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Abstract—In this article we present a new side-channel build-
ing block for FPGAs, which, akin to the old Roman god of Janus,
has two contradictory faces:

• as a watermarking tool, it allows to uniquely identify IP
cores by adding a single slice to the design;

• as a Trojan Side-Channel (TSC) it can potentially leak an
entire encryption key within only one trace and without the
knowledge of either the plaintext or the ciphertext.

We practically verify TROJANUS’ feasibility by embedding it as
a TSC into a lightweight FPGA implementation of PRESENT.
Besides, we investigate the leakage behavior of FPGAs in more
detail and present a new pre-processing technique, which can
potentially increase the correlation coefficient of DPA attacks.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) combine the
flexibility of micro controllers with the improved perfor-
mance of Integrated Circuits (ICs), which make them often
the preferred choice for embedded applications. To prevent
Intellectual Property (IP) theft, the major FPGA vendors
provide protection mechanisms, such as hard-macros and bit
stream encryption [1]–[4]. Those implemented mechanisms
shall prevent cloning and also to reconstruct embedded secrets
in the design. However, Moradi et al. [5], [6] recently have
broken the bit stream encryption with the help of side-channel
analysis, this way enabling IP theft of full FPGA designs and
product cloning. A potential technique to detect IP cores that
have been disseminated unauthorizedly is watermarking, and
side-channels based watermarking approaches have been pro-
posed in [7]–[11]. The watermarking signatures get embedded
in the power profile of a device in such a manner that the secret
pattern is not obviously detectable, similar to the idea of image
watermarking. The watermark pattern is usually generated by a
special tailored circuit with a specific switching activity, which
can be described by a so-called leakage function LF (·). With
the knowledge of LF (·) and statistical analysis methods an
evaluator can search for the watermarking pattern in the power
profile and determine if the device is cloned or not.

The challenges to embedded a watermarking generating
circuit are a) a low additional resource consumption and b) a
good detactability when knowing the leakage function LF (·),
while hiding the signature of the watermark from unauthorized
users, evaluators or attackers. Due to the current literature
its seems that the usage of FPGA primitives to construct
LFSRs with special sequence and combination functions seem

to be the most promising to construct such leaking watermark-
circuits, cf. [10], [11]. In [7]–[9] the authors extend the usual
design flow in Xilinx Inc. FPGAs to embed the LFSR con-
struction using FPGA primitives. Our proposed TROANJUS
mechanism can also be efficiently integrated into the design
by using FPGA primitives, but it uses a more sophisticated
scheme which results in a much smaller footprint while the
detection gets more reliable. Identifying an IP core using, for
instance a unique 20-bit ID (for the module or the customer)
in combination with a 128-bit secret, can be implemented at
the mere overhead of a single slice.

At the same time, this technique can also be abused to leak
out secret information of a circuit. Customers who purchase
an IP core, usually receive a hard-macro, that is a black-
box, and hence, do not know what is exactly included in
the IP core. It is thus hard to verify that an IP core does
not contain malicious logic, called a Hardware Trojan (HT),
added by an adversary. HTs can be classified using for example
the taxonomy of [12], which defines three characteristics:
physical, activation and action. The physical characteristic
describes the type of manifestation of the HT, i.e., how it is
realized, meaning, does it add gates, does it modifies existing
wiring and so on. The activation characteristic describes how
a Trojan is activated (externally or internally triggered) or if it
is always active. The action characteristic specifies what the
Trojan does once it is in it’s active state, e.g., leak information,
modify the behavior of the system or completely destroy it,
cf. [13], [14].

