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Abstract— The pinnacle of success for academic work is often 
achieved by having impact on commercial products. In order to 
have a successful transfer bridge, academic evaluation flows need 
to provide representative results of similar quality to commercial 
flows.  A majority of publications in FPGA research use the same 
set of known academic CAD tools and benchmarks to evaluate 
new architecture and tool ideas. However, it is not clear whether 
the claims in academic publications based on these tools and 
benchmarks translate to real benefits in commercial products. In 
this work we compare the latest Xilinx commercial tools and 
products with these well-known academic tools to identify the gap 
in the major figures of merit. Our results show that there is a 
significant 2.2X gap in speed-performance for similar process 
technology. We have also identified the area-efficiency and 
runtime divide between commercial and academic tools to be 5% 
and 2.2X, respectively. We show that it is possible to improve 
portions of the academic flow such as ABC logic optimization to 
match the quality of commercial tools at the expense of additional 
runtime. Our results also show that depth reduction, which is 
often used as the main figure of merit for logic optimization 
papers does not translate to post-routing timing improvements. 
We finally discuss the differences between academic and 
commercial benchmark designs. We explain the main differences 
and trends that may influence the topic choice and conclusions of 
academic research. This work emphasizes how difficult it is to 
identify the relevant FPGA academic work that can provide 
meaningful benefits for commercial products.   

Keywords—FPGA; Benchmark Designs; CAD Tool Flows;  
Academic vs Commercial; Vivado; Ultrascale; Verilog-To-Routing; 
ABC; 

I.  INTRODUCTION  
Commercial Field-Programmable Gate Arrays (FPGAs) have 
been rapidly growing in both capacity and performance, 
opening the door to a large number of applications. Advances in 
process technology along with FPGA CAD tools and 
architecture have enabled this growth. Further advances in both 
tools and architecture are required to sustain this growth. 
Potentially, academic research efforts in these areas could 
contribute to this success by identifying promising tool or 
architecture ideas. This is especially important as FPGAs serve 

a wider range of applications compared to ASIC or ASSP 
counterparts in semiconductor business.  

FPGA architecture and tool ideas that are seeded from FPGA 
academic community have decreased significantly over the last 
decade. The few that are proposed do not offer significant 
benefits when incorporated and evaluated in a commercial 
framework. If this trend continues, the academic work in this 
area might become irrelevant. This will adversely impact both 
FPGA industry and academic community, as the products can 
no longer leverage the broader academic ecosystem. 

In this work, we claim one of the main reasons of this trend to 
be the significant performance gap between the academic and 
commercial framework. We try to examine this claim by 
comparing the most prevalent academic architecture tools with 
Xilinx Vivado used for UltraScale devices [1], [2]. When 
academic tools lag behind the state of the art by a large 
amount, it is easy to show improvement, but those 
improvements do not translate to any benefits for commercial 
tools and devices. After identifying the gap, we try to provide 
guidance on how to reduce it and also provide a few rules of 
thumb for assessing the merits of academic work.  
The next section summarizes the related work. In section III, 
we introduce both academic and commercial flows and 
measure the gap for the main figures of merit. In Section IV a 
hybrid commercial and academic tool flow is presented. It 
shows that academic tools can perform on par with commercial 
tools at the expense of extra runtime. Section V examines 
another important factor in any FPGA assessment: benchmark 
designs. We highlight the trends in how benchmarks are 
changing and its impact on academic work. We provide a final 
discussion and concluding remarks in section VI.    

II. BACKGROUND AND RELATED WORK 
The most popular academic open source tools used for FPGAs 
are Versatile Place and Route (VPR) [3] and ABC logic 
optimization and technology mapping [4]. There is also a front-
end synthesis tool, called ODIN II [5], which takes a Verilog 
design and performs RTL elaboration. A recent academic 
framework, called Verilog-To-Routing (VTR), combines ODIN 



 

 

Fig. 1. The four frameworks used to compare commercial and academic 
flows 

II, ABC and VPR to offer a complete unified flow for FPGA 
compilation [6]. We chose this well-known academic 
framework as our academic reference because it is the most 
flexible framework available. It gives researchers control over 
every part of the framework from architecture to tools and 
benchmarks designs. The front-end synthesis step produces a 
Berkeley Logic Interchange Format (BLIF) file, which is read 
by ABC to perform logic optimizations and technology 
mapping to LUTs. VPR then packs the LUTs and FFs into 
CLBs, places the CLBs and routes the whole design. There are 
three main components in an evaluation framework: the target 
FPGA architecture, the CAD tools and the benchmark designs.  

