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Abstract—The routing architecture, heavily using pro-
grammable switches, dominates the area, delay and power of
Field Programmable Gate Arrays (FPGAs). Resistive Random
Access Memories (RRAMs) enable high-performance routing
architectures through the replacement of Static Random Access
Memory (SRAM)-based programming switches. Exploiting the
very low on-resistance state achievable by RRAMs, RRAM-based
routing multiplexers can be used to significantly reduce the FPGA
routing delays. In addition, RRAM-based routing architectures
are less sensitive to supply voltage reductions and show promises
in low-power FPGA designs. In this paper, we propose a near-
Vt low-power RRAM-based FPGA where both delay and power
reductions are achieved. Experimental results demonstrate that a
near-Vt RRAM-based FPGA design leads to a 15% area shrink, a
10% delay reduction, and a 65% power improvement, compared
to a conventional FPGA design for a given technology node. To
achieve low on-resistance values, RRAMs typically require high
programming currents. In other word, they need relatively large
programming transistors, potentially resulting in area, delay and
power inefficiencies. We also present a design methodology to
properly size the programming transistors of RRAMs in order
to further improve the area-efficiency. Experimental results show
that a correct programming transistor sizing strategy contributes
to further 18% area and 2% delay shrink, compared to the initial
near-Vt RRAM-based FPGA.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are more flex-
ibile than Application-Specific Integrated Circuits (ASICs) at
the cost of 20× bigger area, 4× longer delay, and 12× higher
power consumption approximately [1]. The drawbacks of FP-
GAs lie in the expensive routing architecture, which accounts
for about 70% of the area, 80% of the delay and 60% of the
power of the whole chip [2]. Power consumption is a serious
barrier for the distribution of FPGAs in a large set of consumer
applications. Previous works [3]–[5] demonstrate low-power
FPGA designs where a low supply voltage is employed to
save up to 50% of the power consumption. However, low-
power FPGAs generally suffers from large delay degradation
(up to 2×).

Resistive Random Access Memories (RRAMs) [6], a mem-
ber of Non-Volatile Memory (NVM) family [7], open oppor-
tunities in advancing the FPGA technology with high density,
instant power-on and excellent energy efficiency. Overwhelm-
ing Static Random Access Memories (SRAMs) intrinsically,
RRAMs hold storage when powered down and consume less
leakage power. Besides, RRAMs can be fabricated between
the Back-End-Of-Line (BEOL) metal lines, moving the con-
figuration memories onto the top of the transistors, thereby
improving the integration density. Using RRAMs as standalone
memories, FPGAs can benefit a ∼50% power reduction from

instant power-on and normal power-off, compared to SRAM-
based counterparts [8]. Furthermore, RRAMs motivate the
exploration of novel FPGA architectures whose routing struc-
tures are directly employing RRAMs in the data path. In the
novel architectures, RRAMs play the role of both configurable
memories and programmable switches. Previous works [9]–
[13] demonstrate significant improvements in area, delay and
power. The BEOL integration leads to area-savings and the
Low-Resistance State (LRS) of RRAMs (down to 75% lower
on-resistance than pass transistors) reduces the delay of critical
path. Finally, a power efficiency comes from zero leakage
power in sleep mode.

In this paper, we study (i) the opportunity of fabricat-
ing low-power RRAM-based FPGA. The performances of
RRAM-based routing architecture are less sensitive to Vdd
reduction as compared to pass transistors. Hence, RRAM-
based high-performance routing structures are appealing to
compensate the traditional delay degradation found in low-
power FPGAs, while maintaining a high power efficiency.
Therefore, for the first time, we propose a near-Vt RRAM-
based FPGA design, combining both power-efficiency and
performance. Architectural-level simulations show that near-
Vt RRAM-based FPGA gives a 15% area gain, a 10% delay
gain and a 65% power gain, compared to the baseline FPGA
architecture. To achieve low on-resistance values, RRAMs
typically require high programming currents. To drive such
high currents, large programming transistors are needed, and
they potentially result in area, delay and power inefficiencies.
Hence, we investigate (ii) the impact of the size of program-
ming transistors in RRAM-based multiplexers in terms of
Energy-Delay Product (EDP). Electrical simulations reveal that
at near-Vt supply voltage, RRAM-based multiplexers with non-
uniform programming transistor sizing produce better EDP
than those with uniform sizing. Architectural-level simulations
show that non-uniform programming transistor sizing further
contributes to 18% area gain and 2% delay gain compared to
the initial near-Vt RRAM-based FPGA.

