
 From C to Blokus Duo with LegUp High-Level Synthesis
Jiu Cheng Cai, Ruolong Lian, Mengyao Wang, Andrew Canis, Jongsok Choi, Blair Fort, Eric Hart*,

Emily Miao, Yanyan Zhang, Nazanin Calagar, Stephen Brown, Jason Anderson
Department of Electrical and Computer Engineering, *Department of Mathematics

University of Toronto, Toronto, Canada
legup@eecg.toronto.edu

Abstract—We apply high-level synthesis (HLS) to generate
Blokus Duo game-playing hardware for the FPT 2013 Design
Competition [3]. Our design, written in C, is synthesized using
the LegUp open-source HLS tool to Verilog, then subsequently
mapped using vendor tools to an Altera Cyclone IV FPGA on
DE2 board. Our software implementation is designed to be
amenable to high-level synthesis, and includes a custom stack
implementation, uses only integer arithmetic, and employs the
use of bitwise logical operations to improve overall
computational performance. The underlying AI decision making
is based on alpha-beta pruning [2]. The performance of our
synthesizable solution is gauged by playing against the Pentobi
[8] – a “known good” C++ software implementation.

I. INTRODUCTION
 High-level synthesis (HLS) is on the cusp of becoming a
mainstream design methodology for field-programmable gate
arrays (FPGAs). HLS raises the level of abstraction for
hardware design nearer to that of software design, making it
attractive to two constituencies: 1) hardware engineers as a
means of reducing design time and shortening time-to-market,
and 2) software engineers as a way to garner the speed and
energy benefits of hardware – benefits that until recently, could
only be leveraged using specialized hardware-design expertise.
In this work, we apply the LegUp open-source HLS framework
[1] to generate game-playing hardware for Blokus Duo.

 HLS tools have not yet reached the level of maturity where
they can accept any program as input, and produce high-quality
hardware. Rather, to produce good results, today’s HLS tools
generally require that the high-level code be written in a
specific style, perhaps with additional constraints in side files
or within the code as pragmas. For example, a recent work [4]
described how to tune C code to produce good results for
Xilinx’s Vivado HLS tool. The quality of hardware produced
by our HLS tool, LegUp, is likewise sensitive to the style of C
received as input – an interesting issue to which we devote a
significant part of this paper.

 Our Blokus game-playing engine uses alpha-beta pruning
[2] to explore the solution space in an efficient manner. We
incorporate a number of features to tailor the implementation to
the HLS tool and the target FPGA technology. Namely, we
represent the game state using a minimum number of bits
(necessary given the limited amount of on-FPGA memory).
We use only integer arithmetic, and make heavy use of bitwise
logical operations to check move legality. Although recursion
is used in standard tree traversal algorithms, the LegUp tool is
unable to synthesize hardware for recursive software,
necessitating that we design and implement a custom stack.

Our implementation is parameterized to operate with any
number of game-tree levels (at the expense of run-time), and
with a variety of different heuristics we explored to “score” a
game state. The implementation has been synthesized and
tested on the Altera DE2-115 board [5].

 With our competition entry, we intend to “challenge” both
human-designed Blokus hardware implementations (an
exciting “human-versus-machine” gaming match-up!), and also
challenge implementations produced by other competing HLS
tools. The rest of the paper is organized as follows: Section II
briefly reviews the rules of Blokus Duo. Section III describes
our implementation. Section IV discusses various heuristics
we investigated to assess the quality of moves. An
experimental assessment of heuristics is provided in Section V.
Section VI discusses approaches to prune the solution space.
Section VII gives the current status of our implementation
comparing with a C++ software Blokus implementation
(Pentobi [8]). Conclusions are offered in Section VIII.

