
FPGA-based ORB Feature Extraction for Real-Time
Visual SLAM

Weikang Fang∗†, Yanjun Zhang∗, Bo Yu†, Shaoshan Liu†,
∗ Institute of Application Specific Instruction Set Processor,

School of Electronics and Information, Beijing Institute of Technology, Beijing, 100081, China
† PerceptIn, Shenzhen, 518046, China

Abstract—Simultaneous Localization And Mapping (SLAM) is
the problem of constructing or updating a map of an unknown
environment while simultaneously keeping track of an agent’s
location within it. How to enable SLAM robustly and durably
on mobile, or even IoT grade devices, is the main challenge
faced by the industry today. The main problems we need
to address are: 1.) how to accelerate the SLAM pipeline to
meet real-time requirements; and 2.) how to reduce SLAM
energy consumption to extend battery life. After delving into
the problem, we found out that feature extraction is indeed the
bottleneck of performance and energy consumption. Hence, in
this paper, we design, implement, and evaluate a hardware ORB
feature extractor and prove that our design is a great balance
between performance and energy consumption compared with
ARM Krait and Intel Core i5.

Index Terms—ORB, feature extraction, SLAM, FPGA

I. INTRODUCTION

Simultaneous Localization And Mapping (SLAM) [7]-[9]
is the core enabling technology behind applications such
as autonomous vehicles, robotics, virtual reality (VR), and
augmented reality (AR). In detail, SLAM is the problem of
constructing or updating a map of an unknown environment
while simultaneously keeping track of an agent’s location
within it. Fig. 1 shows a simplified version of our production-
level Visual Inertial SLAM system which utilizes design
concepts from MSCKF [1] and ORB-SLAM [2].

We implemented this SLAM technology on a quad-core
ARM v8 mobile SoC. Based on our profiling results, the fea-
ture extraction stage is indeed the most computation-intensive,
consuming >50% of the CPU resources. Even with such heavy
computation resource consumption, it still takes about 50 ms
to extract features from a VGA-resolution (640× 480) image,
leading to a frame rate only at about 20 FPS.

Feature Extraction Update

 Propagation

position

IMU

camera

Mapping

Fig. 1: Overview of a visual inertial SLAM system.

Input image
Size:640x480

Resize image

Extend image
(make border)

Extend image
(make border)

Feature
 detector

Feature
 detector

feature
points?

 feature
 points?

Compute
orientation

Compute
orientation

YES YES

Compute
descriptor

Gaussian blur

Compute
descriptor

Gaussian blur

Scale recover

Output data

Level 1 Level 2

oFAST

Steered BRIEF

Fig. 2: ORB based feature extraction algorithm.

Therefore, in this paper, we aim to address these practical
problems down to the hardware level, by implementing a
hardware accelerator of ORB feature extractor. ORB is widely
used in robotics and it is proven to provide a fast and
efficient alternative to SIFT [3]. In addition, we examine its
performance, resource occupation, and energy consumption of
the design in order to achieve further improvements.

The rest of this paper is organized as follows. In Section
II, we review the background information of ORB algorithm.
In Section III we describe the architecture of the proposed
hardware feature extractor. In Section IV, we share the exper-
imental methodologies and results. Finally, we summarize our
conclusions in Section V.

II. ORB FEATURE EXTRACTION ALGORITHM FOR VISUAL
SLAM

The overview of ORB based feature extraction algorithm is
shown in Fig. 2. It consists of two parts, oFAST (Oriented
Feature from Accelerated Segment Test) [5] based feature

978-1-5090-4825-0/17/$31.00 c©2017 IEEE

ar
X

iv
:1

71
0.

07
31

2v
1

 [
cs

.R
O

]
 1

8
O

ct
 2

01
7

Shared
Memory

L2 Cache

Camera
connection

kit

Off-Chip
SDRAM

Memory CotrollerDMA

DMA/Bus Interface

Feature
Extractor

Output
Buffer

Control

Input
Buffer

AXI BUS

Feature Extraction
Accelerator

ARM Multi-core Processor

Instruction
Memory

Image
resizing
 module

RAM1
Feature

detection
module

Orientation
computing

module

Gaussian
filter

Line buffer(LB1)

Register
bank(RB1)

RAM2

Register
bank(RB2)

Register
bank(RB3)

Descriptor
computing

module
RAM3

Input image
(640x480)

(x,y)

Sin and
cos

Output: 32x8bits
descriptor for each

feature point

Line buffer(LB2)Line buffer(LB3)

Fig. 3: Hardware architecture of real-time SLAM system (right) and hardware architecture of ORB feature extraction accelerator (left).

detection and BRIEF (Binary Robust Independent Elementary
Features) based feature descriptors computation [6].

