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Abstract—During the design of embedded systems, many
design decisions have to be made to trade off between conflicting
objectives such as cost, performance, and power. Approximate
computing allows to optimize each objective, yet for the sake of
accuracy. This means that a functional flaw is allowed to produce
an error as long as this is small enough to maintain a feasible
operation of the system or guarantee a certain accuracy of the re-
sults. In this paper, we propose a new technique for approximate
addition optimized for LUT-Based FPGAs with segmented carry
chains. Our optimized adder structure is able to a) best exploit
artifacts of LUT-Based FPGAs such as unused inputs and b) pro-
vide a smaller average error than previously proposed approxi-
mate adder structures, as well as c) a reduced critical path delay
than dedicated accurate logic in modern FPGAs. We present a
novel stochastic error calculus that is able to take into account
also non-uniform input distributions and present a detailed com-
parison of approximate adder structures proposed in literature
with our novel LUT-Based approximate arithmetic structure.

Keywords-Approximate Adder, Approximate computing;
LUT-Based FPGAs; Low-latency Adders.

INTRODUCTION

The amount of data to process, and computation needed in
modern IT systems, is rapidly increasing day by day. Hardware
technology is improving at a pace just as fast. However, there
is still a gap to efficiently utilize available resources, e.g., for
battery driven embedded systems, as battery technology cannot
keep up with this development. Fortunately, applications are
often tolerant to errors or intrinsically resilient to an imprecise
computation. Multimedia processing, for example, often grants
certain amount of accuracy relaxation, mostly because of human
senses limitations. With approximate computing [3], it is possible
to consciously perform data processing within a bounded
accuracy of the computed results. This allows to trade off
accuracy to reduce power consumption and/or delay of a circuit.

Adders are the basic building blocks in arithmetic circuits.
Therefore approximate adders have been intensively investigated.
However, exploiting reconfigurable logic such as FPGAs in
particular, is still an emerging topic.

In this paper, we propose a methodology for building approx-
imate adders that are tailored to modern LUT-based FPGAs.

Related work

Several approximate arithmetic designs have been proposed
following different approaches. Approximate adders are generally
focused to reduce resources, power consumption and latency.

One of the most common techniques is applied in ETA [6]
which splits the addends in two parts to parallelize the addition
process. To reduce the error distance, the authors propose to
set the least significant bits to ‘1’ when detecting a cut carry
propagation. In [4], an approximate adder aimed to improve
throughput and power consumption is proposed. The approach
named ACA for accuracy-configurable adder, varies the accuracy
of the result at runtime. However, the proposal is similar to
ETA, with the slight, but important difference of introducing
an extra sub-adder to calculate the middle part of the result.
This idea increases the accuracy as it is more probable to

predict an accurate carry for the most significant bits due to
a given degree of visibility from lower bits. Finally, Shafique
et. al. proposed a generic accuracy-configurable adder [7]
which incorporates the overlapping idea from ACA. The major
difference is the capability of integrating any given amount
of sub-adders with variable degrees of visibility. However, their
approach does not include any fixing technique within the same
design, but extra circuitry with an expensive timing overhead.

DESIGN METHODOLOGY

Most approximate adder approaches split the carry chain to
reduce circuit delay or to save resources. Also our methodology
follows this approach, see Fig. 1. Splitting the carry chain
allows to perform the addition with two parallel adders. We
call those adders most and least significant parts (MSP and
LSP, respectively). Without any error correction technique,
this approach introduces an inaccuracy generally of 2m if
m is the carry chain splitting point. However, the circuit
delay is significantly reduced. For example, an n-bit accurate
carry-ripple adder has a critical path of n full adders. By
splitting the carry chain at position m, the critical path (CP) is
now proportional to the amount of full adders in the longest part.

