
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Analysis and optimization of a deeply pipelined
FPGA soft processor

Cheah, Hui Yan; Fahmy, Suhaib A.; Kapre, Nachiket

2014

Cheah, H. Y., Fahmy, S. A., & Kapre, N. (2014). Analysis and optimization of a deeply
pipelined FPGA soft processor. 2014 International Conference on Field‑Programmable
Technology (FPT), 235‑238.

https://hdl.handle.net/10356/81037

https://doi.org/10.1109/FPT.2014.7082783

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
[http://dx.doi.org/10.1109/FPT.2014.7082783].

Downloaded on 29 Mar 2024 08:00:09 SGT

Analysis and Optimization of a Deeply Pipelined
FPGA Soft Processor

Hui Yan Cheah, Suhaib A. Fahmy, Nachiket Kapre
School of Computer Engineering

Nanyang Technological University, Singapore
Email: hycheah1@e.ntu.edu.sg

Abstract—FPGA soft processors have been shown to achieve
high frequency when designed around the specific capabilities
of heterogenous resources on modern FPGAs. However, such
performance comes at a cost of deep pipelines, which can result
in a larger number of idle cycles when executing programs
with long dependency chains in the instruction sequence. We
perform a full design-space exploration of a DSP block based soft
processor to examine the effect of pipeline depth on frequency,
area, and program runtime, noting the significant number of
NOPs required to resolve dependencies. We then explore the
potential of a restricted data forwarding approach in improving
runtime by significantly reducing NOP padding. The result is a
processor that runs close to the fabric limit of 500MHz with a
case for simple data forwarding.

I. INTRODUCTION AND RELATED WORK

Processors are widely used within FPGA systems, from
management of execution and interfacing, to implementation
of iterative algorithms outside of the performance-critical
datapath. When a soft processor is used in a sequential part
of a computation [1], a low frequency would fail to deliver
the high performance required to avoid the limits stated by
Amdahl’s law. Maximizing the performance of such soft
processors requires us to consider the architecture of the FPGA
in the design, and to leverage unique architectural capabilities
wherever possible. Soft processors can be designed to be
independent of architecture, and hence, portable, or to leverage
architectural features of the underlying FPGA.

Commercial soft processors include the Xilinx MicroB-
laze [2], Altera Nios II [3], ARM Cortex-M1 [4], and Lat-
ticeMico32 [5], in addition to the open-source LEON3. All of
these processors have been designed to be flexible, extensible,
and general, but suffer from not being fundamentally built
around the FPGA architecture. The more generalised a core
is, the less closely it fits the low-level target architecture, and
hence, the less efficient its implementation in terms of area and
speed. Consider the LEON 3 soft processor: implemented on a
Virtex 6 FPGA with a fabric that can support operation at over
400MHz, it barely achieves a clock frequency of 100MHz [6].

Recent work on architecture-focused soft processors has
resulted in a number of more promising alternatives. These
processors are designed considering the core capabilities of
the FPGA architecture and benefit from the performance and
efficiency advantages of the hard macro blocks present in
modern devices. These processors typically have long pipelines
to achieve high frequency. Such long pipelines suffer from the
need to pad dependent instructions to overcome data hazards
as a result of the long pipeline latency.

Octavo [7] builds around an Altera RAM Block to develop
a soft processor that can run at close to the maximum RAM
Block frequency. It is a multi-threaded 10-cycle processor that
can run at 550 MHz on a Stratix IV, representing the maximum
frequency supported by Block RAMs in that architecture.
iDEA [8], [9] makes use of the dynamic programmability
the Xilinx DSP48E1 primitive to build a lean soft processor
which achieves a frequency close to the fabric limits. In the
case of iDEA, the long pipeline was shown to result in a
large number of NOPs being required between dependent
instructions. Octavo was designed as a multi-issue processor to
overcome this issue, but as a result, is only suitable for highly
parallel code.

In this paper, we conduct a detailed design space explo-
ration to determine the optimal pipeline depth for the iDEA
DSP Block based soft-processor [8]. We also make a case for
a restricted forwarding scheme to overcome the dependency
overhead due to the long pipeline.

II. DEEP PIPELINING IN SOFT-PROCESSORS

iDEA is based on a classic 32-bit 5-stage load-store RISC
architecture with instruction fetch, decode, execute, and mem-
ory stages followed by write-back to the register file. We tweak
the pipeline by placing the memory stage in parallel with
the execute stage to lower latency, effectively making this a
4-stage processor. Each stage of our processor can support
a configurable number of pipeline registers. The minimum
pipeline depth for each stage is one. As we increase the
number of pipeline stages, clock frequency increases, until it
plateaus, as later shown in Fig. 3. We explore all possible
combinations of depths for the different stages, and pick, for
each overall processor depth, the configuration that gives the
highest frequency. To achieve maximum frequency using a
primitive like the DSP block, it must have its multiple pipeline
stages enabled. iDEA uses the DSP block as its execution unit
and a Block RAM as the instruction and data memory, and
as a result, we expect a long pipeline to be required to reach
fabric frequency limits. By taking a fine-grained approach to
pipelining the remaining logic, we can ensure that we balance
delays to achieve high frequency. Since the pipeline stages in
the DSP block are fixed, arranging registers in different parts of
the pipeline can have a more pronounced impact on frequency.