The rest of paper is organized as follows. Section II
introduces the background knowledge of conventional FPGAs
and RRAM-based FPGAs. Section III describes the near-Vt
RRAM-based FPGA architecture. Section IV introduces pro-
gramming transistor sizing. Section V presents experimental
methodology and results. Section VI draws conclusions.

II. BACKGROUND

In this section, we review the necessary background of
conventional FPGA architectures as well as RRAM-based
FPGA architectures.



A. Conventional FPGA Architecture

Fig. 1 depicts the conventional FPGA architecture with
single-driver routing [16], where Configurable Logic Blocks
(CLBs) are surrounded by routing resources, such as Switch
Boxes (SBs) and Connection Blocks (CBs). A CLB contains
logic resources, called Basic Logic Elements (BLEs), as well
as routing resources, denoted as local routing. A BLE consists
of a Look-Up Table (LUT), a D Flip-Flop (DFF) and a 2-
input multiplexer, which selects either the combinational or
sequential version of the LUT output. SBs and CBs consist of
groups of multiplexers, that can realize any interconnection as
long as there are enough routing tracks. FPGA performance
is influenced by the number of LUT inputs, denoted K, the
number of BLEs in a CLB, denoted N, and the number
of inputs of a CLB, denoted I. Previous works [14] [15]
conclude that I = K(N+1)

2 ensures over 98% utilization of
CLBs. Commercial FPGAs [17]–[19] widely support frac-
turable LUTs [20] to reduce the critical path. In this paper,
we typically consider FPGA consisting of K = 6 fracturable
LUTs organized in logic blocks described by N = 10, I = 33.
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Fig. 1. Conventional FPGA architecture.

B. RRAM Technology

As one of the most promising emerging NVM memories
[7], RRAM technologies have been widely investigated [6]. As
shown in Fig. 2(a), RRAMs are two-node electronic devices
and typically consist of three layers: the top electrode, the
metal oxide and the bottom electrode. RRAMs can be pro-
grammed into two stable resistance state, a Low Resistance
State (LRS) and a High Resistance State (HRS) respectively
by modifying the conductivity of metal oxide. When a pro-
gramming voltage is applied between the electrodes, the metal
oxide sees a conductivity change which leads to the switch of
the resistance states. Switching mechanism can be categorized
into Unipolar Resistive Switching (URS) and Bipolar Resistive
Switching (BRS) [6]. In this paper, we focus on BRS whose
I-V characteristics are illustrated in Fig. 2(c). A positive
programming voltage sets the RRAM in LRS while a negative
one resets the RRAM in HRS. The on-resistance of RRAM
is typically dependent on the programming current passing
through the RRAM [21]. The higher programming current

we drive, the lower on-resistance RRAM we obtain. Note
that during the SET process, a current compliance is often
enforced to avoid permanent breakdown of the device. Fig.
2(b) shows a 1T1R structure, where the programming transistor
provides SET/RESET voltages as well as a current compliance.
Back-End-Of-Line (BEOL) technology allows RRAM to be
fabricated on the top of or between metal layers, saving chip
area. Fig. 2(a) illustrates the BEOL integration of RRAMs
corresponding to 1T1R programming scheme in Fig. 2(b). For
more details about RRAM technology, we refer the interested
reader to [6].

Gate
SourceDrain Bulk

Metal1 GND

Bottom
Electrode

Metal
Oxide

Top
Electrode

Metal2

Contact

Voltage

Cu
rr
en
t

Compliance

���

�����

(b)

(a) (c)
+-

+

0
���

����

RRAM
Stack

Vp

prog

out

Fig. 2. BEOL integration of RRAM between metal layers (a);
implementing a 1T1R structure (b);