There are two works that have also raised the issue of the 
gap between commercial and academic results. The first one 
provides the ability to compile designs for commercial devices 
using a VTR-to-Bitstream (VTB) flow presented in [7]. The 
VTB flow translates the mapped and placed circuits to an XDL 
description, a format provided by Xilinx ISE tools. These XDL 
text descriptions are translated to binary files and subsequently 
the design is routed with Xilinx ISE’s PAR. VTR supports 
FPGA routing but is unable to model complex routing 
structures that exist in Xilinx FPGAs. New advances in the 
VTB project [8] enables routing designs on Xilinx’ older 
architectures, such as the Virtex6. The routed designs are 
analysed by Xilinx ISE’s TRCE static timing analyser to get 
reliable timing information. Our work is different in several 
aspects: we use the most recent commercial and academic tools 
(in contrast with a decade old commercial tools) and show that 
the divide is actually much wider now. In [7], the authors 
attribute the gap to the lack of support for carry logic, but we 
used a newer version of VTR that contains carry logic support 
and showed that it is not a key factor. The focus of VTB is to 
realize a design on a commercial device and they achieved that 
goal. However, XDL and the relevant flow are no longer 
supported by Xilinx and the proposed flow will unfortunately 
not work with the latest products, such as UltraScale.  

A second work [9] focuses on addressing the mismatch in 
benchmark designs by providing larger designs for the open 
source community. They contributed 23 large benchmark 
designs and 20 mid-size designs. They identify the critical path 
delay gap as 50%, but they use a commercial tool for synthesis 

providing a hybrid evaluation flow and this gap is only 
measured on the benchmarks that did not fail. Their hybrid flow 
was only able to place and route 13 of the 23 large designs. 
They are also comparing to older 40nm products from Altera. 
This framework can easily be used to test advancements in 
place and route tools  

In contrast to previous work, we focus on a new comparison 
to identify the gap for the most recent products and tools and 
show that it is much wider than stated in the literature. If the 
quality of academic tools is inadequate such that the required 
figures of merit are not met, there is little value in implementing 
those designs on commercial products using the VTB flow. We 
also address the area-efficiency and runtime scaling gaps. We 
then take a deeper dive in one of the academic tools, ABC logic 
optimization, to show that it is possible to achieve quality 
results on par with commercial tools with some effort.  

III. COMMERCIAL AND ACADEMIC TOOL COMPARISON 
In order to make a fair comparison, we should use the same 

benchmark designs and the same target architecture. 
Unfortunately, VTR is not designed to compile for commercial 
architectures. First, we compare Vivado and VTR for the 
architectures available for the latest comparable process 
technology nodes. Later, we will use the VTB flow to target a 
commercial architecture and assess if the gap diminishes. 

A. Evaluation frameworks 
We selected the smallest 20nm Ultrascale Kintex device 
(xcku035) with the largest package (ffva1156) and the fastest 
speed grade to match that of academic architectures. Together 
with the Vivado 2014.3 tool flow, we call this the commercial 
implementation.  
The academic target device is the most advanced architecture 
closest to 20nm available in VTR. We choose 
k6_frac_2ripple_N8_22nm, because it performed best in terms 
of speed-performance of all the architectures available in VTR. 
We will call this architecture VTR-22nm from here on. The 
original architecture was sized for a 22nm high performance 
process and we needed to resize the transistor-level circuit for 
this architecture so that both commercial and academic devices 
are optimized for the same nominal operating voltage (0.95V). 
We used an automatic transistor sizing tool [9] and 22nm 
predictive technology models optimized for high performance 
[10]. It is worth noting that the process technology for xcku035 
is a low power process technology, and hence our speed-
performance results for the academic flow will be somewhat 
optimistic.  
The VTR-22nm architecture contains carry chains, fracturable 
36x36 multiplier blocks, and fracturable 32Kb memory blocks. 
Each CLB contains 8 fracturable LUTs similar to that of the 
xcku035, but contains only one flip-flop per LUT and no 
distributed memory capabilities. The routing architecture was 
kept simple with only length-four wires. We refer to the VTR-
22nm architecture together with VTR tool flow revision 4591 
as the academic implementation and use it as a reference in 
this section. As benchmark suite we used the 19 designs 
available in the VTR framework. The results for the most 
important figures of merit (area, maximum clock frequency  



 

and compilation runtime) are listed in TABLE I and will be 
discussed in the following subsections. 
 