II. BLOKUS DUO
Blokus Duo is a 2-player game played on a board with 196

squares arranged in a 14×14 grid. Each player begins with 21
tiles, ranging in size from 1 to 5 squares, and each having a
unique shape. A tile can be placed on the board in any
orientation, by means of flipping/rotating the tile. The objective
of the game is to place tiles on as many squares of the board as
possible, and the game ends when neither player has any tile
remaining that can be placed legally on the board. A “move”
consists of placing a tile on the board. Players take turns and
generally may only make one move per turn. In the case that
one of the two players has no remaining valid moves, the other
player can continue to place tiles until he/she has no valid
moves remaining. A move (tile placement) is considered valid
if three conditions are satisfied:

1. The tile does not overlap with existing pieces on
board.

2. At least one of the tile’s corners is directly adjacent to
a corner of one of the player’s already-placed tiles.

3. None of the edges of the tile are in contact with any of
the edges of tiles previously played by the player on
the board.

Rule #2 is not applied for the first move made by each player.
In fact, the first move by each player must overlap a specially
designated square on the board.

FPT2013 Design Competition Paper

978-1-4799-2198-0/13/$31.00 ©2013 IEEE ‒486‒

III. IMPLEMENTATION
We discuss our data structure to implement the game state,

the search algorithm used, and the approach to prune the search
space. In addition, we mention how we adapted our design to
be more efficient in terms of run-time and area on the FPGA.

A. Game Representation Data Structure
 The current game state is represented in a struct type

called GameState. GameState has fields representing the
current board, the tiles remaining for each player, which
player’s turn it is, and the turn number. Each instance of a
GameState is 1004 bytes in size.

We represent the board using two arrays. Each array
contains 16 elements of 16-bit variables. Array elements 0 and
15, as well as bits 0 and 15 in each element represent the “out
of bounds” region of the board. Within the 16×16 bit matrix, a
1 represents an occupied space and 0 represents an empty
space. The two arrays are named our_board and opp_board,
where our_board contains a representation of the board with
only the tiles our algorithm has placed up to the current state,
and opp_board contains the opposite: only the opponent’s
tiles. To represent the tiles themselves, we use a 5-element
array consisting of 16-bit variables; the reason for this is
elaborated upon below. A Boolean variable tracks whether it
is our turn, or the opponent’s turn.

B. Search Algorithm
The search algorithm used in our design is the minimax

search algorithm [6]. The algorithm uses a tree representation,
whose root node represents the current game state. The tree’s
depth corresponds to the number of future moves that the
algorithm is capable of considering in deciding its move. We
define the depth limit by the MAX_LEVEL constant. Each
level of the tree represents all move possibilities for a particular
turn. Such moves are considered for either us, or the opponent,
depending on whose turn is at the specific level. The root node
(level 1 of the tree) always represents our initial state after the
opponent’s move, and all nodes at the second level of the tree
represent game states after we have played a legal move in
response to the opponent’s. A path from the root to a leaf node
represents a particular potential move sequence, commencing
from the current board state.

For each node in the tree, there is a score variable, which is
initially either negative infinity (-1,000,000) or positive infinity
(1,000,000), depending on whether it is our turn or the
opponent’s, respectively. The tree is traversed and on reaching
a leaf node, score is calculated by set of heuristics (described
below) and is returned one level up the tree – to the node’s
parent. The algorithm maximizes score for nodes
corresponding to our turn, and minimizes it for nodes
corresponding to the opponent’s turn. Therefore, the calculated
score for a node is compared with its parent’s score and either
the maximum or minimum is selected depending on whose turn
the parent represents. The traversal and scoring process
continues until all immediate children of the root node have

been evaluated. The child with the highest score reflects the
“best move” for us to take.

Intuitively, the minimax search algorithm looks ahead into
the future to predict the set of likely moves and aims to reach
the best possible state for us. Essentially, the search algorithm
anticipates the opponent’s probable moves and seeks to
minimize the potential damage of the opponent’s future moves,
while at the same time maximizing the benefits of our own
moves.