At CHES 2009 Lin et al. [15] presented the concept of
Trojan Side-Channels (TSC), an always active HT which in-
duces a physical side-channel (the power consumption) to leak
information. They presented two designs: the first occupies 23
slices and can leak 80 out of 128 bits of an AES key, without
known plaintexts. The second TSC presented occupies only
7 slices but needs known plaintexts. Both TSCs need 1030
measurements to recover the secret. In 2010 Gallais et al. [16]
showed how HTs can induce or amplify side-channel leakage
by a number of simple micro-architectural modifications. In
2012 Kasper et al. published a comprehensive article [11] on
how to use side-channels deliberately in the design process,
e.g., for watermarking [10], [17], but as well as for designing
hardware Trojans. Their TSC requires 88 slices and leaks
the masks of every measurement instead of the secret key,
therefore reducing the probability of being detected by an

978-1-4799-2198-0/13/$31.00 ©2013 IEEE −160−



evaluator. However, they make some restrictive assumptions on
the mask generation, i.e., they are generated by a rotating shift
register. They need 500,000 clock cycles (in one or multiple
measurements) to recover those masks which can subsequently
be used in a standard CPA (Correlation Power Analysis).

TROJANUS, in its use for a malicious intent, falls in the
category of TSC, hence it cannot be detected by functional
testing which only checks for correctness using existing chan-
nels, e.g. I/O or special testing points. In addition we will
show that even by standard side-channel measurements, as
for example performed by evaluation labs for certification, it
cannot be detected. Furthermore, since TROJANUS is very
small, it is also very resistant to standard Trojan detection
methods, because it does not change the propagation delay of
the original circuit and has a very low signal-to-noise ratio in
the overall circuit, cf. [14], [18], [19]. Last, TROJANUS can
be used as a TSC for block ciphers and stream ciphers alike.

In the remainder of this article, in the experimental eval-
uation, we mainly focus on the HT aspects of TROJANUS.
We chose to present Trojanus strength of leaking out infor-
mation secretly, for instance watermarking IDs or secret keys,
applied on a HT, because it is more challenging to extract
unknown information from a side-channel leakage rather than
binary falsify an known ID. We first present the basic idea
of TROJANUS and provide some theoretical background.
Afterwards, we practically verify TROJANUS as a TSC on
an FPGA, discuss some problems and provide new solutions.
We implemented two versions of the PRESENT block ci-
pher [20]: an unsecured version and a second version secured
by the Threshold Implementation (TI) countermeasure [21],
[22]. Then we added TROJANUS to both designs. We show
that it is possible to leak the whole key within one power
trace (only capturing one encryption cycle) for the unsecured
version and with only a few measurements for the secured
version without either knowing the plaintext or ciphertext.
Note that leaking the key within one trace is particularly
interesting when attacking protocols where the key is updated
in every encryption. Finally, we discuss open points and
possible problems in practice and provide pointers for future
work.

II. TROJANUS
A. Differential Power Analysis

Differential Power Analysis [23] exploits the fact that
so-called side-channels, e.g. power consumption or electro-
magnetic emanation, depend on processed intermediate values.
By statistically analyzing a lot of side-channel measurements,
DPA is able to gain additional information about intermediate
states and thereby reconstruct for example an encryption key
of a cipher. CPA (Correlation Power Analysis) is a more
advanced DPA technique introduced in [24]. The requirement
[25] to perform a DPA/CPA is the need for an intermediate
result which is a function of a known and changing value
and part of the unknown fixed secret. A classic example for
a suitable intermediate result is the Sbox output of the first
round of a block cipher. Since our leakage generator cannot

fulfill this requirement, we introduce a new methodology to
leak static values without known input, but which can still be
retrieved by a DPA-like attack.

B. Concept

As mentioned in the last section our leakage generator does
not meet the classic requirements for a DPA, i.e., we cannot
target an intermediate result which is a function of a known
changing input and the secret. But the requirement for a DPA
can be more generalized as follows: one must be able to target
a predictable changing output, which somehow depends on the
secret. So the new question is: how to leak a static key without
additional known input? Our idea is to use a changing but
predictable (for the attacker/evaluator) leakage function LFt

(·)
with a static input, e.g., the secret key or the watermarking ID.