B. Speed-performance 
Vivado is designed to compile a design for a set of known 

constraints and not to find the highest possible operating 
frequency for a given design. To find the maximum clock 
frequency we started with constraining the designs with a clock 
period that could be easily met. Subsequently the data path 
delay of the most critical path in the clock domain was used as 
a new constraint for the clock period. We repeated this process 
until Vivado just failed the constraint with a violation of less 
than 1ns. Another approach could be to constrain the design 
with an unrealistic clock period like in VTR, for example 1ns, 
but Vivado would recognize that it could never meet the 
constraint and it would exit early. Therefore the latter approach 
is not an option for the commercial flow. 

As noted in TABLE I, the maximum clock frequency for all 
benchmark designs is higher for the commercial 
implementations compared to the academic implementations. 
The geomean of the maximum clock frequencies of the 
commercial implementations is 2.24 times higher than that of 
the academic implementations. We believe this 2.24X divide in 
quality of results is an important conclusion from this work. It 
indicates why many academic FPGA architecture and tool 
improvements cannot translate to realistic benefits for FPGA 
industry. This wide gap includes architecture and tool 
differences, but excludes differences caused by benchmark 
designs and process technology.  

Referring to previous work [9], we may also estimate that 50% 
of this divide is due to synthesis and the rest is from the place 

and route portion of the flow and the architecture difference. 
We will discuss this further in the following sections. 

C. Area-efficiency 
Comparing the area-efficiency between commercial and 

academic implementations is more difficult because of the 
different hard blocks in the target architectures. The VTR-22nm 
architecture contains fracturable 36x36 multiplier blocks and 
fracturable 32 Kb memory blocks. The Ultrascale fabric has 
versatile DSP48E2 blocks that can implement 
27x18 multiplications, 48-bit addition/subtraction, XOR, and 
some additional functionality. It also contains fracturable 36Kb 
block RAMs.  

Comparing the multiplier logic consumption for the academic 
and commercial implementations, we find the commercial DSP 
usage to be about twice the amount of academic multiplier 
block usage. This corresponds with the size of the respective 
multipliers. The only exception is stereovision1. The default 
behaviour of Vivado is to implement the divisions in 
stereovision1 without DSP blocks in contrast with VTR.  This 
leads, however, to an increased LUT count for Vivado, but a 
faster circuit. Vivado chooses the most delay-optimal 
implementation if there are enough resources available.  

Academic implementations typically use more memory 
blocks than the commercial ones. The Ultrascale fabric has 
slightly larger memory blocks, but that is not the main reason. 
The VTR benchmark designs contain a lot of shallow memories 
and Vivado implements these shallow memories with 
distributed memory. To overcome the issue of comparing 
resource usage for different types of hard blocks, we define a 
normalized area measure. The measure is expressed in terms of 
CLB tiles and encompasses the CLB count and all hard block 
occurrences: 