I-V characteristics of a bipolar RRAM (c).
C. RRAM-based FPGA Architecture

FPGA architecture can benefit from the non-volatility as
well as the area and performance gains coming from the
BEOL integration and the low on-resistance values achieved
by RRAMs. To improve the LUTs, SRAMs can be simply re-
placed with voltage divider-like RRAM structures [12]. How-
ever, more opportunities lie in the routing architecture where
not only SRAMs but also pass-transistors can be improved
with RRAMs [9]–[13], thereby increasing the performances
significantly. When programmed in LRS, RRAMs introduce
about 75% less resistance in the data-path, compared to pass
transistors. Works in [9] [10] propose novel routing archi-
tecture exploiting RRAM-based programmable switches while
[11]–[13] explore the architectural-level potential of RRAM-
based multiplexers. To reduce the impact of the programming
switches, programming transistor sharing is heavily studied
in [9] [10] for area-saving purpose but requires complicated
programming operation. In [12], the programming complexity
is reduced by exploiting the physical properties of RRAMs.
However, previous works [9]–[13] only investigate operations
under standard working voltages, leaving near-Vt RRAM-
based FPGAs an open question.

III. NEAR-Vt RRAM-BASED FPGA

In this section, we describe our RRAM-based FPGA circuit
design and explore its use in near-Vt regime.

1) RRAM-based FPGA: The RRAM-based FPGA intro-
duced in this paper has no architectural difference with respect
to the conventional SRAM-based FPGA shown in Fig. 1. It



remains an island-style FPGA where the cluster-based CLBs
are surrounded by SBs and CBs. The differences lie in the
circuit design of those modules heavily relying on LUTs and
multiplexers. Fig. 3 compares the circuit designs of LUT and
multiplexer between a conventional SRAM-based FPGA and
the RRAM-based FPGA introduced in this paper.

In our FPGA, the logic elements exploit Non-Volatile (NV)
LUTs. Such FPGA does not need to be re-programmed during
each power on and can benefit instant-on and normally-off
properties. Typically, a LUT consists of a bank of SRAMs
and a multiplexer. The SRAM bank stores a truth table which
is decoded by the multiplexer, enabling LUT to realize any
logic function. In this paper, we replace the scan-chain SRAMs
(Fig. 3(a)) in LUTs with Non-Volatile (NV) scan-chain SRAMs
borrowed from previous work [22] [23]. The multiplexers in
LUTs are still implemented by pass-transistors considering
that their decoding results keep changing when the FPGA is
operating. If RRAMs are inserted in the data path of LUTs
for decoding, their programming speed will drastically limit
frequency. Compared to SRAM-based, the NV LUTs have
no difference in performance because of the same decoder
implementation. Data path DFFs are also Non-Volatiled with
the same circuit elements. These FFs operate as standard
volatile CMOS FF during regular operation but they are also
capable to store the data non-volatily on demand before a
sleep period. Data stored in the NV DFFs can then be restored
during wake up. In these flip-flops, RRAMs are written only
before the sleep period. These events have very low frequency
and are compatible with the endurance capabilities of RRAMs.
While supported by the presented architecture, instant-on and
normally-off operation will not be evaluated in this paper.
More details about the NV DFF architecture can be found
in [23].

While the decoded paths of the LUT multiplexer change
at runtime, the selected paths in the routing multiplexers (i.e.,
in BLE output selector, local routing, SBs and CBs) remain
unchanged during the runtime. Therefore, RRAMs can be
inserted in the data path of routing architecture without chal-
lenging the endurance. Fig. 3(d) illustrates the RRAM-based
multiplexer [12] which replaces the SRAM-based multiplexer
shown in Fig. 3(c). RRAM-based multiplexers take advantage
of the Bipolar Resistive Switching (BRS) in order to share
programming transistors and achieve area-efficiency [12]. As
shown in Fig. 3(d), each pair of RRAMs (e.g., R1 and R2 ) can
be programmed in either HRS+LRS or LRS+HRS in one
step. Compared to the SRAM-based multiplexers, the RRAM-
based multiplexers exhibit high performances accounted to
the low on-resistance of the RRAMs introduced in the data
path. However, a low on-resistance of the RRAMs means
high programming currents. In other words, they need large
programming transistors which potentially introduce large par-
asitic capacitance to the data paths and result in area and delay
in-efficiencies.

2) Impact of V dd Reduction on RRAM-based Routing Ar-
chitecture: In conventional SRAM-based low-power FPGAs,
a reduction of the supply voltage down to near/sub-Vt regime
trades off power reduction with delay degradation. In RRAM-
based FPGAs, logic elements such as LUTs and DFFs rely
on the same circuit topologies. Therefore, their performances
degrade when supply voltage reduces to near/sub-Vt regime.
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Fig. 3. SRAM-based FPGA and RRAM-based FPGA.