Compared to the approach published in [11] we do not need
to know a second parameter to generate a predictable leakage.
The leakage function of Kasper et al. can be described for
ASIC and FPGA implementations as follows:

LFt,HTka
(ki, s) = F (ki, s)⊕ F (ki, s− 1), (1)

where ki denotes the byte of the round key under attack and
s the current state of an LFSR, while (s − 1) denotes its
previous state. Ziehner et al. in [8] uses LFSR primitive FPGA
components in a similar manner to embed a watermarking
signature in the power consumption profile. Note that both s
and (s−1) are only known to the attacker and thus constitute a
secret only known to the attacker. Both parameters are used by
a fixed combination function F (·, ·) to generate a hidden side-
channel leakage. To hamper detection of the key dependent
leakage it is possible to extend the combination function to use
the plaintext, cf. [15]. Another proposed solution to hamper
detection is to leak the masks of a secured implementation
instead, which enables the attacker to subsequently perform a
DPA with known masks, cf. [11].

Our proposed scheme is independent of the plaintext or the
masking value. It extends the idea proposed in [9] by not only
adding a fixed LFSR scheme in the unused space of a LUT,
instead we are modulating the leakage generating function
itself and, thus, the scheme only depends on the static value
that shall be leaked (e.g. key or ID) as the sole parameter of
F (·):

F(m)(ki) = {f1(ki), f2(ki), f3(ki), · · · , fm(ki)}. (2)

The i-th function fi is selected by a discrete time value,
such as a certain clock cycle, in order to change the leaked
output over time instead of using a second parameter, such as
the plaintext. The leakage is the distance of two consecutive
function outputs and can thus be modeled as:

LFt,HT
(ki; t) = f(t)(ki)⊕ f(t−1)(ki). (3)

The observable side-channel leakage Lt caused by the leak-
age generator is therefore a composition of the leakage caused
by the original design LFt,cipher

(ki, xi)) and the embedded
leakage generator LFt,HT

(ki; t):
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Fig. 1. Chain of CFGLUT5s

Lt ← HW (LFt,cipher
(ki, xi)) ◦ HW (LFt,HT

(ki; t)). (4)

In case the Trojan is synchronized with the start of each
operation and the unique sequence of the leakage generator is
smaller or equally long as the operation, the generated leakage
will be the same at any fixed point in time over multiple
operations. Hence, Eq. (4) can be simplified too:

Lt ← HW (LFt,cipher
(ki, xi)) ◦ HW (const.) (5)

for each observation at point t0 and the leakage cannot be
exploited by a standard DPA.

C. The Side-Channel Leakage Generator

Fortunately, Xilinx Virtex-5 FPGAs offer the perfect build-
ing block for our intend, a special Look-Up Table (LUT)
called CFGLUT5.1 This element is an at runtime dynamically
reconfigurable 5-input to 1-output Look-Up Table that enables
changing the logical function of the LUT during circuit
operation [28]. The 32-bit sequence (25) which defines the
logical function of the LUT can be shifted by one bit in every
clock cycle (internally implemented as a shift register), thus
changing the output function and, hence, also the leakage, in
every clock cycle. As a consequence, every clock cycle can
now be seen as one leakage trace for a DPA. Furthermore, the
bit which falls out of the configuration/shift register can be
used as input to another CFGLUT5, thereby allowing a serial
chain of data to reconfigure multiple LUTs, see Fig. 1. We will
explain our implementation in more detail in the next section.

Since the CFGLUT5 has a 5-bit input, we can leak 5 bits
per CFGLUT5. To leak an n-bit secret we therefore need n

5 
CFGLUT5s. That means we get n

5 ∗32 (potentially) different
leakage functions or in other words, a leakage sequence of
n
5  ∗ 32 bits length. How to choose the initial state of our

CFGLUT5s will be discussed later in Section IV-A.

D. Practical Implementation

As described in the introduction, TROJANUS can be used
efficiently for watermarking. Assume that a vendor wants all
of his IP cores to have a unique identifier, he first chooses
a 20-bit value, meaning the side-channel generator would
consist of 20/5 = 4 CFGLUT5s, which fit in only one slice.
The sequence defining the LUT functions has a length of
4 ∗ 32 = 128 bits, hence, the complete ID for this core would
have a length of 128 bits. The vendor chooses a fixed 128-
bit sequence (or a set of sequences), representing the vendor’s

1Note that other vendors offer similar building blocks, cf. [26], [27], in
their FPGAs, hence, our design can be transferred to other FPGA platforms
with only small modifications.

master key. Using this master key, a vendor can test a product
for IP infringement by recovering the 20-bit ID. In a similar
procedure TROJANUS can be ”abused” as a SCT leaking out
secrets. Instead of using a fixed and known ID a suspicious
designer can chose a fixed secret sequence to recover for
instance the content of the key register connoted to the input
of the CFGLUT5s of the TROJANUS scheme.