A. Oriented Feature from Accelerated Segment Test (oFAST)
In general, given an image, oFAST helps find out feature

points and then calculates orientations of feature points to
ensure rotation invariant. Details of oFAST are shown in Fig.
2. First, resize the original image using bilinear interpolation
[4]. Second, compute feature points of both original image
and resized image. Third, determine the orientation of feature
points. The orientation of feature points are computed as
follows.

Define the patch of a feature point be the circle centered at
the feature point. The moments of the patch, mpq , are defined
as,

mpq =
∑
x,y∈r

xpyqI(x, y) p, q = 0 or 1 (1)

where I(x, y) is the intensity value of the point (x, y) in the
patch and r is the radius of the circle. The orientation of the
feature point, θ, is obtained by, θ = arctan(m01

m10
). sin θ and

cos θ is calculated as follows.

sin θ =
m01√

m2
10 +m2

01

cos θ =
m10√

m2
10 +m2

01

(2)

B. Steered Binary Robust Independent Elementary Features
(steered BRIEF)

In general, a feature point is represented by a set of
descriptor. In ORB algorithm, steered BRIEF algorithm is
employed to compute descriptors of feature points. The details
of steered BRIEF algorithm is described as follows.

Firstly, consider the circular patch defined in oFAST. Select
M pairs of points in the patch according to Gaussian distri-
bution. Secondly, in order to ensure rotation invariant, rotate
these pairs of points by the angle determined by equation 2.
Thus, after rotation, M pairs of points could be labeled as
D1(IA1 , IB1),D2(IA2 , IB2),D3(IA3 , IB3) ... DM (IAM

, IBM
),

where Ai and Bi are the two points of a pair, IAi
and IBi

are
intensity values of the point. Thirdly, an operator is defined as
follows,

T (Di(IAi
, IBi

)) =

{
1 ifIAi

≥ IBi

0 ifIAi
< IBi

, (3)

For each pair of points, the operator, T , produces one bit of
result. With M pairs of points, the operator, T , produces a
bit vector with the length of M . For example, T produces the
following results, T (D1(IA1

, IB1
)) = 1, T (D2(IA2

, IB2
)) =

1, T (D3(IA3
, IB3

)) = 0 ... T (DM (IAM
, IBM

)) = 1, then the
descriptor of the feature point P is 110...1. The bit vector is
descriptor of the feature points.

III. HARDWARE ARCHITECTURE

A. Overall Architecture of FPGA-based Real-Time SLAM

Fig. 3 (right) illustrates the proposed FPGA-based architec-
ture of real-time SLAM system. ARM Multi-core processors
are used to perform control logic and other computations in
SLAM. AXI bus is employed to connected memory systems,
ORB accelerator and ARM processors.

The feature extraction accelerator consists of a data access-
ing part and a kernel part. The kernel part is composed of
Instruction Memory, Control unit and Feature Extractor. The
data accessing part is composed of Input Buffer, Output Buffer
and DMA/Bus Interface. The DMA/Bus Interface directly
accesses data stream captured by the camera via AXI Bus
and store data in the Input Buffer for the Feature Extractor.
The results of the Feature Extractor are stored in the Output
Buffer and are finally sent to L2 cache. The ARM multi-core
System would use these features for further processing.

B. Hardware Architecture of ORB Feature Extractor

Hardware architecture of ORB feature extractor is depicted
in Fig. 3 (left). The architecture consists of the image resizing
module, the feature detection module, the orientation comput-
ing module, and the descriptor computing module. Line buffers
and registers are used to store intermediate results.

The resizing module implements bilinear interpolation and
builds a 2-level image pyramid. The size of an input image is
640×480 and the size of a scaled image is 533×400. RAM1
stores the image of each level.

The LB1 (line buffer 1) stores 31 lines of pixels. RB1
(register bank 1) stores 31 × 31 pixels of neighborhood that
contains a circular patch for each point. The feature detection
module detects the feature point and computes the moments
of a patch, i.e. m10 and m01. The coordinates (x, y) of the
feature points are stored in RAM3.

Descriptor
computing

 unit 32x8bits
descriptor

Output
pixel

Line buffer 1

Line buffer 2

Line buffer 3

Line buffer 4

Line buffer 30

Line buffer 31

Line buffer 28

Line buffer 29

Input
pixel

31x31 register bank

t

Line buffer 1

Line buffer 2

Line buffer 3

Line buffer 4

Line buffer 30

Line buffer 31

Line buffer 28

Line buffer 29

Input
pixel

31x
Descriptor
computing

 unit
31 register bank

x,y

controller
x_2,y_2

.
.

