
AMMC: Advanced Multi-core Memory Controller

Tassadaq Hussain1,2, Oscar Palomar1,2, Osman Unsal1, Adrian Cristal1,2,3, Eduard Ayguadé1,2, Mateo Valero1,2
1 Computer Sciences, Barcelona Supercomputing Center, Barcelona, Spain

2 Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, Barcelona, Spain
3 Artificial Intelligence Research Institute (IIIA), Centro Superior de Investigaciones Cientı́ficas (CSIC), Barcelona, Spain

Email: {first}.{last}@bsc.es

Abstract— In this work, we propose an efficient scheduler
and intelligent memory manager known as AMMC (Advanced
Multi-Core Memory Controller), which proficiently handles data
movement and computational tasks. The proposed AMMC system
improves performance by managing complex data transfers at
run-time and scheduling multi-cores without the intervention of
a control processor nor an operating system. AMMC has been
coupled with a heterogeneous system that provides both general-
purpose cores and application specific accelerators. The AMMC
system is implemented and tested on a Xilinx ML505 evaluation
FPGA board. The performance of the system is compared with
a microprocessor based system that has been integrated with the
Xilkernel operating system. Results show that the AMMC based
multi-core system consumes 48% less hardware resources, 27.9%
less on-chip power and achieves 6.8x of speed-up compared to
the MicroBlaze-based multi-core system.

I. INTRODUCTION
Latest multi-core architectures require both programmabil-

ity and performance and combine different types of cores,
becoming heterogeneous systems. To get programmability, a
part of the program is executed on general-purpose cores. To
achieve performance and to increase power efficiency, compute
intensive tasks are mapped into separate hardware accelerators
or application-specific processors. The dedicated application
specific accelerator cores have small footprint and low power
dissipation and feature high performance [1].

To overcome the memory wall and to reduce the sys-
tem power, a memory system is needed that supports cores
with low frequency and low complexity, has efficient local
memory and data management, with an intelligent scheduler
while supporting a programming model that manages memory
accesses in software so that hardware can best utilize them.
In this work, we have integrated a memory controller with a
heterogeneous multi-core system having Application Specific
Hardware Accelerators (ASHA) and Scalar Soft Processor
(SSP), that we term AMMC (Advanced Multi-core Memory
Controller). Some salient features of the AMMC are given
below:

• The AMMC based system handles heterogeneous
(SSP and ASHA) cores using Symmetric and Asym-
metric scheduling policies, without the support of a
master core nor operating system.

• Regular and irregular access patterns of heterogeneous
multi-cores are described using a separate Descriptor
Memory, which reduces the on-chip communication
time and run-time address generation overhead.

• The AMMC Address Manager and Scheduler handles
regular and irregular pattern requests of a heteroge-
neous multi-core system, provides precise timing and
allows scheduling mode to be changed at runtime.

The research leading to these results has received funding from the European
Research Council under the European Unions 7th FP (FP/2007-2013) / ERC
GA n. 321253. It has been partially funded by the Spanish Government
(TIN2014-34557).

• When compared to the baseline multi-core system im-
plemented on the Xilinx FPGA, the AMMC multi-core
system achieves 6.8x of speed-up, transfers datasets up
to 1.95x faster, consumes 48% less hardware resources
and 27.9% less on-chip power.

