
The University of Manchester Research

Live Migration for OpenCL FPGA Accelerators

DOI:
10.1109/FPT.2018.00017

Document Version
Final published version

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Vaishnav, A., Pham, K., & Koch, D. (2019). Live Migration for OpenCL FPGA Accelerators. In International
Conference on Field-Programmable Technology (FPT) IEEE. https://doi.org/10.1109/FPT.2018.00017

Published in:
International Conference on Field-Programmable Technology (FPT)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:19. Apr. 2024

https://doi.org/10.1109/FPT.2018.00017
https://research.manchester.ac.uk/en/publications/8d1e631b-d949-4596-872d-fe09c93053ce
https://doi.org/10.1109/FPT.2018.00017

Live Migration for OpenCL FPGA Accelerators

Anuj Vaishnav, Khoa Dang Pham and Dirk Koch
School of Computer Science, The University of Manchester, Manchester, UK

Email: {anuj.vaishnav, khoa.pham, dirk.koch}@manchester.ac.uk

Abstract—FPGAs are currently being deployed at a large scale
across data-centres for various applications because of their
performance and power benefits. In particular, cloud service
operators are now offering FPGAs as a Service. However, to
completely integrate FPGAs in a data-centre environment like
standard software systems, support for fault tolerance and task
migration is essential. In this paper, we propose a live migration
technique for FPGA accelerators to provide support for fault
tolerance, system maintenance, and resource management. Our
technique allows migration of OpenCL accelerators not only
within a single FPGA but also across FPGAs with zero downtime.
It achieves this by overlapping the computation with data-
movements transparently from the user for OpenCL kernels.
Moreover, distributed check-pointing mechanisms can be em-
ployed to recover from unknown faults with minimal loss of
completed work. Altogether it enables system updates such as
changing the static FPGA configuration or upgrading the OS
without an interruption of service.

I. INTRODUCTION

Reconfigurable computing is one of the approaches for

achieving high-performance computing and energy efficiency

in the post-Moore era. In particular, at present, many data-

centres deploy FPGAs either in the infrastructure or directly

offer an FPGA as a Service model to their customers [1]. With

this large-scale deployment of FPGAs in distributed systems,

it has become important to provide solutions for fault tolerance

and high availability of these acceleration services.

In particular, migration is essential in modern data-centres

for three main use cases:

• Fault tolerance: In case of a fault, an application needs

to be migrated to another node where it can resume

execution from the last known consistent state (using

check-pointing).

• Maintenance: Consider a scenario where a node needs a

hardware/software upgrade but is currently executing an

application. With the help of migration, the application

can be temporarily moved to a remote node while the

upgrade is performed transparently.

• Resource management: Migration permits dynamic load-

balancing to redistribute work as the workload changes.

Standard software systems employ live virtual machine

migration with distributed check-pointing mechanisms to meet

these requirements [2]. Conceptually, for FPGAs this would

translate into migrating a hardware task from one FPGA

to another with a potentially different number of resources

available, using partial reconfiguration and state transfer over

the network (as shown in Figure 1). However, for FPGAs,

these techniques known from the software systems cannot be

applied directly as the application running on FPGAs represent

Fig. 1: Migration of FPGA accelerators.

hardware circuits rather than a sequence of instructions. A

fully transparent preemptive context switch for FPGAs would

require storing and restoring the entire state that is stored in

registers, block RAMs and DSP registers [3]–[5]. A large

body of research has been carried out for achieving this

efficiently [6], however, it still remains one of the expensive

operations to perform with many restrictions on how the

accelerator hardware is designed (see also Section V-A).

In this paper, we propose taking a more coarse approach by

saving and restoring states of accelerators only at particular

points in execution time. These points can be referred to as

‘consistency points’ where little/no internal state propagation

is required for the next execution step in the application,

implying little/no internal state of the hardware accelerator has

to be stored and restored during a context-switch. Often these

consistency points occur naturally in data parallel applications

for which FPGAs are usually employed. For example, when

classifying images using Convolutional Neural Networks, such

a point can be at the end of single image classification.

This paper targets OpenCL-specified accelerators as they

represent the industry standard for FPGA acceleration using

High-Level Synthesis (HLS) and heterogeneous computing in

general. An OpenCL application consists of ‘work-groups’

i.e. a group of lightweight threads (known as work-items).