 It is important to note that the current implementation of
LegUp does not support dynamic memory (malloc/free).
Also, as the depth of the search increases, the number of nodes
in the tree grows exponentially, hence memory usage would
grow as well. Taking these factors into account, we
implemented the traversal algorithm with depth-first search,
which is more memory efficient than breadth-first search.
Since LegUp does not support recursion, we use a stack (with
size MAX_LEVEL) to hold the current path being explored in
the search tree. This way, the memory usage is limited to a
small constant multiple of the size of the game state
representation. Regarding speed, the minimax algorithm
computation time peaks during the initial set of turns,
decreasing drastically as the game progresses. Thus, we always
begin by playing either the ‘X’ or the ‘F’ tile, and during the
initial 7 turns, we consider solely the 5-square tiles (plus the
‘Z4’ tile) for moves.

C. Alpha-Beta Pruning
As the depth of search increases, the number of nodes to be
traversed increases exponentially. Pruning is a necessity to
reduce the search space. We use alpha-beta pruning [2] to
prune away portions of the tree that are provably non-optimal.
Alpha-beta pruning allows us to prune away certain children
of a node (and thereby the sub-trees rooted at those children),
without affecting optimality. Consider, for example, a max
node n with a current score of 5, and let m be a child of n. As
described above, m must be a min node. As we traverse the
tree, if node m ever receives a score less than 5, then it is
guaranteed that m will not be selected as the “best child” of n.
This is because for a min node like m, scores only decrease.
Hence, m’s final score, is certain to be less than 5.
Consequently, as soon as m’s score is reduced below 5,
traversal of the sub-tree rooted at m can be terminated, without
hindering our ability to find the best-possible solution.

D. HLS Tuning
The discussion above centered primarily on the algorithms

and data structures used in our implementation. To tune the
algorithm specifically for HLS-generated hardware
performance, we emphasize using logical operators, shifts and
bitwise operators, while minimizing the use of area-intensive
hardware elements such as multiplier operators. For example,
as noted above, the game board and the tiles are represented by
arrays of 16-bit variables, therefore updating moves on the
game board can be done with a bitwise shift and logical OR
operation of a tile’s representation and the board array.

FPT2013 Design Competition Paper

‒487‒

 To improve the time consumed in checking the validity of a
move, two additional fields are added to the GameState
struct: our_shifted_board and opp_shifted_board. These
fields are 16-element arrays of 16-bit variables – the same size
and dimensions as the game board representations (our_board
and opp_board) discussed in Section III-A. The
our_shifted_board field is populated with the bitwise logical
OR of our_board shifted in all four directions: north, south,
east and west. That is, our_shifted_board is a logical OR of
four shifted versions of our_board. And, opp_shifted_board is
populated in an analogous fashion from opp_board.

 We use these shifted board fields to ease checking the
“edge constraint” and “overlap constraint” for tile placement
(see rules #1 and #3 in Section II). Specifically, given a
candidate tile position that meets the “corner constraint” (rule
#2), we can perform a logical AND between the candidate tile’s
representation and the four-direction-shifted board. If 0 is
returned, the candidate position is a valid move. Otherwise,
the move is illegal. Move legality checking is thus reduced to
primitive shift and logical operations that are natural in the
target FPGA hardware. Thus, our data structures offer
improved performance and area of the circuit generated by
HLS.

IV. HEURISTICS
A key aspect of any game-playing algorithm is a way of

“scoring” a game state. The scoring mechanism is used in the
minimax search algorithm, and alpha-beta pruning approach
described above. The following four factors are considered to
evaluate a game state: number of squares placed on the board,
number of corners adjacent to an opponent's square, “influence
area” and “weighted reachability”. These factors are considered
from both our own, and the opponent’s perspective (i.e. the
final evaluation of the game state is determined by our score
minus the opponent’s score). The factors can be weighted with
different coefficients to reflect their importance/effectiveness.
The first criterion directly corresponds to the game’s objective:
covering as many board squares as possible. The reason for
considering corners adjacent to an opponent's squares is that 1)
a corner is a necessity for moves, 2) the opponent cannot block
a corner location if the corner location is directly in contact
with an opponent's square (by rule #3).