II. ADVANCED MULTI-CORE MEMORY CONTROLLER
In this section, we describe the AMMC system. The archi-

tecture (shown in Figure 1) is divided into five units: the Bus
System (A), the Local Memory Unit (B), the Memory Manager
(C), the Scheduler (D) and the Pattern Aware SDRAM Con-
troller (E). The main units of AMMC are shown in Figure 1, as
well as the Multi-Core System, that executes the applications.
The Multi-Core System can have general purpose processors,
application specific accelerator cores or a combination of both
types. The Bus System [2] provides a link between AMMC
and the Multi-Core System. The AMMC Memory Unit stores
both data and the access pattern descriptors in Specialized
Memory and Descriptor Memory respectively. Each processing
core has a separate Specialized Memory [3] and a number of
Descriptor Memory blocks. The descriptors are programmed
at compile-time, providing information of the memory access
patterns and their priorities. At run-time, the AMMC Sched-
uler receives multiple memory read/write requests from the
Multi-Core System and selects a processing core, depending
upon its priority level and scheduling policy. The Scheduler
forwards the memory request to the Memory Manager. The
Memory Manager is divided into the Address Manager and the
Data Manager. The Address Manager takes a Task ID from
the AMMC Scheduler and fetches its Descriptor Memory.
Depending on the access pattern the Address Manager uses
single or multiple descriptors, maps and rearranges addresses
in hardware. The Address Manager saves mapped addresses
into its Address Buffer for further reuse. The Data Manager
improves the Computational Intensity [3] by organizing and
managing the memory accesses. For a core processing a single
computed point, the maximum achievable (ideal) Computa-
tional Intensity is 1. The Data Manager accesses the elements
in the form of patterns which are required for a single output
(Computedelement). After accessing the first access pattern, the
Data Manager reuses and updates data where required. The
Pattern Aware SDRAM Controller [3] is used to transfer data
between main memory and the Specialized Memory.

Fig. 1. Architecture of the Advanced Multi-core Memory Controller

ruben pocull
Texto escrito a máquina
Hussain, T.; Palomar, O.; Unsal, O.; Cristal, A.; Ayguade, E.; Valero, M.; Gursal, S.A., "AMMC: Advanced Multi-Core Memory Controller," Field-Programmable Technology (FPT), 2014 International Conference on , vol., no., pp.292,295, 10-12 Dec. 2014. doi:10.1109/FPT.2014.7082802

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina



(a) (b)

(c)

(d)
Fig. 2. Multi-Core Systems: (a) MicroBlaze (b) AMMC (c) MicroBlaze Resource Utilization (d) AMMC Resource Utilization

The AMMC Descriptor Memory holds memory access and
scheduling information of applications running on the Multi-
Core System. Each processing core has a separate block of
Descriptor Memory. The set of parameters for a Descriptor
Memory block includes Command, Task ID, External Address,
Priority, Size, Stride and Offset. Command specifies whether
to read or write data. The Task ID and External Address
parameters hold the address of processing core (buffer) and
main memory (SDRAM) data set respectively. The Priority
defines the order in which memory accesses are entitled to
be process. The parameters Size and Stride define the type of
memory access. The Offset register field is used to point the
next linked memory access pattern.

The AMMC Scheduler manages and controls the run-time
requests and programmed priorities of processing cores. Each
processing core’s request includes a read and write memory
operation. At program-time, each processing core is assigned
a priority value along with the Task ID, which are placed in
the Program-Time Priority Descriptor (shown in Figure 1).
The processing cores are categorized into three states, busy
(core is processing on local buffer), requesting (core is idle),
and request & busy. In the request & busy state the core is
assumed to have double or multi buffers. During this state,
the core is processing the data of one buffer while making a
request to fill another buffer.

AMMC Scheduler supports two scheduling strategies of
the requests of the cores: symmetric and asymmetric. The

(a) (b)
Fig. 3. Application Kernels: (a) Regular Access Pattern (b) Irregular Access
Pattern

scheduling policies are programmed statically at program-
time and are executed by hardware at run-time. In Symmet-
ric multi-core strategy, the AMMC Task Placer (Figure 1)
manipulates the incoming requests in FIFO (First in First
out) order and places them in the Dispatch Descriptor. The
Asymmetric strategy uses the priority specified for each core
and incoming requests. Each core is assigned a fixed priority
at program-time, which is placed in Program-Time Priority
Descriptor. At run-time, the Scheduler accumulates requests
from the Multi-Core System. The Comparator and Task Placer
maintain them in the Dispatch Descriptor. The Comparator
takes requests from multiple processing cores, compares them
with programmed priorities and forwards the results to Task
Placer. The Task Placer places the requests in the Descriptor
Dispatch Unit and executes requests only if it is ready to run,
and there are no higher priority cores that are in ready state.
The Dispatch Descriptor executes processing core requests
sequently.