Line buffer 1

Line buffer 2

Line buffer 3

Line buffer 4

Line buffer 5

Line buffer 6

Line buffer 7

Gaussian
filter

7x7 register bank

Input
pixel

Control
Signal

Control
Signal

Stage1

Stage2

module

Fig. 4: Hardware architecture of the synchronized two-stages line shifting buffers

The orientation computing module computes sin θ and cos θ
according to equation 2. sin θ and cos θ are stored in RAM2.
A 7 × 7 hardware Gaussian filter is used to smooth images.
LB2 and RB2 buffers 7 lines of pixels and a 7 × 7 patch of
pixels for the Gaussian filter respectively. LB3 and RB3 are
used to store results of Gaussian filter. Since the Descriptor
computing module calculates descriptors in a 31×31 patch of
pixels, LB3 stores 31 lines of pixels and RB3 buffers 31× 31
bytes.

The descriptor computing module takes smoothed images,
orientations and coordinates of feature points in the image
as inputs and calculates descriptors of feature points. Since
the descriptor computing module depends on the results of
the Gaussian filter, a straightforward implementation is to
buffer the whole image before starting to compute descriptors.
However, this straightforward design that needs to store the
whole image requires substantial on-chip memory resources.
Furthermore, starting to compute descriptors after Gaussian
filtering on the whole image will stall the stream processing
of the feature detection and orientation computation, which
will increase the latency of the system.

The synchronized two-stages shifting line buffers, as shown
in Fig. 4, is proposed to compute Gaussian filtering and
descriptors in a streaming way. The first stage and the second
stage of line buffers store pixels for the Gaussian filter and the
descriptor computing module respectively. Line buffers in each
stage are organized as a shifter. The control unit synchronizes
the data movement in the line buffers. If no feature point is
detected, the two-stages line buffers shifts data in the buffers.
If a feature point is detected, the control unit stops shifting the
two-stages line buffers and starts to compute the descriptor for
the feature point. By utilizing the proposed synchronized two-
stages line buffers, 575K bytes of on-chip memory are saved.

IV. EVALUATION RESULTS AND DISCUSSION

A. Word length optimization
According to equation 2, the orientation of a feature point is

determined by the moments of a circular patch. In our design,
the radius of a patch is 15. The range of the value of m10

and m01 is from −624750 to 624750. 21 bits are needed to
represent m10 and m01. The orientation computing module
requires even more bits to keep precision, which will consume
substantial hardware resources.

Word length optimization is used to reduce hardware con-
sumption. By computing m10 and m01 of all possible circular
patches, we find that many significant bits in m10 and m01 are
zeros in most cases. Besides, the influence of low bits in the
calculation is quite small. Therefore, the proposed operation
to shorten the word length is described as follow.

First, starting from the highest data bit without considering
sign bit, find the overlapping 0s of m10 and m01 then remove
them. Second, in the remaining data bits, take the higher N
bits. If remaining part is less than N bits, fill it with zeros.
Finally, splice the sign bit and obtained N bits together. In
this way, the word length would be shorten to N+1 bits.

Truncating the word length introduces truncation errors in
computing rotation angles and further affects the coordinates
of points after rotating. For a particular point (x, y), the
coordinates after rotating is (x′, y′) that is determined by,

x′ = x · cos θ + y · sin θ,
y′ = y · cos θ − x · sin θ.

(4)

We define the following metric to quantitatively evaluate the
error introduced by word length truncation,

Error =
√
(x′ − x′N)2 + (y′ − y′N)2 (5)

where (x′, y′) is the coordinate calculated with original word
length while (x′N , y

′
N) is calculated with the word length of

N .

Pixels in a patch have various sensitivity to word length
truncations. When rotating two different points in a patch by
an identical angle, the point that is further from the original
point will move further. Hence, the points that is further from
the original point will be more likely to be in a wrong location.
The maximum errors would occur at points (±15,±15) which
are the farthest points from the original point in a patch.

Fig. 5 illustrates the relationship between the word length
and the maximum and mean errors. The results shows that
the maximum error increases exponentially as the word length
decreases. Considering both the precision and hardware con-
sumption, the word length of the orientation computing unit
is 8 bits in our design.

Table I compares the hardware consumption of the orienta-
tion computing module with 21 bits and 8 bits word length.
The results show that the numbers of registers and LUTs
are significantly reduced by 65% and 83% after word length
optimization.

Fig. 5: The relationship between word length and the maximum Error and mean Error.