Influence area is a concept we borrowed from the Blockem
software implementation [7]. This metric measures the area
around the player’s placed tiles on the board, where squares
may potentially be placed. The score is based on how much of
the area is empty. The more vacant area leads to larger number
of move possibilities, thus the game state is deemed as more
beneficial to the player. Influence area metric includes the
number of corners, thus the “corners count” is not directly
included as a heuristic scoring factor.

The last heuristic, weighted reachability, is computed as
follows: we perform a breadth-first search (BFS) of the vacant
squares of the game board starting from each vacant square
adjacent to a corner. The BFS is performed considering only

north/south/east/west adjacency, not diagonal adjacency. Each
vacant square visited in the search is assigned a “cost” in
proportion to its distance from a (starting) corner square.
Vacant squares that cannot be reached (due to opponent
blockages) are assigned a high cost. The weighted reachability
metric is the cumulative cost of all vacant squares visited in the
BFS, and also the costs of vacant unreachable squares. The
intuition behind this metric is to gauge the amount of
“reachable” board state, with farther-away squares gauged as
“less reachable” than closer squares.

TABLE I. EVALUATION OF HEURISTICS.

Heuristic 1 Heuristic 2
Results

Heuristic
1 Wins

Heuristic
2 Wins Ties

Corners Touching Influence Area 4 12 4

Corners Touching Weighted Reachability 0 20 0

Corners Touching Squares 6 12 2

Influence Area Weighted Reachability 7 13 0

Influence Area Squares 6 14 0

Weighted Reachability Squares 18 2 0

V. HEURISTIC EXPERIMENTAL RESULTS
To measure the effectiveness of different heuristics, we

developed a framework to allow our implementation of the
Blokus to play against a duplicate of itself but with different
heuristics in use in the two versions. In essence, this is akin to
running our Blokus implementation vs. a control
implementation. The approach allowed us to evaluate the
effectiveness of different heuristic weighting styles.

We considered the four heuristics in isolation, facing them
off against one another. For each pair of heuristics (e.g.
squares vs. influence area), we executed our implementation
20 times; i.e. we played 20 games. To ensure fairness, we
alternated which heuristic had the opportunity to play the first
tile. Across the 20 games played for each pair of heuristics,
we tracked the number of times one heuristic “beat” the other,
vs. the two tied. This experiment was conducted with
MAX_LEVEL set to 4 (a max depth of 4 in the search tree) and
alpha-beta pruning active.

Table I shows the experimental results. The results
demonstrate that weighted reachability is the most important
factor to consider. The number of squares and influence area

FPT2013 Design Competition Paper

‒488‒

appear to be the next most important factors. Our current
implementation scores the board state using a composite
function of the heuristics, from both our’s (contribute
positively) and the opponent’s (contribute negatively)
perspective.

TABLE II. RESULTS AGAINST PENTOBI (OUR IMPLEMENTATION PLAYS
FIRST HALF OF THE TIME).

Pentobi Level
Results

Wins Losses Ties

1 16 4 0

2 8 12 0

3 4 16 0

VI. ADDITIONAL PRUNING METHODS
Our minimax implementation with alpha-beta pruning finds

the optimal solution for a given scoring function and tree
depth. To improve execution time, we have implemented
additional pruning methods that are heuristic.

A. Random Monte Carlo Pruning
We implemented “Monte Carlo”-style pruning of the search

tree, where, based on a user-specified percentage, we randomly
eliminate certain nodes from the tree traversal. With this
approach, we can traverse a portion of the tree to a deeper
level, while maintaining a reasonable run-time. In essence, we
are “sampling” the search tree.