III. EXPERIMENTAL FRAMEWORK

In this section, we describe the MicroBlaze- and AMMC-
based Multi-Core Systems and the rest of our experimental
setup. A Xilinx ML505 evaluation FPGA board is used to
test the Multi-Core Systems. The Xilinx Integrated Software
Environment and Xilinx Platform Studio are used to design the
Multi-Core Systems. Xilinx Power Estimator does the power
analysis. The section is divided into three subsections: the
Computation Units, the MicroBlaze based Multi-Core System
and the AMMC based Multi-Core System.

A. Computation Units

There are two cores in our heterogeneous system: ASHA
cores execute application kernels with regular memory ac-
cesses while SSP cores execute application kernels with ir-
regular memory access patterns. Figure 3 lists all applications
used in our experiments. The ASHAs are generated by the
ROCCC [4] compiler. We have chosen the MicroBlaze SSP
to implement the general purpose cores of our system. Mi-
croblaze is an RISC SSP architecture, optimized and imple-
mented with FPGA resources. The multi-core system includes
2 MicroBlaze cores that run 2 applications each and 8 ASHA
cores.

B. MicroBlaze-based Multi-Core System

The MicroBlaze-based Multi-Core System is used as base-
line (Figure 2(a)). The resources utilized by the MicroBlaze
based multi-core system is shown in Figure 2(c). Each gen-
eral purpose core has 32KB of data cache, that is imple-
mented using BRAM. The design uses Xilinx Cache Links
(IXCL/DXCL) for I-Cache and D-Cache memory accesses
respectively. MicroBlaze instruction prefetcher improves the
system performance by using the instruction prefetch buffer
and instruction cache streams.



(a) (b)
Fig. 4. Symmetric System Performance: (a) AMMC (b) MicroBlaze

(a) (b)

(c) (d)
Fig. 5. Asymmetric System Performance: (a) AMMC (b) MicroBlaze (c) & (d) AMMC & MicroBlaze Systems Pipeline and Overlap Time Period

TABLE I. ASYMMETRIC SCHEDULING PRIORITY POLICIES
Kernels FIR FFT Mat Mul Lapl 3D-Sten CRG Huffman In Rem N-Body Speed-ups
Symmetric I 1 1 1 1 1 1 1 1 5.47x
Asymmetric
Group I 1 4 5 3 2 6 7 8 9 6.84x
Group II 2 3 4 5 1 8 6 9 7 5.83x
Group III 9 6 5 4 8 4 3 2 1 3.45x
Architecture 1 1 1 1 1 2 2 2 2 5.42x

One of the MicroBlaze softcores (Core 0, Figure 2(a)) is the
master core and is used to schedule the memory requests and
to manage data transfer between multi-cores and main memory
(SDRAM). The MicroBlaze cores use Xilkernel a small light-
weight easy-to-use Real-Time Operating System (RTOS). Its
API performs scheduling, inter-process communication and
synchronization with POSIX threads (pthreads). From the main
function, application spawns into multiple statically declared
threads using the pthread library. Each thread controls a single
application kernel and manages its memory patterns.

C. AMMC based Multi-Core System

Figure 2(b) shows the implementation of an AMMC-based
Multi-Core System. SSP cores do not integrate any cache but
use the local memory provided by AMMC. Similarly, there is
no need for an RTOS like Xilkernel. The resources consumed
by each AMMC unit is shown in Figure 2(d).

IV. RESULTS AND DISCUSSION
This section analyzes the results of experiments conducted

on AMMC and MicroBlaze based system. The experiments
are characterized into two subsections: System Performance
and Area & Power.
A. Multi-Core System Performance

The system performance is measured by executing ap-
plication kernels simultaneously using different scheduling
policies, on AMMC and MicroBlaze based systems. Due to
the confined FPGA resources, 5 ASHA and 2 SSP cores are
integrated with the Multi-Core System. The execution time
of both systems is categorized into four factors: scheduling
time (Ts), memory management time (Tm), data transfer time
(Tt) and computation time (Tc). Ts holds the arbitration (re-
quest, grant and wait) time among the on-chip scheduling.
Tm comprises the address generation and data management

time. Tt presents the data access time from external memory.
It includes address mapping from physical address space to
SDRAM address space, interface timing and synchronization.
Tc holds the computation time of the application kernels. To
measure the overlap and processing time, each application
kernel is assigned four timers which count Ts, Tm, Tt and
Tc clocks.