Hence, we provide an example of applying TROJANUS as
a SCT embedded in a PRESENT block cipher and show how
efficient a unknown secret can been leakage out secretly. First
we describe our implementation, then we show how to exploit
the leakage caused by our leakage generator, before we discuss
how to reconstruct the secret key. As mentioned before we
focus on TROJANUS as a HT here, but all results can be easily
transferred for its use as a watermarking tool, i.e., leaking an
ID instead of a secret key.

For our practical evaluations we chose the PRESENT cipher
[20], one unprotected version (P1) and one protected with the
TI [21] countermeasure (P2), both using an 80-bit key, cf.
[22]. Figure 2 shows the implementation of our HT based on
TROJANUS embedded in an unprotected serialized PRESENT
implementation. As described in the previous section, we need
n
5  CFGLUT5s, meaning 80/5 = 16 LUTs, to leak the

whole key. The inputs for the 16 CFGLUT5s are directly taken
from the key register of the interface (since the key register
of the cipher itself is updated every round). No functional
changes are made to the original cipher and no additional logic
is inserted in the cipher, which could cause timing or delay
differences. This is why the proposed TSC is easily to integrate
in any existing circuit.

Our PRESENT implementation takes 516 clock cycles for
one encryption. Since every clock cycle represents one leakage
trace, we theoretically can obtain 516 traces for a DPA from
one encryption. Our sequence is 16 ∗ 32 bits long, resulting
in 512 different leakage functions, hence perfectly fitting in
one encryption trace. In a noisy environment where more
traces are needed to perform a DPA, it is easy to measure
several encryptions and average the measured traces before
performing a DPA. On the other hand, if the cipher has less
clock cycles than the sequence, the sequence is split over
consecutive encryptions and multiple measurements have to
be cut together. It is even possible to keep the TSC running

Serialized PRESENT 80 ENC

Trojan

State 
[gReg-4/64]

S-Box

Key scheduler 

FSM

5 Round

Plaintext

Ciphertext

4
4

Key
4

4

4

nReset
Done

Key register 
[gReg-4/80] CFGLUT5

80

CFGLUT5

CFGLUT5

16 Times

5

5

5

1

Fig. 2. TROJANUS embedded as a TSC in a lightweight PRESENT
implementation P1.
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(a) DPA with classic Hamming distance model (b) CPA with three model values (c) CPA after pre-processing step

Fig. 3. CPA Results

independently of the encryption core. Note that in our design
the Trojan circuit is only active for 512 clock cycles to ease
synchronization in the attack phase, but this is not necessary
for a successful attack. A more thorough discussion about
synchronization and averaging will be given in Section IV.

As for the size, one slice on a Virtex-5 can host 4
CFGLUT5s and 4 flip-flops to store the output bits of the
four LUTs, resulting in a total size of only 4 slices for a
TROJANUS that can leak out an entire 80-bit PRESENT
key. A visualization of the resource consumption for leaking
various key lengths is provided in the Appendix, cf. Fig. 8.

III. SIDE-CHANNEL ANALYSIS

A. Measurement Setup

Our power consumption traces were obtained from a
SASEBO G-II evaluation platform. The SASEBO G-II hosts
two FPGAs, i.e., a control FPGA (Xilinx XC3S400A-
4FTG256, Spartan-3A series) and a cryptographic FPGA (Xil-
inx XC5VLX50-1FFG324, Virtex-5 series) which is decoupled
from the rest of the board in order to minimize electronic
noise from the surrounding components. It is supplied with a
voltage of 1V by an external stabilized power supply as well
as with a 3 MHz clock derived from the 24 MHz on-board
clock oscillator. The power consumption is measured over a
1 Ω resistor inserted in the VDD line by using a differential
probe. All power traces are collected with a LeCroy WR610Zi-
s-32 oscilloscope at a sampling rate of 10 GS/s.