TABLE I.  OVERVIEW OF THE POST-ROUTING RESULTS FOR THE VTR BENCHMARKS 

  Academic (VTR -  k6_frac_2ripple_N8_22nm)     Commercial (Vivado – UltraScale) 
  Area  Fmax Runtime   Area  Fmax  Runtime 
Benchmarks  CLB Mult Mem Norm*  (Mhz) (min)   CLB DSP BRAM Norm* rel  (Mhz) rel  (min) rel 
bgm  4259 11 0 4424  52 10.4   2150 22 0 2260 0,51  183 3,52  6.3 0.61 
blob_merge  717 0 0 717  96 4.7   1437 0 0 1199 1,67  364 3.79  2.8 0.60 
boundtop  280 0 1 300  146 4.5   813 0 1 836 2,79  367 2,52  2.8 0.63 
diffeq1  33 5 0 108  64 4.3   78 9 0 123 1,14  135 2,11  1.6 0.36 
diffeq2  21 5 0 96  81 4.3   34 9 0 79 0,82  149 1,84  1.5 0.35 
LU8PEEng  2645 8 45 3665  16 8.5   2534 16 23 3143 0,86  24 1,51  5.2 0.61 
LU32PEEng  8794 32 168 12634  16 25.1   8867 64 136 12315 0,97  23 1,46  9.2 0.37 
LU64PEEng  17028 64 340 24788  16 59.4   15574 128 188 20538 0,83  26 1,63  18.5 0.31 
mcml  8137 27 159 11722  27 32.1   6988 104 154 11050 0,94  55 2,01  13.2 0.41 
mkDelayW~  755 0 43 1615  117 5.2   140 0 27 761 0,47  645 5,51  1.9 0.37 
mkSMAda~  210 0 5 310  158 4.6   193 0 3 262 0,85  491 3,11  2.3 0.50 
or1200  308 1 2 363  102 4.7   365 4 1 408 1,12  176 1,73  1.9 0.40 
raygentop  266 7 1 391  148 4.6   390 9 0,5 446,5 1,14  469 3,18  1.9 0.41 
sha  244 0 0 244  179 4.6   212 0 0 212 0,87  299 1,68  2.2 0.47 
stereovision0  1195 0 0 1195  245 4.9   1013 0 0 1013 0,85  635 2,59  2.6 0.52 
stereovision1  1916 46 0 2606  149 5.6   2511 0 0 2511 0,96  337 2,27  4.1 0.73 
stereovision2  3290 201 0 6305  100 7.9   2213 270 0 3563 0,57  136 1,36  4.6 0.58 
stereovision3  22 0 0 22  270 4.4   30 0 0 30 1,36  474 1,76  1.3 0.29 
Geometric mean             0.95   2.24   0.46 
Geometric Standard Deviation            1.52   1.45   1.30 
Total        199.8            83.9  
                      
* Normalized Area: the total area expressed in terms of CLB tiles, it includes the DSP/Mult and Mem/BRAM usage, see equation (1) and (2) 



 

 

Fig. 3. RAMB and DSP height vs CLB height, image taken from Vivado 
Design Editor.  

Fig. 2. Total Runtime for compiling the VTR benchmark designs for a single 
run 

 

 Areanorm, academic = nCLB + kmult.nmult + kmem.nmem  (1) 

 Areanorm, commercial = nCLB + kDSP.nDSP + kBRAM.nBRAM (2) 

For the academic area constants kmult and kmem, we use the 
minimum transistor width count as reported in the architecture 
description for each type of hard block. We compare it to the 
area used for one CLB tile in the newly sized academic 
architecture [9]. Taking the interconnect area into 
consideration, we set the constants to kmult = 15 and kmem = 20. 
For the commercial area constants kDSP and kBRAM a similar 
approach to the academic calculations is used, but we scale the 
block areas based on multiplier bits and memory bits. Each 
DSP and memory block pair has a height of 5 CLBs, as seen in 
Fig. 2 from Vivado design editor. This results in the following 
area constants, kDSP = 5 and kBRAM = 23. The hard block 
occurrences and normalized Area is reported for each design in 
Table I. The commercial implementations use on average 96% 
of the normalized area used by academic implementations. This 
gap is significant, but not a showstopper in contrast with the 
other figures of merit we investigated.  

D. Runtime 
The benchmark designs were compiled on a workstation 

with a 3.4 GHz quad-core Intel Core i7-3770 processor and 
32 GB memory.  In TABLE I, the runtime for each benchmark 
design is reported for the commercial and academic flow. VTR 
can only operate in a single-threaded mode, so to be fair we 
compare it to Vivado restricted to only run a single thread. Even 
in single-threaded mode Vivado is on average 2.2X faster than 
VTR. This runtime gap is consistent with a geometric standard 
deviation of 1.3. All benchmark designs compile faster when 
using Vivado with runtimes ranging from 73% to 35% of the 
runtime of VTR. 

Fig. 3 shows the total runtime to compile all VTR benchmark 
designs for both the commercial and academic flow and a 
breakdown for each major step in the compilation. As a 
reference we also included a run in which we let Vivado run 
unrestricted. On our test machine this mode used 8-threads, 
which decreased the total runtime from 1.45h to 1.1h. This is 
not a huge decrease mainly because we only deal with smaller 
benchmarks for which the runtime is so small that Vivado 
cannot fully take advantage of multithreading. Overall we see 
the same picture for the total runtime as for the separate 
benchmark designs. The total runtime for Vivado is a little 

under one hour and half and a little over 3 hours for VTR. So 
Vivado compiles the benchmarks in less than half the time VTR 
does. In Vivado the runtime is more equally divided between 
the three major steps, synthesis, placement, and routing than in 
VTR. In VTR, synthesis takes only 4% of the total runtime. The 
placer in VTR is responsible for biggest chunk of runtime 
(69%) followed by the routing step (27%).  