However, routing architectures in the RRAM-based FPGA
exploit RRAMs in the data paths and may perform differ-
ently compared to SRAM-based when supply voltage changes.
Hence, in this part, we study the impact of supply voltage on
the performances of RRAM-based routing architecture.

Electrical simulations are performed in a commercial
0.18µm technology. Nowadays, low-power near/sub-Vt de-
signs are implemented with mature technology node for better
leakage characteristics and reliability. Nevertheless, the ap-
proach introduced in this paper is general and can lead to
the same conclusion under advanced technology nodes. We
consider Ron = 1kΩ and Roff = 1MΩ for the RRAM device
parameters, as per [24] [25].

The FPGA routing architecture consists of multiplexers of
different sizes, which appear in local routing, CBs and SBs.
Here, we consider a local 32-input multiplexer. For the mul-
tiplexers of other sizes, the same conclusions can be reached.
Fig. 4 compares the delay and power between a 32-input
SRAM-based multiplexer and its RRAM-based counterpart
when V dd ranges from 0.4V to 1.8V . Both RRAM-based and
SRAM-based multiplexers reduce power but suffer from delay
degradation when V dd decreases. Generally, RRAM-based
multiplexer consumes slightly more power than SRAM-based
due to the low on-resistance of RRAMs in data paths. However,
SRAM-based FPGA routing architecture suffers serious delay
degradation when V dd decreases. In contrast, RRAM-based
FPGA routing architecture benefit the same power reduction
but with very moderate delay degradation. The different trends
in delay degradations are accounted to the low on-resistance
of RRAMs which is achieved independently from V dd, while
on-resistance of pass transistors increase sharply when V dd
decreases. Furthermore, the parasitic capacitances brought by
the programming transistors do not vary significantly until V dd
drops to sub-Vt regime. Therefore, the delay of RRAM-based
multiplexer in near-Vt regime remains as they are at V dd =



1.8V since its RC characteristic does not change. When V dd
drops to sub-Vt regime, RRAM-based multiplexer has serious
delay degradation as well due to parasitic capacitances of
programming transistors increase. Fig. 4 shows us to select a
proper Vdd in the near-Vt regime. Hence, the RRAM-based
FPGA will achieve both low-power and high-performance.
The high-performance RRAM-based routing architectures are
expected to compensate the delay degradation in the logic
elements, and even reduce the overall critical path delay.
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3) Configuring RRAMs in FPGAs: In SRAM-based FP-

GAs, SRAMs bits are configured by scan-chain SRAMs, as
shown in Fig. 3(a). All scan-chain SRAMs are connected in
series (i.e., dash lined in Fig. 3(c)) and the program bitstream
is serially loaded to the scan-chain SRAMs until all SRAM bits
are configured. In RRAM-based FPGAs, scan-chain SRAMs
in logic elements are adapted to the NV scan-chain SRAMs as
shown in Fig. 3(b). Each stage of the RRAM-based multiplexer
(Fig. 3(d)) is configured sequentially. Full details about the
programming strategy are available in [13]. When the program
bit is loaded in the scan-chain SRAMs for a certain stage, the
corresponding programming transistors are turned on. After
programming, these programming transistors are turned off.
In the RRAM-based FPGA, RRAMs in the data paths should
not be mistakenly programmed when transmitting signals. This
critical concern is avoided by ensuring that the programming
voltage Vprog for RRAMs is larger than supply voltage V dd,
as shown in equation (1):

Vprog = λ · V dd(λ > 1) (1)

In this paper, we set λ to 1.2, to provide enough margin
between V dd and Vprog and limit the risk of parasitic program-
ming. The Vprog parameter can be easily adjusted by tuning
the RRAM stack geometries [6]. Note that V dd is expected to
be near-Vt. Therefore Vprog will stay in a regular range, i.e.,
super threshold, of the MOS transistors, that can be used as
is.

IV. PROGRAMMING TRANSISTOR SIZING

As compared to standard FPGAs, RRAM-based FPGAs
have the unique property of merging memory with the data-

paths. In this section, we study the impact of programming
transistor size on the performance of RRAM-based routing ar-
chitecture, estimate their optimal size and verify it by electrical
simulations.