B. FPGA Characteristics

Our first experiments were performed with a design that in-
cludes all 16 CFGLUT5s, but only one output bit is connected
to an output driver to mimic a load, i.e., the output bit of the
function for which the most significant five key bits are the
input. With this test we evaluate our idea to leak five static
key bits with a changing but predictable 5-to-1 bit function.
One trace consisting of 512 clock cycles2 was recorded and
then sliced into 512 single traces, each trace containing one
clock cycle.

2Maximum cycle count of our bit stream defining the outputs of the 16
CFGLUT5s, the last 2 two clock cycles of the encryption were ignored

Since we know the starting value as well as the sequence of
the 16 CFGLUT5s 5-to-1 bit functions, we can calculate the
output of the first function for all 512 clock cycles. To calculate
the 32 (25) hypothetical power values for our CPA we chose
the Hamming distance between two consecutive outputs of our
target function, cf. Eq (3). Figure 3(a) depicts the result of the
CPA. As we can see the correct key hypothesis does not stand
out and is therefore not clearly identifiable, in contrary to our
expectations.

Consequently, we had to analyze the leakage behavior in
more detail to reveal the reason for the failed CPA. Figure 4(a)
shows three power traces, one representing a 1-to-0 transition
of the output bit (Hamming distance = 1), one representing a
0-to-1 transition (Hamming distance = 1) and the last one
representing no transition, i.e. a 0-to-0 transition (equal to
a 1-to-1 transition, Hamming distance = 0). As we can see
in Fig. 4(a) there is a clear difference between a transition
and no transition which should enable a successful CPA. But
we also see that the two transitions show a complementary
behavior which causes them to cancel each other out in a CPA

(a) Differences between the transition types

time time

Voltage Voltage1 to 0 
0 to 1
0 to 0
1 to 1

1 to 0 
0 to 1
0 to 0
1 to 1

Pre-Processing

(b) Schematic of proposed pre-processing technique

Fig. 4. FPGA leaking power consumption
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(a) First 5-bit chunk of key

(b) 11th 5-bit chunk of key

Fig. 5. Results of CPA only on the isolated Trojan
circuit

(a) First 5 bit

(b) Second 5 bit

Fig. 6. Results of CPA on Trojan circuit injected
in PRESENT cipher P1

(a) Standard CPA on protected PRESENT

(b) Results of CPA exploiting the Trojanus leakage

Fig. 7. Results of CPA on protected PRESENT
cipher P2 with injected Trojan circuit

and decrease the resulting correlation coefficient. This can be
easily deduced from Eq. (6), despite the clear differences.

r =

n
i=1 (Xi − X̄)(Yi − Ȳ )n

i=1 (Xi − X̄)2
n

i=1 (Yi − Ȳ )2
(6)

A straightforward solution is to use three model values for
the CPA, e.g., −1, 0 and 1, representing the three different
transitions. Figure 3(b) shows the result of a CPA using the
latter model. One can clearly see that the CPA works better
as before and it is now possible to identify the correct key
hypothesis, because the correct key has slightly the absolute
maximum value.

To prevent that the power traces cancel each other out in a
CPA we propose to pre-process them in the following way. We
calculate the mean of each sample and use this resulting mean
trace as mirror since the mean trace closely resembles a trace
representing a no transition (cf. Fig. 4(b)). All signals below
that mean trace are mirrored to the opposite site, such that all
samples are above that mean trace. With the resulting traces
a standard CPA is performed again with the classical Ham-
ming distance model as already performed above. Figure 3(c)
depicts the resulting correlation trace after the proposed pre-
processing step. As we can see the correlation for the correct
hypothesis clearly stands out and is roughly three times as
high as a CPA with the 3-value model.