B. Pruning Offset
In its optimal form, the alpha-beta pruning algorithm only

prunes a child node (and its descendants) when it provably
cannot deliver the “best” score to its parent. That is, for a
parent max node with a score of Q, if one of its child min
nodes has a score less than Q, we can safely prune the child
and its descendants, as the child’s score will only decrease in
the minimax algorithm. We implemented a heuristic “offset”
to allow further pruning, possibly at the expense of optimality.
In our heuristic, the user supplies a non-negative integer offset
T. Returning to the example, where a parent max node has a
score of Q, in the heuristic, we would prune any child min node
with a score less than Q+T. With T = 0, the heuristic reduces
to standard (optimal) alpha-beta pruning. In an analogous
fashion, for a parent min node with a score of Q, we would
prune any child max node of the parent if the child had a score
more than Q-T.

 The rationale for this pruning strategy is the assumption
that moves lacking an appreciable difference in scores do not
have a significant impact on the game's outcome. By pruning
away moves that are “close to” moves already discovered
(from the quality perspective), we eliminate more possibilities
and reduce computation time, slightly reducing the accuracy of

the search algorithm. In our implementation, we selectively
apply this approach only at lower levels of the search tree.

VII. CURRENT STATUS
 At the time of writing this paper, when our Blokus
implementation is synthesized to hardware through LegUp, the
design uses 83,675 Cyclone IV logic cells, 28 DSP blocks, and
238K memory bits (area results include the RS-232 interface
that meets the FPT Design Competition requirements). We
verified our HLS-generated hardware by having it play against
a human player, through RS-232 communication.

 To evaluate our algorithm, we developed a framework to
allow for automated playing against a well-known Blokus
implementation called Pentobi (version 1.0, Linux release) [8].
Table II shows the results of our algorithm vs. Pentobi’s level
1, level 2 and level 3 algorithm (at the time of writing the
paper). As shown, our implementation beats Pentobi level 1
most of the time, is partially successful against level 2, and
loses 75% of the time vs. level 3. For these results, we set
MAX_LEVEL to 4, and use the heuristics mentioned in the
previous section, with alpha-beta pruning active.

VIII. CONCLUSIONS
 High-level synthesis (HLS) holds significant promise as a
design methodology for FPGAs. However, there remains a
significant gap between HLS-produced hardware and human-
designed hardware. In this paper, we describe a game-playing
Blokus hardware implementation for the FPT 2013 Design
Competition that we submit as a candidate to “take on” the
human-designed submissions. Our solution has been
synthesized using the LegUp open-source HLS tool. Our C
code has been written with HLS and FPGA hardware in mind.
We make use of bitwise logical and shift operations to check
move legality, incur a small memory footprint, and use solely
fixed-point integer arithmetic. Further improvements in the AI
and run-time of our implementation will be made in the months
leading up to the competition.

REFERENCES
[1] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,

S. Brown, J. Anderson "LegUp: An open-source high-level synthesis
tool for FPGA-based processor/accelerator systems." In ACM Trans. On
Embedded Computing Systems, Vol. 13, No. 2, 2013.

[2] D.E. Knuth, R.W. Moore. "An analysis of alpha-beta pruning." Artificial
Intelligence 6, no. 4, pp. 293-326. 1976.

[3] The 2013 International Conference on Field-Programmable Technology,
ICFPT2013 design competition [Online]. Available: http://lut.eee.u-
ryukyu.ac.jp/dc13/index.html.

[4] M. Janarbek, P. Meng, L. Wu, B. Weals, and R. Kastner. "Designing a
hardware in the loop wireless digital channel emulator for software
defined radio." In IEEE FPT, pp. 206-214, 2012.

[5] Altera, Corp., San Jose, CA. DE2-115 Data Sheet, 2010.
[6] M. S. Campbell, and T. A. Marsland. "A comparison of minimax tree

search algorithms." Artificial Intelligence 20, no. 4, pp. 347-367. 1983.
[7] Faustino Frechilla. "Block'em", 2011 [Online]. Available:

http://blockem.sourceforge.net/index.html.
[8] Enz. "Pentobi", 2011 [Online]. Available: http://pentobi.sourceforge.net.

FPT2013 Design Competition Paper

‒489‒

