approaches are
deterministic/repeatable for a given number of processor cores,
the results achieved differ versus the single-core (serial) case.
We plan to explore techniques for serial equivalence and their
impact on run-time.

ACKNOWLEDGEMENTS

The authors thank Scott Chin for suggesting that node
expansion might be parallelized on a fine-grain level.

REFERENCES
[1] Open MPI: Open source high performance computing. http://www.open-

mpi.org/, 2010.
[2] V. Betz, A. Ludwin, and K. Padalia. High-quality, determinstic parallel

placement for FPGAs on commodity hardware. In ACM Int’l Symp. on
FPGAs, pages 14–23, 2008.

TABLE XI
CRITICAL PATH DELAY (NS) FOR COMBINED COARSE AND FINE-GRAINED

PARALLEL ROUTING. *2 QUAD CORE SYSTEMS ACROSS A NETWORK.

Number of Processes/
Threads (coarse, fine)

Test scenario 1,1 2,2 4,2*
cf cordic v 18 18 18 5.949 5.949 5.949

cf fir 24 16 16 12.779 12.779 12.779
clma 12.529 12.531 12.534

des perf 6.173 6.066 6.072
ex1010 9.605 9.605 9.718

frisc 11.037 10.936 10.932
mac2 30.936 30.833 30.729

paj raygentop
hierarchy no mem 11.115 11.425 11.114

pdc 10.455 9.484 9.764
rs decoder 2 19.116 18.997 19.173

s38417 7.049 7.047 7.047
spla 7.681 7.749 8.257

geomean 10.726 10.639 10.714
relative to serial 1.000 0.992 0.999

[3] Altera Corp., San Jose, CA. Stratix-III FPGA Family Data Sheet, 2008.
[4] AMD. Magny-cours and direct connect architecture 2.0, 2009.

http://developer.amd.com/documentation/articles/
pages/Magny-Cours-Direct-Connect-Architecture-
2.0.aspx.

[5] L. Cabral, J. Aude, and N. Maculan. TDR: A distributed-memory paral-
lel routing algorithm for FPGAs. In Int’l Conf. on Field Programmable
Logic and Applications, pages 263–270, 2002.

[6] P. Chan and M. Schlag. New parallelization and convergence results for
NC: a negotiation-based FPGA router. In ACM Int’l Symp. on FPGAs,
pages 165–174, 2000.

[7] P. K. Chan and M. D. F. Schlag. Acceleration of an FPGA router. In
Proc. of FCCM, page 175, 1997.

[8] E. Cohen. Using selective path-doubling for parallel shortest-path
computations. J. Algorithms, 22(1):30–56, 1997.

[9] J. Driscoll, H. Gabow, R. Shrairman, and R. E. Tarjan. Relaxed heaps: an
alternative to fibonacci heaps with applications to parallel computation.
Commun. ACM, 31(11), 1988.

[10] Intel. Intel quickpath architecture, 2008.
www.intel.com/technology/quickpath/whitepaper.pdf.

[11] C.Y. Lee. An algorithm for path connections and its applications. IRE
Trans. on Electronic Computers, EC-10(2):364–365, 1961.

[12] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, M. Fang, and J. Rose.
VPR 5.0: FPGA CAD and architecture exploration tools with single-
driver routing, heterogeneity and process scaling. In ACM/SIGDA Int’l
Symp. on FPGAs, pages 133–142, 2009.

[13] A. Marquardt, V. Betz, and J. Rose. Using cluster based logic blocks
and timing-driven packing to improve FPGA speed and density. In Int’l
Sym. on FPGAs, pages 37–46, Monterey, CA, 1999.

[14] L. McMurchie and C. Ebeling. Pathfinder: A negotiation-based
performance-driven router for FPGAs. In ACM/SIGDA Int’l Symp. on
FPGAs, pages 111–117, 1995.

[15] U. Meyer and P. Sanders. Parallel shortest path for arbitrary graphs. In
Proc. 6th Int’l Euro-Par Conf. on Parallel Processing, pages 461–470,
2000.

[16] W. Chow, R. Fung, and V. Betz. Simultaneous short-path and long-path
timing optimization for FPGAs. In IEEE Int’l Conf. on Computer Aided
Design, pages 838–845, 2004.

[17] L. Farragher, Q. Wang, S. Gupta, and J. Anderson. CAD techniques
for power optimization in Virtex-5 FPGAs. In IEEE Custom Integrated
Circuits Conf., pages 85–88, 2007.

[18] J. Swartz, V. Betz, and J. Rose. A fast routability-driven router
for FPGAs. In ACM/SIGDA Int’l Symp. on FPGAs, pages 140–149,
Monterey, CA, 1998.

[19] Berkeley Logic Synthesis and Verification Group. ABC: A
system for sequential synthesis and verification, Release 70930.
http://www.eecs.berkeley.edu/˜alanmi/abc/.

[20] E. Lusk, W. Gropp, and R. Thakur. Using MPI-2. MIT Press, Cambridge,
MA, 1999.

[21] Xilinx Inc., San Jose, CA. XC4000 FPGA Data Sheet, 1999.
[22] Xilinx Inc., San Jose, CA. Virtex-5 FPGA Data Sheet, 2007.