While deep pipelining of the processor results in higher
frequency, it also increases the dependency window for data
hazards, hence requiring more NOPs for dependent instruc-
tions, as shown in Fig. 1 for a set of benchmarks. Fig. 2
shows pipeline depths of 7, 8 and 9 cycles, respectively, with

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 4 6 8 10 12 14

N
O

P
 c

o
u
n
ts

Pipeline Depth

crc
fib

fir
median

qsort

Fig. 1: NOP counts with increasing pipeline depth.

7-Stage

IF IF ID EX EX EX WB

IF IF ID EX EX EX WB
4 nops

8-Stage

IF IF ID EX EX EX EX WB

IF IF ID EX EX EX EX WB
5 nops

9-Stage

IF IF IF ID ID EX EX EX WB

IF IF IF ID ID EX EX EX WB
5 nops

Fig. 2: Dependencies for pipeline depths of 7, 8 and 9 stages.

fetch, decode, execute and write back stages in each instruction
pipeline.

To prevent a data hazard, an instruction dependent on
the result of a previous instruction must wait until the com-
puted data is written back to the register file before fetching
operands. The second instruction can be fetched, but cannot
move to the decode stage (in which operands are fetched),
until the instruction on which it is dependent has written back
its results. In the case of a 7-stage pipeline with the pipeline
configuration shown, 4 NOPs are required between dependent
instructions. Since there are many ways we can distribute pro-
cessor pipeline cycles between the different stages, an increase
in processor pipeline depth does not always mean more NOPs
are needed. Consider the 8 and 9-stage configurations in Fig. 2.
Since the extra stage in the 9 cycle configuration is an IF
stage, that can be overlapped with a dependent instruction,
no additional NOPs are required than for the given 8 cycle
configuration. This explains why the lines in Fig. 1 do not
increase uniformly. However, due to the longer dependency
window, a longer pipeline depth with the same number of
NOPs between consecutive dependent instructions may still
have a slightly higher total instruction count.

III. EXPERIMENTS

We implement the soft processor on a Xilinx Virtex-6
XC6VLX240T-2 FPGA (ML605 platform) using the Xilinx
ISE 14.5 tools. We generate various processor combinations to

 150

 200

 250

 300

 350

 400

 450

 500

 4 6 8 10 12 14

F
re

q
u
e
n
c
y

Pipeline Depth

Fig. 3: Frequency of different pipeline combinations.

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 150 200 250 300 350 400 450 500

A
re

a
 U

n
it

Frequency

LUTs
Registers

Fig. 4: Resource utilization of all pipeline combinations.

support pipeline depths from 4–15. The pipeline depth is made
variable through a parameterizable shift register at the output
of each processor stage. During automated implementation
runs in ISE, the shift register count is adjusted to increase
the pipeline depth. We enable retiming and register balancing
to exploit the extra registers in the datapath. Each pipeline
configuration is synthesised, mapped, and placed and routed
to obtain final area and speed results. Backend CAD imple-
mentation options are consistent throughout all experimental
runs. We are able to test our processor on the FPGA using the
PCI-based driver in [10].

We benchmark the instruction count performance of our
processor using embedded C benchmarks. These benchmarks
are compiled using the LLVM-MIPS compiler, and emitted
assembly is then analysed for dependencies. A sliding window
is used to ensure all dependencies are suitably addressed by
inserting sufficiency NOPs as required for the specific pipeline
configuration being tested.

A. Area and Frequency Analysis

Since the broad goal of our design is to maximize soft
processor frequency while keeping the processor small, we
perform a design space exploration to help pick the optimal
combination of pipeline depths for the different stages. We
vary the number of pipeline cycles from 1–5 for each stage:
fetch, decode, and execute, and the resulting overall pipeline
depth is 4–15 cycles, with writeback fixed at 1 cycle.

Fig. 3 shows the frequency achieved for varying pipeline
depths between 4–15. Each overall depth can be built using
varying combinations of stage depths, as we can distribute
these registers in different parts of the 4-stage soft processor.
The line shows the trend for the maximum frequency achieved

28
1

2
83 3
20 3
36 3
65

3
62 3
63 3
72 42

2

42
5

42
3

37
1

37
0 46

2

47
9

61
3

54
2

5
29

6
76

7
90

9
28

9
28

5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

1,000

Pipeline Depth

A
re

a
U

ni
t

LUTs Regs

Fig. 5: Resource utilization of highest frequency configuration.