B. Hardware evaluation

The proposed ORB feature extractor is implemented and
evaluated on an Altera Stratix V FPGA. The proposed hard-
ware consumes 25648 ALUTs, 21791 registers, 1.18M bytes
of BRAMs and 8 DSP Blocks. The clock frequency of the
proposed hardware is 203MHz. The latency of the hardware
for processing an image is 14.8ms, and the througput of the
hardware is 67 frames per second.

We compared the proposed hardware with multi-core ARM
processors and Intel CPU. Table II shows the performance
comparision between the proposed hardware and ORB imple-
mentations on ARM Krait and Intel Core i5 CPU. Compared
with ARM Krait, the latency and energy consumption is

TABLE I: Hardware comsumption of the Orientation computing unit

Word length Word length Reduction
= 21 bits = 8 bits 8 bits/21 bits

Number of ALUT 2416 848 65%
Number of Register 3114 576 82%

Number of DSP 3 3 0%

TABLE II: Hardeware performance comparision

Clock Freq. Latency Throughput Engergy
(GHz) (ms) (FPS) (mJ/frame)

Proposed design 0.203 14.8 67 68
ARM Krait 2.26 30 33 75

Intel Core i5 2.9 25 40 400
Improvement – 51% 103% 9%vs ARM
Improvement – 41% 68% 83%vs Intel

reduced by 51% and 9%, and throughput is improved by
103%. Compared with Intel i5 CPU, the latency and energy
consumption is reduced by 41% and 83%, and throughput is
improved by 68%.

V. CONCLUSION

Feature extraction is the most computation-intensive part
in a visual inertial SLAM system. In our production-level
system, we utilize ORB as our feature extractor as ORB is
widely used in robotics and it is proven to provide a fast and
efficient alternative to SIFT. Based on our profiling results,
ORB feature extraction takes over 50% of the CPU resources
as well as energy budget. In this paper, we aimed to solve this
problem and we have designed, implemented, and evaluated a
hardware ORB feature extractor. Our design runs only at about
203 MHz to reduce energy consumption. In the computation
latency category, it outperforms ARM Krait by 51% and Intel
Core i5 by 41%; in the computation throughput category, it
outperforms ARM Krait by 103%, and Intel Core i5 by 68%;
and most importantly, in the energy consumption category, it
outperforms ARM Krait by 10% and Intel Core i5 by 83%.
Thus this design is proven to be a great balance between
performance and energy consumption.

REFERENCES

[1] A. Mourikis and S. Roumeliotis, “A multi-state constraint Kalman filter
for vision-aided inertial navigation”, IEEE international conference on
Robotics and automation, 2007.

[2] R. Mur-Artal, J. Montiel and J. Tardos, “ORB-SLAM: a versatile and
accurate monocular SLAM system”, IEEE Transactions on Robotics,
31(5), pp.1147-1163, 2015.

[3] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, “ORB: An effi-
cient alternative to SIFT or SURF”, IEEE international conference on
Computer Vision (ICCV), 2011.

[4] S. Se, D. Lowe and J. Little, “Mobile Robot Localization and Mapping
with Uncertainty using Scale-Invariant Visual Landmarks”, International
Journal of Robotics Research 21.8(2002):735-760.

[5] Y. Biadgie amd K. Sohn, “Feature Detector Using Adaptive Accelerated
Segment Test”, International Conference on Information Science and
Applications (ICISA), 2014.

[6] M. Calonder, V. Lepetit, C. Strecha and P. Fua, “BRIEF: Binary Robust
Independent Elementary Features”, European Conference on Computer
Vision Springer-Verlag, 778-792, 2010.

[7] A. Davison, I. Reid, N. Molton and O. Stasse, “MonoSLAM: Real-
Time Single Camera SLAM”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Volume, 29, Issue, 6, June 2007.

[8] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and map-
ping (SLAM): part I”, IEEE Robotics and Automation Magazine,
Volume, 13, Issue: 2, 2006.

[9] M. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte and M.
Csorba, ”A solution to the simultaneous localization and map building
(SLAM) problem”, IEEE Transactions on Robotics and Automation,
Volume, 17, Issue, 3, Jun. 2001.

	I Introduction
	II ORB Feature Extraction Algorithm for Visual SLAM
	II-A Oriented Feature from Accelerated Segment Test (oFAST)
	II-B Steered Binary Robust Independent Elementary Features (steered BRIEF)

	III Hardware Architecture
	III-A Overall Architecture of FPGA-based Real-Time SLAM
	III-B Hardware Architecture of ORB Feature Extractor

	IV Evaluation Results and Discussion
	IV-A Word length optimization
	IV-B Hardware evaluation

	V Conclusion
	References