Based on the idea of [10], most approximate adders provide
an all1 error reduction mechanism which sets least significant
bits to ‘1’ when an error occurs in the LSP. Our all1 mechanism
is based on the proposal from [1] which has the idea to set all
output bits of the LSP to ‘1’ when there is a carry out cm−1 at the
splitting point. The maximum error of this approach is 2m−1.

As a new idea to reduce the error distance, we propose the
sharing of input bits from the LSP with the MSP. Note that
if two input bits at any given position i are ‘1’, then it is said
that position i is generating (Gi) a carry ci, if both input bits
are ‘0’, then position i kills (Ki) carry ci−1, and if both input
bits are different they propagate the carry, that is, ci=ci−1.

Obviously, augmenting the amount of ‘shared’ inputs from
1 to any given value p ≤ m will increase the probability
of finding an input pair (ai, bi) generating a carry ci with
i ∈ [m− p,m− 1] that should be propagated to position m,
thus, reducing the error rate. On the one hand, MSP and LSP
can be implemented following any preferred addition technique
depending on specific pursued goals. This obviously includes
different techniques as carry look-ahead adders, for example,
or even dedicated modules as carry logic units in modern
FPGAs. On the other hand, LUTs have typically more than the
3 required inputs to implement a full adder. Our idea of sharing
information between MSP and LSP can be easily applied by
exploiting unused LUT inputs as illustrated in Fig. 1.

Moreover, available but unneeded inputs may be exploited
by synthesis tools also to reduce the overall latency. Our
experimental results give indication that place and route tools
indeed utilize LUTs with only partially used inputs for the
shared p inputs, thus avoiding any resource overhead.

ERROR ANALYSIS

In the following, we are presenting an error analysis for the
proposed approximate addition technique. Many related works
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Fig. 1: Outline of our proposed approximate adder.

assume uniformly distributed inputs for their analysis. This is
acceptable when no complex input statistics, as, e.g., assumed
in [5], are available. However, even when assuming that inputs
of modules are uniformly distributed, their output distribution
which may serve as input of subsequent modules is no longer
uniformly distributed in the general case.

Definition 1 (FAU Adder): The proposed approximate
adder with bit-width n is defined by the splitting point m of
the carry chain and by the degree of visibility p ∈ [0,m−1]
used to predict carry cm.

Definition 2 (Input Distributions): Let ρ1(x) be the
probability for an input bit x to be ‘1’, and ρ0(x)=1−ρ1(x)
the probability for x being ‘0’. The probability for generating
a carry at bit position i is ρ(Gi) = ρ1(ai) · ρ1(bi),
whereas the probability for propagating a carry is
ρ(Pi)=ρ1(ai)·ρ0(bi)+ρ0(ai)·ρ1(bi).

Arithmetic Error Rate (AER)
Let S = (sn, ... , s0) be the tuple of output bits of our

approximate adder technique. The arithmetic error rate
represents the probability of getting an erroneous output S.

Observe that our approximate adder will incur in an error if
input bits at position 0≤ i≤m−p−1 generate a carry and all
input bits at positions i<j≤m−1 propagate the carry (refer
to § II for details).

Now, the probability of generating a carry at position i while
at the same time propagating it to position m can be calculated
according to the expression ρ(Gi)·

∏m−1
j=i+1ρ(Pj).

Thus, the arithmetic error rate can be calculated by
accumulating all probabilities of generating and propagating
from positions i=0,1,...,m−p−1 as shown in Eq. (1):

AER=

m−p−1∑
i=0

ρ(Gi)·
m−1∏
j=i+1

ρ(Pj)

. (1)

While Eq. (1) represents the general case, Eq. (2) presents
the result for uniformly distributed inputs, i.e., ρ1(ai) =
ρ0(ai)=1/2 and ρ1(bi)=ρ0(bi)=1/2 for i=0,1,...,n−1.