We also considered the runtime scalability with respect to the 
size of the benchmark designs. We choose the LUT count as 
area figure and we only selected the designs with more than 
20K LUTs to minimize the impact of the nonrecurring runtime 
cost. The runtime for smaller designs is often dominated by 
fixed portions, such as reading or writing the files. The fixed 
portions don’t have a significant impact on scalability. The data 
points for each flow are plotted in Fig. 4 and fitted using a 
power regression model. The runtime scaling gap widens 
proportional to the equation 0.14 ∙ 𝑥!.!", where x represents the 
number of LUTs, so for each 60K LUT increase the runtime 
gap doubles. We predict that the runtime gap will increase in 
the same fashion beyond the 160K mark. This makes the 
compile time of academic flows impractical for today’s FPGA 
application sizes, because they easily surpass the 160K LUT 
mark. The small number of designs shown in Fig. 4 might not 
be sufficient for calculating a statistically valid scaling factor. 
However, the trend of growing runtime gap, which is the main 
message of this section, will hold as we add larger and more 
designs to the graph. 

Out of this comparison, placement is clearly a main cause of the 
gap in runtime scalability. At its core, the VTR placer still uses 
simulated annealing which is more runtime intensive and does 
not scale as well as the analytical placement techniques used in 
the Vivado placer. The academic framework could benefit 
greatly from an open-source analytical placer, which is not 
available to our knowledge at the moment of writing. 

E. Using VTR for a Commercial Target Device 
VTR is not designed to map to commercial devices but we 
made an attempt to use the VTB flow introduced in the 
previous work. In [7], the authors present a VTR-to-Bitstream 
(VTB) flow that enables users to map to Virtex 6 devices. 
Vivado does not support the older Virtex 6 devices. We 
extended VTB to target the Virtex 7 vx330t device with the 
help of the authors of [7]. We compared the frameworks 3 and 
4 as shown in Fig. 1. VTB and Vivado target the same 
commercial device. We choose to target the fastest speed grade 



 

 
Fig. 5. Runtime scalability of the Academica and Commercial CAD tools 
with respect to the size of the design.  

and the largest footprint. This resulted in Vivado 
implementations that consume 25% less area and are able to 
operate at 2.1X higher operating frequencies on average than 
VTB implementations. This is more or less in line with the gap 
reported for the commercial versus academic comparison. The 
only major difference was that the VTB was remarkably slower 
than Vivado by a factor of 5.5X.  

There is only a very slight reduction in speed-performance gap 
if we compare Vivado versus VTB targeting a commercial 
device (2.1X) and the commercial versus fully academic 
comparison (2X). We attribute this reduction in the gap to a 
better architecture, but conclusions are difficult here because 
VTB is not designed to fully exploit this commercial 
architecture, so the actual architecture gap could be much 
wider. Our initial intention for using VTB was to identify which 
part of the gap can be attributed to the architecture and which 
part to the tools. We believe the large quality gap in the tools 
may be misleading and hence we defer making solid 
conclusions on the architecture gap to future work, after more 
detailed investigations. 

IV. HYBRID COMMERCIAL AND ACADEMIC  
EVALUATION FLOW 

We described the gap between academic and commercial 
tools for FPGA design implementation in section III. However, 
the main advantage of open-source academic tools is that they 
are easier to change and augment toward a research goal. The 
tools are often data-driven and skip unnecessary detail, helping 
the researcher conclude faster. The question we are trying to 
answer in this section is how to combine the credibility of 
commercial tools with the flexibility of academic tools to reach 
pragmatic architectural or tool conclusions. In contrast to 
previous section, we use commercial tools as our baseline for 
assessing a new tool flow. 

We created a hybrid evaluation flow using Vivado and ABC 
[1], which is a well-known academic tool for logic optimization 
and technology mapping. The advantages of such a hybrid flow 
are two-fold: 1) we can accurately quantify the quality of logic 
optimization; 2) we can quickly evaluate architecture ideas or 
opportunities in commercial tool optimization. Even if such 

evaluation flow helps us detect failures for certain ideas, it will 
prevent researchers from investing unnecessary additional time.  