In the symmetric scheduling policy, the requests are treated
with the FIFO method, which removes the scheduling time.
Figures 4(a) and (b) present the overlapped/pipelined time
of AMMC and MicroBlaze systems respectively. X and Y
axis present clock cycles and execution time factors, respec-
tively. While running the Multi-Core System using symmetric
scheduling, the results show that the AMMC system achieves
5.47x of speed-up. The current Computation Units contain ap-
plication kernels with different access patterns. The symmetric
scheduling policy gives higher priority to application kernels
with many memory requests. These requests add on-chip bus
and memory access delays, therefore the AMMC system does
not fully overlap Tm & Tt. These delays can be decreased
by executing Multi-Core System with asymmetric scheduling
policy.

We categorize the asymmetric scheduling policy into two
types; the memory access based asymmetric policy and the
architecture based asymmetric policy (shown in Table I). The
memory access based asymmetric policy assigns priorities to
the application kernels with respect to their access patterns and
is further categorized into three groups. In Group I, the highest
priorities (1) are allocated to application kernels having less
memory requests and dense access patterns. For example, the
applications having multiple read/write requests are given low
priorities. To check the sensitivity of asymmetric scheduling
execution of the assigned priorities, the priorities of Group I
are slightly varied in Group II. In Group III, the priorities



are assigned to check the fairness of applications for priorities
not assigned properly. For example, the highest priority (1)
is allocated to application kernels having the largest amount
of memory requests. Like MicroBlaze Xilkernel scheduling
model, the AMMC scheduling policies and memory accesses
are configured statically at program-time. Unlike Xilkernel, the
requests are managed and executed by hardware at run-time.
The memory access based asymmetric policy performs load
balancing and reduces on-chip communication and memory
management delay.

Figures 5(a) & (b) present clock cycles of AMMC and
MicroBlaze systems respectively, while executing application
kernels simultaneously using memory access based asym-
metric scheduling policy. X (logarithmic scale) and Y axis
present clock cycles and application kernels, respectively.
Each bar represents Ts, Tm, Tt and Tc. While running all
application kernel together using the asymmetric scheduling,
the results show that the scheduling, memory manager and
memory transfer of AMMC based system are 21x, 2.9x and
7.1x faster respectively, compared to the MicroBlaze based
system. The computation units execution time (Tc) remains
the same for both systems. Figures 5(c) and (d) present the
overlapped/pipelined time of AMMC and MicroBlaze systems
respectively. The Tc of all application kernels is overlapped
(shown in Figure 5(c)). In the AMMC system, Tt and Tm
are dominant for the regular and irregular application kernels
respectively. As all AMMC units operate in parallel, AMMC
overlaps all other units under the unit that consumes more time.
For example for regular application kernels Ts, Tm and Tc are
overlapped under Tt. The MicroBlaze based system overlaps
Tc & Ts completely and partially overlaps Tm and Tt (shown
in Figure 5(d)). While running all application kernel together
using the asymmetric scheduling with priorities of Group I,
the results show that the AMMC based system achieves 6.84x
of speed-up compared to the MicroBlaze based system. While
executing application kernels with priories of Group II and
Group III, the AMMC based system achieves 5.83 and 3.45x
of speed-up respectively. The AMMC asymmetric scheduling
policy manages system resources (Application code, On-Chip
Off-Chip Memory) of the Multi-Core System without the
support of the operating system.

In the architecture based asymmetric policy, the Computa-
tion Units are assigned priorities depending upon their instruc-
tion set architecture, execution and communication (request/-
grant) speed. The architecture based asymmetric priorities are
shown in Table I. All the cores of one type get the same
priority. The priority 1 executes ASHA core requests with
higher priority. Requests having same priorities are executed
in FIFO order. While running the Multi-Core System using the
architecture based asymmetric scheduling policy, the results
show that the AMMC based system achieves 5.42x of speed-
up compared to MicroBlaze based system. For performance
evaluations, we analyzed that the priority based scheduling has
the potential for supporting scalability and load balancing.