An open question is, what causes this special leakage
behavior. We ran some tests analyzing the leakage of a single
flip-flop, with and without a load. Without a load the flip-flop

showed only minimal differences in the power consumption
between transition and no transition. When connecting an
output driver to mimic a load on the other hand, we could
see the same complementary leakage behavior as described
above. Unfortunately we did not have the time to test different
building blocks to mimic a load, but we assume that the type
of load can not only influence the strength of the leakage, but
also its form. This circumstance of course could also be used
to further hamper the detection of the Trojan since the standard
side-channel models do not fit and its leakage is disguised. We
will investigate this manner in future work.

C. Leaking Secret Bits with one Measurement

We started by implementing only the TSC circuit, i.e., all
16 output bits are now connected to a load and are leaking
the whole key in parallel, but no PRESENT is in place yet.
The process is again the same. We recorded one power trace
containing all 512 clock cycles of a full sequence. Then, the
trace is sliced in 512 single traces and a CPA is performed
(including pre-processing). Figure 5 shows two exemplary
results of a CPA attacking the first 5-bit chunk of the key
and the 11th 5-bit chunk, respectively. As one can see, the
correct key hypotheses are clearly distinguishable.

Next we embedded TROJANUS as a TSC in an unprotected
PRESENT core, see Fig. 2. The procedure is rather the same
than adding a secret watermark to the PRESENT cipher.
Instead of connecting the register output of the key register
with the CFGLUT5 input the output of the register storing the
watermarking value is connected with the CFGLUT5 inputs
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Again, the same attack as described before is performed and
Fig. 6 shows the results of the CPA. As we can see it is
still possible to retrieve the correct key with only one trace.
One could question the significance of this experiment because
an unprotected PRESENT can be also easily attacked with a
standard CPA. This is of course true, but there exist protocols
where a new session key is derived for every encryption. There
were also side-channel countermeasures proposed where a new
key is used for every encryption [29]. These are scenarios
where the possibility to extract the key from an unprotected
circuit with one measurement is very interesting. Also the
application on public key encryption schemes seems a suitable
scenario to extract the sect within one encryption run.

Finally, we embedded TROJANUS as a TSC in a protected
implementation of the PRESENT cipher. This time, it was
not possible anymore to retrieve the key within a single trace
due to the higher noise introduced by the PRESENT circuit
working in parallel. But averaging 1,000 traces is already
enough to retrieve the key again (less traces are probably
sufficient as well), as can be seen in Fig. 7(b). Note that for
this last measurement we changed the clock to 4 MHz so we
can split the traces more easily, i.e. one clock cycle consists
of 2500 samples now (instead of 3, 333.3̄ samples).

To prove that the proposed TSC does not cause unwanted
leakage which may reveal the Trojan during an evaluation
process, we performed a standard CPA against the protected
PRESENT implementation as described in [22]. In our imple-
mentation of the Trojan the sequence starts the same time
an encryption starts. This means that at every position in
time the Trojan circuit has the same state during multiple
measurements, causing the same leakage in every trace. Hence,
since a DPA analyzes every point in time independently and
the TSC causes constant leakage at every point in time over
multiple measurements, cf. Eq. (5), there is no leakage, which
can be detected by standard evaluation methods, see Fig. 7(a).
However, there are methods an evaluator could use if he
was specifically looking for this kind of Trojan. This will be
discussed in more detail in Section IV.

IV. DISCUSSION

In this section we would like to discuss some open ques-
tions regarding the design TROJANUS as well as different
approaches to perform the side-channel analysis depending on
available conditions.

A. Choice of Sequence

At first, we investigate how to choose the sequence defining
the output functions for the CFGLUT5s to maximize the leak-
age. We tried different sequences, e.g., repeating 32-bit pat-
terns, specially crafted patterns, which asures that each CFG-
LUT5 has a unique pattern, like 010100110011000111 . . . and
so on, and investigated which of these patterns maximizes the
leakage. In the end it turned out that a completely random
sequence yielded the best results. As future work we want to
investigate if there exist a better sequence in more detail.

TABLE I
COMPARISON OF TROJAN SIDE CHANNELS.