TABLE I: Optimal combination of stages and associated NOPs
at each pipeline depth (WB = 1)

Pipeline
Depth IF ID EX Req’d

#NOPs

4 1 1 1 2
5 1 2 1 3
6 2 2 1 3
7 2 2 2 4
8 2 2 3 5
9 2 3 3 6
10 3 2 4 6
11 4 2 4 6
12 4 3 4 7
13 4 4 4 8
14 4 5 4 9
15 5 5 4 9

at each overall pipeline depth. The optimal combination of
stages for each depth is presented in Table I.

Fig. 4 shows the distribution of LUT and register con-
sumption for all implemented combinations by frequency
achieved. Register consumption is generally higher than LUT
consumption, and this becomes more pronounced in the higher
frequency designs. A majority of the designs (58%) reach
frequencies of between 250 MHz and 310 MHz, illustrated
by denser regions in the plot. These represent configurations
where the DSP block is at a depth threshold where it is in the
critical path and requires further pipeline stages to be enabled
to increase performance. From Fig. 3, we see that frequency
increases considerably up to 11 stages, peaks at 12, and starts
to decline slightly beyond that. This is expected as we approach
the raw fabric limits around 500MHz.

B. Execution Analysis

Increasing processor frequency through pipelining is just
one part of the performance equation. As we showed in Fig. 1,
increases in pipeline depth also require increased padding
between dependent instructions. Hence, we expect that the
marginal frequency benefits of very long pipelines to be offset
by increased NOPs in executed code, and hence a lower value
of instructions per cycle (IPC). In Table I, we show the required
number of NOPs between sequential dependent instructions to
avoid data hazards.

 45

 50

 55

 60

 65

 70

 75

 80

 4 6 8 10 12 14

 200

 250

 300

 350

 400

 450

 500

T
im

e
 (

u
s
)

F
re

q
u

e
n

c
y
 (

M
H

z
)

Pipeline Depth

Frequency Execution Time

Fig. 6: Frequency and geomean wall-clock time at various
pipeline depths.

Fig. 6 shows the normalised wall-clock times for the
benchmarks we tested. As expected, wall-clock time decreases
as we increase pipeline depth up to a certain point. For pipeline
lengths of 5–9, there is a slight increase in wall-clock time as
the benefits of frequency increases are offset by an increasing
number of NOPs. From 9–11, the increase in NOPs is limited,
allowing the frequency gains to result in a runtime benefit.
From 11-stages onwards, NOPs begin to increase, while the
frequency trend slows, resulting in execution time increasing
again. From Fig. 6, the 11-cycle pipeline configuration gives
the lowest execution time for this set of benchmarks.

IV. A CASE FOR SIMPLE DATA FORWARDING

Balancing the benefits of increased frequency with the NOP
penalty of deeper pipelines is essential in determining the
optimal pipeline depth for such processors. As we have seen,
longer pipelines mean more idle cycles between instructions,
and hence a low effective IPC. Analysis of the effect of data
dependencies on the performance of in-order pipelines has
been discussed in [11]. An optimal pipeline depth is derived
based on balancing pipeline depth and achieved frequency,
with the help of program trace statistics. A similar study for
superscalar processors is presented in [12].

Data dependency of sequential instructions can be re-
solved statically in software or dynamically in hardware. Data
forwarding paths can help reduce the padding requirements
between dependent instructions, and these are present in mod-
ern processors. However, a full forwarding scheme typically
allows forwarding between different stages of the pipeline,
and so can be costly since additional multiplexed paths are
required to facilitate this flexibility. With a longer pipeline,
and more possible forwarding paths, such an approach be-
comes infeasible for a lean fast soft processor. Some schemes
provide forwarding paths which must then be exploited in the
assembly, while other dynamic approaches allow the processor
to make these decisions on the fly. Tomasulo’s algorithm,
allows instructions to be executed out of order considering
dependencies. However, implementing it in a soft processor
would require significant additions in hardware, resulting in
an area and frequency overhead that would be excessive for a
small FPGA-based soft processor, and this overhead increases
for deeper pipelines.

In our case, while dynamic forwarding, or even elab-
orate static forwarding would be too complex, a restricted

TABLE II: Dynamic cycle counts with 11-stage pipeline with
% of NOPs savings.