Fig. 5 summarizes the hybrid flow that we created. The key to 
creating such a flow is identifying the best interception points to 
exit and re-enter the commercial Vivado flow. Vivado synthesis 
tool processes the design in three steps: elaboration, 
architecture-independent optimizations, and technology 
mapping. During RTL elaboration, common data path 
operations such as additions and storage elements such as 
memory blocks are identified and inferred. Architecture-
independent optimizations include constant propagation, 
operation sharing, strength reduction; expression optimization, 
finite state machine encoding/minimization, generic 
restructuring and don't-care optimizations. During technology 
mapping the optimized design is mapped onto target 
architecture structures, such as DSP blocks, adders with 
dedicated carry-chains, BRAMs, LUTs and FFs. 

In the new hybrid flow, the combinational portion of the logic 
gate network is cut out and written to a BLIF file. ABC reads in 
the BLIF file and performs logic optimizations and mapping as 
stated in the script given by the user. The script may contain 
commands to restructure and balance the logic network and to 
perform different mapping algorithms. After ABC 
optimizations, the circuit mapped to LUTs is stitched back into 
the design in Vivado. This new flow replaces the commercial 
technology mapping and optimization with that of the academic 
flow.  

Initially, this new hybrid flow with ABC performed worse than 
the baseline Vivado flow in all figures of merits: performance, 
area and runtime. However, the differences were all within 2% 
except for runtime. This indicates that the significant 
performance gap we noted earlier is not due to logic 
optimization portion of the flow. After a number of iterations 
and modifications to both ABC and the script, we managed to 
show some improvements compared to baseline Vivado. 
According to our results 2.5% increase in maximum clock 
frequency along with 1.8% decrease in area was achieved on 
average for more than 80 commercial benchmark designs, as 
summarized in TABLE II. These modest average improvements 
compared to Vivado were achieved at the expense of additional 
runtime in ABC.  

 
Fig. 4. Hybrid flow for logic optimization 



 

Fig. 6 depicts the maximum clock frequency ratio for each 
design in the commercial suite, providing a more detailed view. 
Fmax improved for roughly 70% of the designs and up to 20% 
in the best cases. The main reason for improving the quality 
was less emphasis on early depth reduction. Initial scripts 
aggressively reduced the depth of the deepest paths in the 
designs, which led to worse post routing results. This is 
expected because at the time of technology mapping there is too 
much uncertainty to predict the real critical path after routing. 
The critical path could be dominated by routing and aggressive 
depth reduction will adversely affect the final results. The ABC 
script that produced the best results is available in [17]. It 
contains multiple LUT mapping iterations interleaved with sum 
–of-product balancing.  

The hybrid flow helped us find the right balance between the 
area and depth reduction by focusing on average depth 
reduction and observing post-routing results from the 
commercial tool. It is worthwhile to note that even the initial 
results from the hybrid flow (before our optimizations) were 
within a few percentage of the baseline Vivado flow. This 
indicates that the synthesis gap observed in previous work is 
not due to logic optimization portion of the academic flows.  

We can make two high level observations using our hybrid 
flow. First, the fact that we could reach the quality of 
commercial tools and even improve the results for some designs 
shows the potential for academic tools if used in a correct 
framework. The second high level conclusion from this exercise 
was that depth reduction does not translate to post routing 
improvement directly. A good rule of thumb to estimate post-
routing benefits of the academic work that claim improvements 
by reporting depth reduction is to divide the gain by an order of 
magnitude. We further investigated this by focusing on depth-
oriented designs and confirmed that ABC indeed improves the 
results by 5% on average on these designs. This is a significant 
improvement even for commercial products and we will 
elaborate on this classification more in the next section.  

We also used this evaluation flow to dismiss some of the 
published architecture ideas and tool optimizations quickly 
without additional expensive investments in changing the 
commercial flow. For example, previous work has suggested 
using cascaded LUTs [18-19] as potential FPGA architecture 
improvements, because they improved area and the depth of the 
circuit. Since these ideas are often implemented in ABC 
framework we used our hybrid flow to evaluate some of them. 
We found that conclusions that are mainly based on early depth 
reduction will not hold after routing the designs. Another 
example is the and-inverter cones [20]. In this case the authors 
further investigated their claims in a second publication [21] 

and came to the conclusion that the observed benefits after 
technology mapping did not translate to post-routing 
improvements. 