A. Impact of Programming Transistor Size

In previous works [9]–[13], the sizes of programming
transistors are considered uniform to achieve the lowest on-
resistance of RRAM, which is assumed to produce the best per-
formance of RRAM-based interconnects. Actually, the delay
of RRAM-based programmable interconnects is determined
by various factors, such as the size of the driving inverter,
the parasitic capacitance of programming transistors, and the
resistance of the RRAMs. Hence, as the on-resistance value is
strongly correlated with the size of the programming transistors
[6], there is no guarantee that using the lowest possible on-
resistance will give the lowest delay. In this section, we focus
on the impact of programming transistor size on the delay
of RRAM-based multiplexers. Note that the methodology
developed here is not dependent on the considered RRAM
technology or on the transistor technology nodes, but is rather
general.
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The critical path of a RRAM-based multiplexer is the path

from an input to the output which contains the largest number
of RRAMs in the on-resistance state and the largest number
of programming transistors. For instance, the highlighted path
in Fig. 5(a) is the critical path of a 4-input RRAM-based
multiplexer. Fig. 5(b) extends this to the general case of a n-
stage RRAM-based multiplexer, while its equivalent RC model
is given in Fig. 5(c).

The resistance and capacitance in Fig. 5(c) can be extracted
from Fig. 5(b) and expressed as follows:

R0 = Rinv =
Rmin

Winv
,

Ri|1≤i≤n = Ron

C0 = WinvCinv + 2WprogCoff

Ci|1≤i<n = 2WprogCoff

Cn = CL +WprogCoff

(2)

where Rmin denotes the equivalent resistance of a minimum
size inverter, Cinv represents the parasitic capacitance at the
output of a minimum size inverter, Winv is the size of driving
inverter in terms of the minimum width transistor [14]. Ron

denotes the equivalent resistance of a RRAM in on-resistance



state. Wprog represents the width of programming transistor
in the unit of the minimum width transistor, and Coff is
the parasitic capacitance of a minimum width programming
transistor in off state.

Considering the Elmore delay [26] of the critical path of
a general n-stage RRAM-based multiplexer (Fig. 5(b)), we
obtain:

τ =

n∑
i=0

Ri

n∑
j=i

Cj

= RminCinv +
Rmin

Winv
CL

+ (2n+ 1)
Rmin

Winv
WprogCoff + n ·RonCL

+ n2RonWprogCoff

(3)

As introduced previously, the on-resistance Ron of RRAM
is dependent on the programming voltage Vprog and on the
programming current Iprog [6], as follows:

Ron =
Vprog
Iprog

=
Vprog

Wprog · Id
(4)

where Id is the driving current of a minimum width transistor.
With equation (4), equation (3) is converted to:

τ = RminCinv +
Rmin

Winv
CL

+ (2n+ 1)
Rmin

Winv
WprogCoff + n · Vprog

IdWprog
CL

+ n2
Vprog
Id

Coff

(5)

The relation between the n-stage multiplexer delay and the
width of the programming transistor is depicted in Fig. 6.
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Fig. 6. Relation between Wprog and delay of a RRAM-based
multiplexer.

When Wprog is small, the delay increases due to the
large on-resistance of RRAM. When Wprog is large, the delay
increases as well. Indeed, while the on-resistance is reduced,
large parasitic capacitances are introduced by the programming
transistors and limit the performances. Therefore, as shown
in Fig. 6, there exists an optimal Wprog,opt giving the best

performances by trading off the on-resistance with the parasitic
capacitances from the programming transistors. Equation (5)
reaches minimum value (best delay) when:

Wprog,opt =

√
nVprogCLWinv

(2n+ 1)IdRminCoff

(6)

In FPGA routing architecture, the number of the stages of
multiplexers are diverse. As Equation 6 depends on the size
n of the multiplexer, using a uniform size of programming
transistors [9], [10], [12], [13] does not ensure the best per-
formance. To achieve the best performances, the multiplexers
in FPGA should have different Wprog,opt.

B. Electrical Simulations

In this section, we show some electrical simulations to
verify the analysis developed above.