Applied on Ref. Leakage Traces Slices
Sole running This paper 20 bits 11 1
Sole running This paper 80 bits 11 4
Sole running This paper 128 bits 11 7
PRESENT P1 This paper 80 bits 12 4
AES Lin et al. [15] 80 bits 1,030 23
AES Lin et al. [15] 80 bits 1,030 7
TI PRESENT P2 This paper 80 bits 1,000 4
Boolean masked AES Kasper et al. [11] 128 bits 13 88
1 Trace contains at least only 32 clock cycles.
2 Trace contains exactly 512 clock cycles only.
3 Trace contains at least 500,000 clock cycles.

We also tried to directly feedback the output of every LUT
back to its input. This would reduce the sequence length to
32 but would probably give an attacker more freedom in the
place&route of the leakage generating TROJANUS circuit. We
repeated the attack but we were not able to retrieve any of the
key bits. We assume that the short sequence of 32 bit is not
enough to differentiate all 32 key hypotheses from each other,
which implies that, the longer the sequences, the stronger the
attack.

B. Leaked Data Recovery

Second, we would like to discuss the different approaches
for performing the leaked data recovery. The attacks are
strongly dependent on three factors: activity, synchronization,
and length of activity. Is the Trojan only active during encryp-
tion or is it always active? On the one hand, if it is only active
during encryption it is easier for an attacker to synchronize
the measurements, but on the other hand he might have to
execute multiple encryptions to get enough information for
a CPA. Especially if the encryption takes only a few cycles,
an attacker will have to capture multiple measurements. In
this case the attacker has to know exactly for how many
cycles the Trojan is active to derive the state of the sequence
for the next measurement. Otherwise he is not able to 1)
shift every measurement such that sequences match and he
is able to average the correct parts of the trace; 2) calculate
the correct hypothesis for the CPA when analyzing multiple
measurements.

If the Trojan is always active, an attacker just has to measure
the power consumption of the chip at an arbitrary point in time,
but preferably one where the rest of the chip is idle to reduce
noise and ease the attack.

No matter if the Trojan is always active or only active during
encryption for a certain (known) amount of clock cycles,
in both cases the attacker has to guess the initial state of
the sequence. But since he knows the sequence he just has
to perform length of sequences (25) times a CPA for every
possible rotation of the state. With the knowledge of the initial
state he is then able to perform all subsequent attacks.

C. Performance and Comparison

Please note that due to the lack of an existing figure of merit,
a comparison between different HT designs is not an easy
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TABLE II
ESTIMATED AREA OVERHEAD OF OUR HT TO LEAK THE FULL KEY OF SELECTED BLOCK AND STREAM CIPHERS SYNTHESIZED ON A VIRTEX-5

PLATFORM. THE RELATIVE, ADDITIONAL RESOURCE OVERHEAD FOR EMBEDDING TROJANUS (∆ HT) IS BASED ON THE SLICE CONSUMPTION.

Key HT Path Resources ∆ HT
Algorithm length [Slices] Reference [bits] [LUT] [Slices] [FF] [%]
TRIVIUM 80 4 unprotected [30] 1 359 237 242 1.7
PRESENT 80 4 Boolean masking [31] 64 753 263 282 1.5

TI lightweight [22] 4/64 360 112 311 3.4
AES 128 7 MDPL [32] 128 12,104 4,744 1,196 0.1

TI [33] 128 12,597 4,642 1,295 0.2
WDDL [34] 128 7,265 2,590 1,160 0.3

MAO [35] 128 3,880 1,633 673 0.4
Masked Canright [36] 128 3,626 1,459 557 0.5

LUT masking [37] 128* 4,772* 1,462* 904* 0.5
* Numbers are taken directly from publication.

task. However, all designs leak some bits, require a certain
number of traces or clock cycles, and occupy a specific number
of slices, which we will use for comparison. TROJANUS
has a better trade-off in terms of resource consumption and
leaking bits per encryption compared to other published TSC
designs [11], [15], [16], cf. Table I. Due to TROJANUS’
compact structure and efficient bit leaking scheme, it is very
hard to detect and therefore even suitable for lightweight
implementations. Furthermore, in an optimal case it is possible
to leak the complete key in only one trace (see Sect. III-C),
while the other published TSC schemes need more traces (or
one very long trace covering 500,000 clock cycles [11]) to
leak the complete key.