V. BENCHMARK DESIGN SUITE 
An important aspect of any evaluation framework is the 

benchmark designs. In this section we focus on highlighting the 
differences between academic and commercial benchmark 
suites.  

A. Academic benchmark designs 
Unfortunately it is hard to separate benchmark designs from 

the framework they were written for, so we inspect the 
benchmark designs with their framework in mind. Typically 
used in academia are the well-known evaluation frameworks 
such as the VPR framework [3], the VTR framework [6] and 
the recent Titan framework [9].    

The Versatile Place and Route (VPR) framework consists of 20 
large benchmark designs synthesized by the Microelectronics 
Centre of North Carolina (MCNC). VPR is used as place and 
route tool and a homogeneous LUT-only architecture at 48nm 
technology node as a target architecture. The MCNC 
benchmarks are still quite popular [12-15] and the VPR 
framework is still maintained as part of the VTR framework.  

The Verilog-To-Routing framework (VTR) [2] includes several 
benchmark designs described in Verilog. There is a range of 
architectures that can be targeted in VTR and researchers can 
add or tweak their own architecture. We used the most 
advanced architecture available, called 
k6_frac_2ripple_N8_22nm. Researchers working on 
applications or tools will probably not change the default 
architectures provided in the VTR framework. 

The Titan framework [4] consists of 23 large benchmarks and 
20 mid-sized benchmarks. They are synthesized with Quartus II 
and VPR is used for backend of the flow to map to an 
architecture closely matching the Altera Stratix-IV 
architecture [15]. They used identical hard blocks, but the 
routing architecture was only modelled approximately. 
Unfortunately VPR does not succeed at routing 13 of the 23 
large designs because of memory requirements or routing 
congestion. 

TABLE II.  SUMMARY FOR THE HYBRID FLOW VS VIVADO   

 Early depth      Fmax Area (CLBs) 

Whole suite  -16 % + 2.5 % - 1.8 % 
  High depth -24 % + 5 % - 3 % 

  Low Depth -13.5 % + 0.4 % - 1 % 
  Arithmetic -7 % + 1.1 % 

  
- 1 % 

The percentages indicate relative improvement for the geomean of the ratios 
 

 
Fig. 6. Maximum clock frequency ratio for the hybrid flow versus the Vivado 
baseline 



 

 
Fig. 7. Benchmark Suite Profiles. For each framework, the benchmark 
designs  are classified in three categories depending on the paths and the type 
of instances in the critical zone of the circuit, LUT dominant & High Depth 
(LUT_HD), LUT dominant & Low Depth (LUT_LD) and Arithmetic 
dominant. 

B. Comparing with commercial benchmark designs 
 We profiled more than 80 industry benchmark designs in 
order to understand the differences with academic designs. The 
academic designs are much smaller compared to the industry 
benchmark designs we used, which typically have more than 
100k LUTs. The other noticeable difference is that the majority 
of VTR benchmark designs are I/O-bound. They also have 
fewer memory and DSP components compared to industrial 
designs.  All these differences may contribute to misleading 
academic conclusions in the academic frameworks. Some of 
these differences such as size of the benchmark designs are 
already highlighted in previous work [9].  

In this work, we highlight and analyse another subtle, yet 
important difference that may skew the academic conclusions. 
Fig. 7 depicts how depth profile differs for various academic 
and industrial designs compiled within their respective 
framework. For each framework, the benchmark designs are 
classified in three categories depending on the paths and the 
type of instances in the critical zone of the routed circuit. For 
the commercial framework, each benchmark category contains 
around the same number of designs. For the VTR and Titan 
benchmark designs, the category of designs with a LUT 
dominant and shallow critical zone is under represented. Lastly, 
the MCNC20 benchmark suite contains only LUT dominant 
designs with deep critical zones. It is clear from this 
comparison that academic benchmark suites contain relatively 
much more designs with a high depth critical zone than 
industrial benchmark suites. 

A large number of academic publications, especially those that 
use ABC, make conclusions based on depth improvement after 
technology mapping. Therefore, it is important to understand 
how depth reduction correlates to the end performance 
improvement after routing.  In the next subsection we dig 
deeper into this depth profiling to understand the trends. 