AER=

m−p−1∑
i=0

1

4
·
m−1∏
j=i+1

1

2

=
1

2

(
2−p−2−m

)
. (2)

Maximum Error (ME)
Most of the approximate adders with split carry chain found

in the literature propose an all1 mechanism based on ETA
[6]. However, their maximum error is generally 2m−1, due to
the carry ripples towards the LSB, making it impossible to fix
previous bits. Or, their approach has zero visibility in the LSP to
predict carry cm−1 [6]. In other cases, authors have proposed to
share inputs [2], [7]. However, this is only done for neighboring

bits [2], or the approach is forced to have more than one set
of shared p inputs with a high overhead and without any fixing
technique [7]. Thanks to the higher visibility in our design,
and the fixing technique applied, we may greatly reduce the
maximum error. In our proposed adder technique, ME depends
on the amount of ‘visible’ input bits p and the splitting point
m. The error can be calculated according to Eq. (3). Note that
ME does not depend on the addends bit-width n.

ME=2m−p−1. (3)

Mean Error Distance (MED)
We need to consider all the erroneous results to calculate

the average error for arbitrary input distributions as follows:

MED=
∑

δ∈[0,ME]

δ
∑

∀a[m−p−1:0]
+b[m−p−1:0]
=2m−p+δ+1

ρ(a′)·ρ(b′)

Above, a′ and b′ represent a[m − p − 1 : 0] and
b[m−p− 1 : 0], respectively. The first sum iterates over all
possible error distances δ, the second sum iterates over all a
and b leading to that error (see Eq. (5)). This approach has
exponential complexity. However, for uniform distributions,
the mean error distance can be calculated analytically, without
having to evaluate all input combinations, as shown next.
Let ∆δ={(x,y)|∆(a=x,b=y)=δ} represent the set of input
combinations that lead to error distance δ. The mean error
distance may be calculated by accumulating all possible error
distances δ times their total amount of occurrences |∆δ| and
averaging it by the total amount of possible inputs:

MED=
1

22n

2m−p−1∑
δ=1

|∆δ|·δ. (4)

The number |∆δ| of possible input combinations leading to
error distance δ can be calculated as follows. An error occurs
when the m−p least significant bits (LSBs) produce a carry at
cm−p−1 and when all p shared bits are propagating this carry.
In this case, the (m−p) LSBs of the two addends lead to an
error distance of δ when their sum is:

a[m−p−1,0]+b[m−p−1,0]=2m−p+δ−1=ω(δ) (5)

The maximum possible value of such an (m−p)-bit addend is
τ=2m−p−1. With this, the amount of all possible combinations
of (m−p)-bit addends that fulfill Eq. (5) is given by:

PLSB(δ)=2·τ−ω(δ)+1.

Furthermore, the number of combinations for the p shared
bits that propagate carry cm−p−1 is given by:

Pshared =2p.

Finally, an error can be produced for any combination of
the MSP’s input bits. The number of the possible combinations
is given by:

PMSP =22(n−m).

With this, |∆δ| can be calculated as:

|∆δ|=PLSB(δ)·Pshared ·PMSP =22(n−m) ·(2m−δp).

By inserting this result into Eq. (4) and simplifying the
equation, we finally obtain:

MED=
1

3
(2m−2p−1−2−m−1). (6)
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(a) Power consumption [µW ] for n=8.
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(b) Power consumption [µW ] for n=16.
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(c) Power consumption [µW ] for n=32.
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(d) Resources comparison for n=8.
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(e) Resources comparison for n=16.
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(f) Resources comparison for n=32.

Fig. 2: Power consumption comparison for (a) n=8, (b) n=16 and (c) n=32-bit approximate adders with different parameterizations (splitting point m,
number of shared inputs p, q bits per partition size, and r resultant bits). Resources (amount of LUTs and dedicated carry logic) comparison for (d) 8, (e) 16 and
(f) 32-bit approximate adders with different parameterizations.