B. Area & Power
Xilinx V5-Lx110T device dissipates 3.15 watts of on-chip

static power, while running the MicroBlaze based system. The
AMMC system draws 2.27 watts of on-chip power on a V5-
Lx110T device. While comparing the AMMC and MicroBlaze
systems without slave units (accelerators and processor), re-
sults show that AMMC system consumes 48% fewer slices and
27.9% less on-chip static power than the MicroBlaze system.
The AMMC provides low-power and simple control charac-
teristics by rearranging data accesses and utilizing hardware
units efficiently.

V. RELATED WORK
Marchand et al. [5] have developed software and hardware

implementations of the Priority Ceiling Protocol that control
the multiple-unit resources in a uniprocessor environment.
Yan et al. [6] has designed a hardware scheduler to assist
the synergistic processor cores (SPCs) task scheduling on
heterogeneous multi-core architecture. The scheduler supports
first come first service (FCFS) and dynamic priority scheduling
strategies. It acts as helper engine for separate threads working
on the active cores. The scouting hardware thread [7] tends to
reduce latency, but also optimizes memory bandwidth usage
by predicting memory accesses and by prioritizing valuable
memory traffic using a separate core. The information of
memory accesses is stored thus helping the scouting core to
fetch and update data from the cache. The AMMC holds
information of memory patterns in the form of Descriptor
Memory. Currently, accessed patterns are placed in the address
manager of AMMC. The AMMC monitors the access patterns
without using a separate core and reuses these patterns for
multiple cores if required.

Hussain et al. [8] [9] discussed a programmable pattern
based memory controller architecture. The design is appropri-
ate for data intensive applications with regular access patterns
only. He also proposes a controller [3] that supports irregular
applications running on a single core. Whereas in AMMC, we
present a mechanism that supports both application-specific
accelerators and RISC cores in a heterogeneous multi-core
system having regular and irregular memory access patterns.

VI. CONCLUSION
In this work, we have proposed AMMC that schedules

multi-core operations while taking processing, scheduling,
memory management and memory transfer into account. The
AMMC architecture supports two types of cores: the general
purpose RISC core and application specific hardware accel-
erator core. The AMMC improves the system performance
by reducing the speed gap between accelerators/processors
and memory and by scheduling/managing complex memory
patterns without master core intervention. The AMMC system
is implemented and tested on a Xilinx ML505 evaluation
FPGA board. The performance of the system is compared
with a microprocessor based system that has been integrated
with the Xilkernel operating system. Results show that the
AMMC based multi-core system consumes 48% fewer slices
and 27.9% less on-chip static power and achieves 6.8x of
speed-up compared to the MicroBlaze-based multi-core system
having real time operating system.

REFERENCES

[1] András Vajda et al. Programming many-core chips. Springer, 2011.
[2] Tassadaq Hussain et al. MAPC: Memory Access Pattern based Controller.

In 24th International Conference on FPL, 2014.
[3] Tassadaq Hussain et al. Advanced Pattern based Memory Controller for

FPGA based Applications. In 24th International Conference on HPCS.
[4] Jason Villarreal et al. Designing modular hardware accelerators in c with

roccc 2.0. In FCCM 2010.
[5] P. Marchand and P. Sinha. A hardware accelerator for controlling access

to multiple-unit resources in safety/time-critical systems. Inderscience
Publishers, April 2007.

[6] L. Yan et al. Hardware Assistant Scheduling for Synergistic Core
Tasks on Embedded Heterogeneous Multi-core System. In Journal of
Information & Computational Science (2008).

[7] Shailender et al. Chaudhry. Simultaneous speculative threading: a novel
pipeline architecture implemented in sun’s rock processor. ACM, 2009.

[8] T. Hussain, M. Shafiq, M. Pericas, N. Nacho and E. Ayguade. PPMC:
A Programmable Pattern based Memory Controller. In ARC 2012.

[9] Tassadaq Hussain and Amna Haider. PGC: A Pattern-Based Graphics
Controller. Int. J. Circuits and Architecture Design, 2014.