C. Depth classification of designs: discussion and trends 
 Our depth classification is based on the profile of the critical 
zone in the commercial benchmark designs. We define the 
critical zone as all the paths in the design with 5% worst slack. 
Taking into account the type of instances in the critical zone, 

we observe that 68% of the designs’ critical zone is dominated 
by LUT instances. The most occurring instance type is CARRY 
blocks for 20% of the designs. The DSP blocks dominate the 
critical zone for the 12% remaining designs. The average logic 
depth of the DSP dominated designs is typically lower than the 
carry dominated designs. We group both CARRY and DSP 
dominated designs in the same class, the arithmetic designs, 
because they show similar behaviour regarding our analysis.  

The remaining designs with critical path dominated by LUTs 
are further divided into 2 groups. We take into account the 
average depth of the paths in the critical zone for the LUT 
dominant circuits. 29% of the designs have an average logic 
depth smaller than or equal to 2. This class contains heavily 
pipelined designs with critical zone dominated by routing and 
net delays. We also refer to this group of applications as low 
depth. The other group contains benchmark designs with an 
average logic depth higher than 2.  

We now revisit the results of our hybrid flow explained in 
section IV in the context of this logic depth classification. The 
results are summarized in TABLE II. The hybrid flow 
augmented with ABC has an average 5% higher maximum 
clock frequency and uses on average 3% less CLBs for the high 
depth, LUT-dominant designs. LUT-dominant, low depth 
designs show no significant improvement in performance, but 
they show a 1% area reduction. For the arithmetic dominant 
circuits the new flow produces solutions with 1.1% higher 
clock frequency and 1% lower CLB usage. 

Our results show that ABC advantages for performance are 
mostly applicable to a third of the designs which have critical 
paths with a lot of logic levels. This is in line with the academic 
literature where most of ABC work is focused on depth 
reductions. However, the FPGA application trends are in the 
direction of highly pipelined designs with lower depth. 
Therefore, these advantages will be less pronounced in the 
future. The representativeness of academic benchmark suites 
could be improved by adding low-depth designs. Another 
important observation is that depth reduction no longer 
translates to significant post-routing delay improvement in 
commercial frameworks.   

VI. CONCLUDING REMARKS 
We examined the divide between the quality of the FPGA 

configurations produced by the commercial and academic 
frameworks to show that it has grown beyond acceptance. For 
example, the speed-performance quality gap is more than 
2.2X. This makes it hard to assess the merits of academic 
results, because it is much easier to improve something that is 
so far from optimal. On the other hand, we showed that it is 
still possible to use academic tools in a credible framework 
that is a hybrid with a commercial framework. Our results 
showed that close to 5% improvement is possible on average 
for designs with high depth paths in the critical zone. This 
work also highlighted a trend in industrial applications towards 
low depth, highly pipelined designs. Designs with shallow 
LUT dominated critical zones are under-represented in the 
academic frameworks. This further emphasizes the need for 
updating benchmark designs and suggests that academic tools 



 

need to focus on other optimizations such as retiming instead 
of early depth reduction. 
    Academic contributions in the area of FPGA architecture 
and tools are still possible, but only if the wide divide 
highlighted in this work is addressed or academic work is done 
in the context of intercepting commercial framework at the 
right access points in the flow. Such effort requires joint 
cooperation and involvement of academic and commercial 
interested parties. Commercial parties are often questioning the 
return of investment on such efforts due to significant gap. On 
the other hand, some academics dismiss the importance of 
quality gap as the responsibility of the industry. This is leading 
to a tentative stale-mate and the solution requires contribution 
from both parties. Industry needs to provide easier interface at 
appropriate interception points for their tools. Academics need 
to build hybrid flows that use commercial framework with the 
exception of the portion under investigation.  
Other academic FPGA work in the areas of applications or 
where commercial tools are evolving such as high-level 
synthesis is still relevant if quality of results is properly 
maintained. This may also imply combining them correctly 
with the relevant commercial framework and collaboration 
between industry and academic ecosystem. We also encourage 
academic researchers to use commercial tool flows and 
architectures as a baseline when possible. The evaluation 
framework we used is available online at [17]. It includes the 
VTR benchmarks partly rewritten to enable compilation with 
Vivado and a collection of scripts to derive the statistics used 
in this paper.  
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