EXPERIMENTAL COMPARATIVE RESULTS

To demonstrate the advantages of our proposed approximate
addition technique, we are comparing it to state of-the-art
adders with respect to (a) required FPGA resources, (b) power
consumption, as well as the (c) error metrics of AER, ME
and MED (following Eq. (2), (3), and (6)). Subsequently, we
present our findings regarding maximal clock frequency and
power consumption of our technique when compared with d)
fully accurate implementations, i.e., implementations exploiting
DSP blocks with dedicated carry logic as this is known to be
the fastest and most power efficient accurate implementation of
adders on FPGAs. We synthesized all investigated adders using
Xilinx XST and Vivado v2015.1 (64-bit) with default strategies
for the Virtex-7 VC709 evaluation platform (xc7vx690tffg1761-
2) as target device. For power and resources comparisons, we
constrained the implementations to avoid any DSP blocks instan-
tiations, however, we did include dedicated carry logic and LUTs.

Comparisons with state-of-the-art approximate adders
The average power consumption for 8, 16 and 32-bit adders

is shown in Fig. 2a, 2b and 2c respectively. In order to
give representative results, 5000 instances per arithmetic unit
were implemented in one design, synthesized, and the power
consumption of this design was then estimated using XPower of
Xilinx. The results shown in each figure represent the average
power of these 5000 analyzed units. Note that the toggle rate
was left as Xilinx’s default of 12.5%. As can be seen, FAU does
not dominate the other adders regarding power consumption
in all settings. However, it is evident that the difference with
the most power efficient 32-bit design (32-bit GeAr adder
parameterized with r=6 resultant bits and p=4) is negligible
(less than 1µW ). Moreover, considering the error metrics
reported in Table I, our design (32-bit FAU adder parameterized
m=16 and p=3) has a maximum error of ME=8191 and a
mean error distance MED=170.7, this value amounts to only
12.7% and 0.5%, respectively of GeAr’s best implementation.
From this, we can draw our first conclusion: FAU may provide

profoundly more accurate results with a power efficiency as
good as state-of-the-art implementations.

Resource usage is reported in Fig. 2d, 2e and 2f for 8, 16
and 32-bit approximate adders respectively. As can be seen, the
resource usage advantage of FAU versus the other displayed
adders increases as the bit-width n gets larger. Moreover, as can
be seen in Fig. 2e, FAU is already dominating other proposals
regarding LUT usage. Even though the total amount of resources
(LUTs + carry logic units) is higher than some other 32-bit
adders (ETA and ACA II parameterized q=4), it is noteworthy
that FAU is also exploiting resources that many other designs
do not use at all: The used carry logic is placed within those
slices already containing the used LUTs. That means by using
carry logic, FPGA resources can be utilized more efficiently.

The maximum error ME, mean error distance MED
and arithmetic error rate AER are reported in Table I. We
compared our design to four approximate adders from literature
which are available in a open source library gathered in [7]. To
obtain the error statistics, we simulated each unit using Monte
Carlo. As can be seen, our both analyzed variants of FAU have
the smallest average (MED) and maximum error (ME) from
the entire collection. Only some implementations like GeAr [7]
with r=1 and p=6, or GDA St [9] with m=4 and p=6, have
also low error rates. For these examples, they achieve to generate
less than 0.5% of errors for uniformly distributed inputs,
while our model generates one error 3% of the times (FAU,
m= 4 and p= 3). However, if we compare their maximum
and average errors with our approach, we observe that both
ME and MED are 99.3% smaller when compared with GDA,
and 98.5% smaller when compared with GeAr. As our second
experimental conclusion: FAU offers the best balance between
the average error and the error for which this is generated.