Table II provides an estimation of the additional resources
needed to embed TROJANUS as a TSC in various SCA-
protected block cipher and stream cipher implementations.
We have taken the implementations of the corresponding
references and synthesized them on a Virtex-5 using Xilinx
ISE 13.3. The overhead for embedding TROJANUS, ∆ HT,
is based on the slice consumption. For example, a HT leaking
the entire 128-bit AES key out of an MDPL-protected imple-
mentation requires 7 slices, resulting in an overhead of only
0.1%.

TROJANUS was designed for FPGAs because they offer
fancy building blocks which can perfectly map our idea
to an implementation. However, it is also possible to map
the concept of TROJANUS to an ASIC design with some
additional costs by using linear shift register and multiplexer
components instead of the CFGLUT5 building block.

D. Detectability

In [11], [15], [16] the authors describe an approach on how
to detect Side-channel Trojans. The idea is to take multiple
measurements with fixed plaintexts but two different keys
and compare the average, e.g., power consumption, of these
two sets. A difference should be visible, because the Trojan
strongly depends on the key. Similar assumption can also be
made for the imprinted watermarking signature in the power
consumption using TROJANUS.

Again, we would like to discuss two different scenarios:
Synchronized and non-synchronized. In the synchronized case

the leakage generator TROJANUS is only active during en-
cryption. But since the encryption algorithm obviously de-
pends on the key as well, the power characteristics of the
algorithm itself will also change. Hence, differences in the
power consumption cannot be affiliated to TROJANUS. In the
unsynchronized case on the other hand, an evaluator is not
able to build the needed averages in the first place because
the power consumption signature of TROJANUS is different
in every measurement and any information about potential
differences is destroyed. Summarizing, our leaking generator
TROJANUS is immune against this kind of detection method.
Hence, the imprinted watermarking ID adds no suspicious
characteristics in the power consumption, which can be easily
detected or extracted. Furthermore, Using Trojanus as a SCT,
most standard detection methods, e.g. as described in [14],
[18], [19], will most likely fail as well, because of its small
size.

V. CONCLUSION

In this paper we introduced TROJANUS, a new ultra-
lightweight side-channel leakage generator specially tailored
for FPGAs. It can be used to construct both, Trojan side-
channels as well as watermarking schemes for arbitrary FPGA
designs with a negligible overhead. The core element of this
new versatile building block is a dynamically reconfigurable
5-to-1 LUT, which is used to change the leakage function
for each clock cycle. We introduced a scheme in which the
information to be leaked is transmitted over multiple cock
cycles in a unique, non-public sequence of leakage functions,
which ensures a hidden and hard to detect side-channel leakage
and thus provide a perfect utility to implement a TSC or hide
watermarking signatures in the power profile.

In order to verify the feasibility of TROJANUS in practice,
we have conducted several experiments and were able to
reconstruct unknown leaked secrets from power measurements
using TROJANUS as a Hardware Trojan. We were able to
leak the entire 80-bit secret key of an unprotected PRESENT
implementation with only one measured encryption. This can
be particularly interesting to overcome protocols or counter-
measures that update an encryption key for every execution.
Second, we have shown that the key of a protected PRESENT
implementation can be leaked with only 1000 traces by

−166−



embedding TROJANUS as a TSC, while standard side-channel
analysis methods fail to detect it.
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[16] J.-F. Gallais, J. Großschädl, N. Hanley, M. Kasper, M. Medwed,
F. Regazzoni, J.-M. Schmidt, S. Tillich, and M. Wójcik, “Hardware
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APPENDIX

Figure 8 depicts the resources needed for leaking different
key lengths using the CFGLUT5 component of the Virtex 5
architecture.
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Fig. 8. Resource consumption depending on key length.
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