1) Methodology: Equation 6 reveals that Wprog,opt is re-
lated to many process parameters: Vprog, Id, Rmin and Coff ,
and some design-dependent parameters, Winv , CL and n.
Process parameters, Id, Rmin and Coff , are extracted from a
commercial 0.18µm technology. As for design parameters, we
refer to [14] [16] and study multiplexers for SB, CB, BLE and
local routing assuming a baseline FPGA architecture. Table I

TABLE I. RRAM-based multiplexers in baseline FPGA
architecture.

Location No. of input Drive inv. size Load inv. size
Switch Block 4 1 10

Connection Box 32 1 1
Local routing 53 2 1

BLE 2 1 1

presents the setup for the different RRAM-based multiplexers
considered in the FPGA architecture. Winv of multiplexers in
SBs, CBs and BLEs are set as 1. Winv of multiplexers in local
routing is set as 2 to drive the signal from routing tracks. The
load of multiplexers in BLE, CB and local routing are set as a
inverter ×1. In SBs, load of multiplexer is set as a inverter ×10
in order to drive the large parasitic capacitance of a routing
track.

2) Experimental Results: With all the defined parameters
above, we sweep V dd from 0.4V to 1.8V and Wprog from
1 to 3 to explore their impact on delay and EDP. The lower
bound is set to 1 for the minimum width transistor. The upper
bound of Wprog is set to 3, which is the size of a pair of
complementary pass transistors, to limit the area overhead.

Equation 6 predicts that when Vprog decreases, Wprog,opt

decreases. Experimental results in Fig. 7 verify this prediction.
Fig. 7 depicts the delay of a 32-input multiplexer extracted
while sweeping V dd and Wprog. The curves, obtained for
V dd = 1.8V and V dd = 1.4V , are similar to the region
highlighted in red in Fig. 6. In these two cases, the best
performance is achieved when Wprog = 3 and Wprog = 2,
respectively. The curve obtained for V dd = 0.8V corresponds
to the blue region highlighted in Fig. 6. In this case, the
best performance is achieved when Wprog = 1. When com-
paring the three curves, we observe that the best performance
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shifts from Wprog = 3 when V dd = 1.8V to Wprog = 1 when
V dd = 0.8V for a 32-input RRAM-based multiplexer.

For low-power FPGAs, designers often consider the best
Energy-Delay Product (EDP) as a good trade-off metrics. Fig.
8 presents the optimal Wprog, i.e., leading to the best EDP,
of the different multiplexers listed in Table I by sweeping
V dd ranging from 0.4V to 1.8V. Equation 6 predicts that a
large capacitive load leads to a large Wprog,opt. The curve
of the 4-input multiplexers in SBs, whose loads are inverters
10× verifies this prediction, where Wprog,opt is significantly
larger than the other multiplexers. Equation 6 also predicts
that Wprog,opt increases when the number of multiplexer stage
increases. By comparing the curves of 32-input, 4-input and 2-
input multiplexers, we remark that the Wprog,opt of a 32-input
multiplexer is the largest while a 2-input multiplexer requires
the smallest Wprog,opt. Note that we determine Wprog,opt in
terms of the best EDP rather than delay. Hence, the results
in the sub-Vt regime do not strictly perform as predicted by
Equation 6 because the energy values dominate the EDP in

the sub-Vt regime. The experimental results show that non-
uniform sizes of programming transistors produce best delay
and EDP. Optimal sizes of programming transistors in the
multiplexers differ from their design contexts in FPGAs. For
instance, the multiplexers in SBs require large programming
transistors while the multiplexers in BLEs and local routing
require small programming transistors. These experimental
results are particularly appealing in the context of sub/near-Vt
FPGAs, where the sizes of the programming transistors can be
reduced, contributing to not only area-saving but also to further
delay and power efficiencies. Take the example of the 4-input
multiplexers in SBs. When V dd = 1.2V is applied, compared
to uniform size (Wprog = 3), Wprog,opt = 2.4 leads to a 20%
area reduction, yet ensuring the best EDP.

V. ARCHITECTURAL-LEVEL SIMULATIONS

In this section, architectural-level simulations are carried
out to evaluate near-Vt RRAM-based FPGAs. First, we intro-
duce the experimental methodology and, then, we present the
experimental results.