Error metrics proof and advantages
In § III, we presented analytical models to calculate the

error metrics of our FAU adder in order to avoid applying any
expensive simulative evaluations like Monte Carlo techniques.



n Name m r p q ME MED AER

8

FAU 4 1 7 0.656 0.219
4 3 1 0.031 0.031

ACA I 5 128 74.667 0.047
ACA II 4 64 40 0.188

GDA St

4 2 64 40 0.188
4 4 64 64 0.023
8 1 168 52.364 0.602
8 2 144 51.533 0.301
8 3 128 60 0.125
8 4 128 74.667 0.047
8 5 128 96 0.016
8 6 128 128 0.004

GeAr

1 1 168 52.364 0.602
1 2 144 51.533 0.301
1 3 128 60 0.125
1 4 128 74.667 0.047
1 5 128 96 0.016
1 6 128 128 0.004
2 2 64 40 0.188
2 4 64 64 0.023

16

FAU 8 1 127 10.667 0.248
8 3 31 0.667 0.061

ACA I 4 34944 5985.1 0.342

ACA II 8 4096 2173 0.059
4 17472 4281.2 0.479

GDA St 4 8 4096 4096 0.002
4 4 4096 2173 0.059

GeAr

6 4 1024 1024 0.031
4 4 4096 2173 0.059
4 8 4096 4096 0.002
2 4 16640 4474.1 0.116

ETA II 8 4096 2173 0.059
4 17472 4281.2 0.479

32

FAU 16 1 32767 2730.667 0.249
16 3 8191 170.667 0.062

ACA I 4 69872 11267 0.364

ACA II 8 65536 23357 0.087
4 69888 15335 0.533

GDA St 4 8 61440 34326 0.004
4 4 65536 23357 0.087

GeAr

6 4 64536 33503 0.060
4 4 65536 23357 0.087
4 8 61440 34326 0.004
2 4 66496 14835 0.137

ETA II 8 65536 23357 0.087
4 69888 15335 0.533

Generic Accuracy Configurable M. Shafique et.al. [7]
Gracefully-Degrading Adder R. Ye et.al. [9]
Almost Correct Adder A. K. Verma et.al. [8]
Error-Tolerant Adder N. Zhu et.al. [10]
Fast Approximate Adder Unit Our approach

TABLE I: Error statistics of n-bit approximate adders with splitting point m, p
shared inputs, q bits per partition size and r resultant bits.

In the following experiments, we evaluate the overhead incurred
by such techniques when no analytical models are available.
Moreover, we simulated our approximate adder technique
with normally distributed inputs and we were able to nicely
corroborate the error metrics from § III. Fig. 3 presents
the number of simulations required until finding a steady
approximation of MED, AER, and ME for 15 continuous
samples within a 10% tolerance. As can be seen, the overhead
grows exponentially with the bit-width of the adder, showing
the importance of providing an analytical error model when
dealing with approximate arithmetic units.

Comparisons with accurate FPGA-based adder designs
The maximum frequency of two variations of FAU is

compared with an adder implemented in DSP blocks (without
pipelining) is shown in Fig. 4 from 16 to 128-bit adders. As
can be seen, the FAU implementations provide a considerably
higher maximal frequency than DSP blocks with dedicated carry
logic – with only a small accuracy trade-off acc. to Table I. One
important observation is that DSP blocks have a bit-width limit
which leads to the use of carry propagation when the length of
the carry chain exceeds this limit. This limit in Xilinx’s 7 series
gets evident in Fig. 4, where a drastic drop in maximal frequency
may be observed for bit sizes greater than n=32 bits.
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CONCLUSIONS

In this paper, we proposed a new approximate adder
technique called FAU including several design optimizations for
a LUT-Based FPGA implementation with a) an improved critical
path and b) substantially less error margins than related work
on approximate adders. We first elaborated these benefits math-
ematically in closed form, and then experimentally verified the
results against accurate and existing approximate adder designs.
We were able to outperform state-of-the-art approximate adders
by a) approximating the carry bit and b) sharing information
between least and most significant parts in approximate adders
by using unused LUT inputs in order to reduce the likelihood of
errors while improving latency. Compared to existing work, our
proposed approximate adder shows a considerable improvement
regarding accuracy. Also, great improvements were achieved
regarding critical path delay when compared with accurate
adders built from DSP blocks inside the FPGA.
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