Benchmark Total
NOPs

Consecutive
Dependant

NOPs

Reduced
Consecutive
Dependant

NOPs

Reduced
Total
NOPs

crc 22,808 7,200 (32%) 2,400 18,008 (−21%)
fib 4,144 816 (20%) 272 3,600 (−13%)
fir 46,416 5,400 (12%) 1,800 42,816 (−8%)
median 13,390 1,212 (9%) 404 12,582 (−6%)
qsort 28,443 1,272 (4%) 424 27,595 (−3%)

9-Stage

IF IF IF ID ID EX EX EX WB

IF IF IF ID ID EX EX EX WB
5 nops

9-Stage with Forwarding

IF IF IF ID ID EX EX EX WB

IF IF IF ID ID EX EX EX WB
2 nops

Fig. 7: Forwarding configurations, showing how subsequent
instruction can commence earlier in the pipeline.

forwarding approach may be possible and could result in a
significant overall performance improvement. Rather than add
a forwarding path from every stage after the decode stage back
to the execute stage inputs, we can consider just a single path.
In Table II, we analyse the NOPs inserted in more detail. Out
of all the NOPs, we can see that a significant proportion are
between consecutive instructions with dependencies (4–30%).
These could be overcome by adding a single path allowing
the result of an instruction to be used as an operand in a
subsequent instruction, avoiding the need for a writeback. We
propose adding a single forwarding path between the output
of the execute stage, and its input to allow this. Fig. 7 shows
how the addition of this path in a 9-stage configuration would
reduce the number of NOPs required before a subsequent
dependent instruction to just 2, compared to 5 in the case of
no forwarding.

In Table II, we show how the addition of this path reduces
the number of NOPs required to resolve such consecutive de-
pendencies, and hence the reduction in overall NOPs required.
As this fixed forwarding path is only valid for subsequent
dependencies, it does not eliminate NOPs entirely, and non-
adjacent dependencies are still subject to the same window.
However, we can see a significant reduction in the overall
number of NOPs and hence, cycle count for execution of our
benchmarks across a range of pipeline depths. These savings
are shown in Fig. 8. We can see significant savings of between
4 and 30% for the different benchmarks. This depends on
how often such chains of dependent instructions occur in the
assembly and how often they are executed.

V. CONCLUSIONS AND FUTURE WORK

We have demonstrated how to achieve an optimal pipeline
depth for a DSP-based soft-processor. We have completed a
full design space exploration in which we varied the overall
pipeline depth, allowing for a combination of different depth

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 6 8 10 12 14

In
s
tr

.
C

o
u
n
t
R

e
d
u
c
ti
o
n
 (

%
)

Pipeline Depth

crc
fib

fir
median

qsort

Fig. 8: Reduced instruction count with data forwarding.

configurations for each processor stage, determining the opti-
mal configuration for each overall depth. We then investigated
the resulting runtime for a set of benchmark programs, and
determined that an 11-cycle configuration leads to the lowest
execution time. We also conducted an initial study to explore
the potential of a simple data forwarding approach for such
lean soft processors, and determined that a fixed forwarding
path can reduce instruction count by 4–30%. We aim to explore
the effect of this path on the processor area and frequency and
investigate other opportunities for forwarding in future work.

REFERENCES

[1] N. Kapre and A. DeHon, “VLIW-SCORE: Beyond C for sequential con-
trol of SPICE FPGA acceleration,” in Proceedings of the International
Conference on Field Programmable Technology (FPT), Dec. 2011, pp.
1–9.

[2] UG081: MicroBlaze Processor Reference Guide, Xilinx Inc., 2011.
[3] Nios II Processor Design, Altera Corpration, 2011.
[4] Cortex-M1 Processor, ARM Ltd., 2011. [Online]. Available:

http://www.arm.com/products/processors/cortex-m/cortex-m1.php
[5] LatticeMico32 Processor Reference Manual, Lattice Semiconductor

Corp., 2009.
[6] GRLIB IP Library User’s Manual, Aeroflex Gaisler, 2012.
[7] C. E. LaForest and J. G. Steffan, “Octavo: an FPGA-centric processor

family,” in Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA), Feb. 2012, pp. 219–228.

[8] H. Y. Cheah, S. A. Fahmy, and D. L. Maskell, “iDEA: A DSP
block based FPGA soft processor,” in Proceedings of the International
Conference on Field Programmable Technology (FPT), Dec. 2012, pp.
151–158.

[9] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell, “The iDEA
DSP Block Based Soft Processor for FPGAs,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 7, no. 3, pp. 19:1–19:23,
2014.

[10] K. Vipin, S. Shreejith, D. Gunasekara, S. A. Fahmy, and N. Kapre,
“System-level FPGA device driver with high-level synthesis support,”
in Proceedings of the International Conference on Field Programmable
Technology (FPT), Dec. 2013, pp. 128–135.

[11] P. G. Emma and E. S. Davidson, “Characterization of Branch and Data
Dependencies in Programs for Evaluating Pipeline Performance,” IEEE
Transactions on Computers, vol. 36, pp. 859–875, 1987.

[12] A. Hartstein and T. R. Puzak, “The optimum pipeline depth for a
microprocessor,” ACM Sigarch Computer Architecture News, vol. 30,
pp. 7–13, 2002.