A. Methodology

We compare the area, delay and power of four different
FPGAs: (1) the standard CMOS FPGA architecture when
V dd = 1.8V , (2) the standard CMOS FPGA architecture when
V dd = 1.2V , (3) the RRAM-based FPGA architecture using
uniform programming transistor sizing at V dd = 1.2V and
(4) the RRAM-based FPGA architecture using non-uniform
optimized programming transistors sizing at V dd = 1.2V .
Comparison with previous RRAM-based FPGAs [9]–[13] is
out of the scope of this paper, as none of these solutions are op-
erated at low power supply. At near-Vt regime, we select 1.2V
as Vdd, because it provides a reasonable trade-off between
performance gain in RRAM-based routing architecture and
performance degradation in logic elements. Architecture-level
results are generated by VTR flow [28]. The twenty largest
MCNC benchmarks [27] pass through logic synthesis by ABC
[29]. VPR 7 [28] conducts the physical synthesis including
packing, placement and routing. We use the Configurable
Logic Block (CLB) architecture described in Section II and
single-driver routing architecture. For the Connection Blocks
(CBs), we set Fc,in = 0.15 and Fc,out = 0.10. For the
Switch Boxes (SBs), we use a Wilton pattern and set Fs = 3.
Technology parameters (area, delay and power) are extracted
from commercial 0.18µm technology.

B. Experimental Results

Fig. 9, Fig. 10 and Fig. 11 show the experimental results for
area, delay and power, respectively. Fig. 9 illustrates the area
comparison between the four FPGA architectures. Compared
to the standard FPGA architectures, the uniform programming
transistor sized RRAM-based FPGA working at V dd = 1.2V
saves 15% area on average thanks to the BEOL technology
which moves memories to the top of the chip. Compared
to the uniformly sized RRAM-based FPGA, RRAM-based
FPGA using the non-uniformly sized programming transistors
saves further 18% area on average thanks to the reduced
impact of the programming transistors in the routing structure.
Fig. 10 illustrates the delay comparison between the four
FPGA architectures. When V dd drops from 1.8V to 1.2V ,
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the standard FPGA architecture sees a 30% increase in its
critical path delay, resulting from the degradation of driving
current that transistors can provide. Compared to the standard
FPGA architecture at V dd = 1.8V , the RRAM-based FPGA
using uniformly sized programming transistors reduces by 10%
on average the delay even at V dd = 1.2V . This comes from
the high performance of the RRAM-based routing architecture.
The RRAM-based routing architectures can still produce high
performance at V dd = 1.2V and even compensate the delay
degradation in logic elements, leading to overall performance
gain. Such a result is extremely interesting as it shows that a
near-Vt RRAM-based FPGA is able to overperform a regular
CMOS architecture working at nominal voltage. Compared to
the uniformly sized RRAM-based FPGA, the non-uniformly
sized RRAM-based FPGA can further improve 2% delay on
average. The delay gain comes from the programming transis-
tor sizing methodology that controls the impact of the parasitic
capacitances introduced by the programming transistors and
lead to the best EDP figures. Fig. 11 illustrates the power
comparison between the four FPGA architectures. Both the
standard and RRAM-based near-Vt FPGA architectures reduce
on average by 65% the power consumption. This is accounted
directly to the reduction of V dd. At the same V dd, RRAM-
based and standard FPGAs have almost no difference in power
consumption because of the similar switching capacitances in
the data paths. In the logic elements, RRAM-based and stan-
dard FPGAs have similar switching capacitances because they
share similar circuit topologies. In the RRAM routing archi-
tectures, the switch capacitances come from the programming
transistors, while in the standard routing architecture, they
come from the pass transistors. The number of programming
transistors in a RRAM-based multiplexer roughly equals to
the number of pass transistors in a standard one. Therefore,
the switch capacitances in routing architectures are similar.

VI. CONCLUSION

This paper introduces a near-Vt RRAM-based FPGA,
where low-power can be achieved along with area reduction
and performance improvement thanks to the high performance
of RRAM-based routing architecture. Experimental results
show that it improves area by 15%, delay by 10% and power
by 65% as compared to the standard architecture working
at nominal voltage. To push forward the area efficiency of
RRAM-based routing architecture, we also propose a de-
sign methodology to size the programming transistors of the
RRAMs. Both theoretical analysis and electrical simulations
show that non-uniform sizing gives not only area savings
but also better performance and EDP than using uniformly
sized programming transistors. Architectural-level simulations
demonstrate optimal sized programming transistors further
optimizes the near-Vt RRAM-based FPGA by 18% in area
and 2% in delay.
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