Inside a work-group, work-items can perform synchronization

via barriers and atomic operations. However, execution of

different work-groups is independent by design in the OpenCL

standard [7] to allow parallel execution for high performance.

This serves as a natural consistency point for our purposes. We

explore two methods which leverage this trait: 1) a blocking

method which can migrate the accelerator at the end of a work-

group execution, and 2) a non-blocking method which starts

41

2018 International Conference on Field-Programmable Technology (FPT)

978-1-7281-0214-6/18/$31.00 ©2018 IEEE
DOI 10.1109/FPT.2018.00017

execution of a new work-group on another node before the

old node finishes its work-group execution. The latter allows

the data movements to be completely overlapped with the

computation resulting in zero downtime of the accelerator

service.

One major attribute of our approach is that no modifica-

tion or special care needs to be taken when designing the

accelerator for state storage, which allows us to minimize

the context-switching penalty to mostly the time required

for partial reconfiguration (which could be masked in non-

blocking operation).

Furthermore, our proposed methods are not limited only to

FPGAs; the same mechanisms can also be extended to all other

devices supporting OpenCL i.e. CPUs, GPUs, and ASICs.

Workloads could potentially be migrated across these devices

in a transparent manner e.g. from a local FPGA accelerator to

a remote GPU/CPU.

To the best of our knowledge, this paper is the first to pro-

pose live migration mechanism for FPGAs that use OpenCL

accelerator modules.

In this paper, our contributions are as follows:

• Migration of OpenCL hardware accelerators with low

overhead (Section III).

• Live migration with resource elastic virtualization for

zero downtime and load-balancing (Sections III-B, IV).

• Evaluation of the migration techniques with the Spec-

tor benchmark suite [8] under different scenarios (Sec-

tion IV).

II. BACKGROUND

A. OpenCL Execution Model

An OpenCL application has two components: a host pro-
gram and kernels. A host program manages memory objects

and issues execution commands while executing on a host

machine, whereas kernels are compute-heavy functions which

are executed on an accelerator’s compute unit. When a kernel

execution command is issued by the host program, an abstract

index space known as NDRange is generated. A kernel is

executed once for every point in this NDRange index, which is

known as a work-item. Work-items are then grouped together

for execution on a computing unit, this group of work-items

is called a work-group. It provides a coarse decomposition

of NDRange and allows work-items to share and synchronize

data using barriers on local memory. However, there is no

execution order defined between work-groups by the OpenCL

standard which allows them to be executed concurrently on

different computing units for high performance [7]. At the

end of the work-group execution, the result is written back to

the global memory without any synchronization for FPGAs.

B. Resource Elastic Virtualization

As in the software case, where a task may take a different

share of available CPU time, in the FPGA case the resources

available on the FPGA (the available area) may differ due

to task migration (see Task A in Figure 1). Therefore it is

beneficial to have a system which is resource elastic.

Fig. 2: Execution trace of accelerator where a) represents no migration case,
b) represents the blocking migration case and c) represents the non-blocking
migration case.

Hardware resource elasticity is the ability of an accelerator

to change its resource footprint dynamically at run-time,

transparently from its user task [9]. An accelerator may change

its size by replication or switching to an implementation

alternative. This allows scheduling of accelerators in the time

domain as well as the spatial domain to maximize the utiliza-

tion and system performance. The orchestration of growing

and shrinking modules in a user transparent manner is called

Resource Elastic Virtualization (REV) [9].
A REV system can dynamically adapt the local allocation

of resources, allowing the existing software load-balancing

schemes for data-centres to be applied for FPGAs as well.

III. TRANSPARENT MIGRATION

A. Techniques
To be able to migrate an OpenCL accelerator, we first need

to be able to perform a context switch such that execution of a

kernel can be paused and resumed later. There are various tech-

niques which have been employed for hardware preemption

[3]–[5], however, these either require time-consuming config-

uration read-back (saving the content of all the registers and

block RAMs in the design) or adding extra logic for retrieving

the state of the hardware module (e.g. scan-chains [10]).
Thus, in this paper, we consider an alternative approach

of only performing a context switch when the application

reaches a consistency point whereby a hardware module

holds no internal state required for execution correctness. In

particular, for OpenCL, these points occur naturally as no

synchronization between work-groups and memory write-back

to global memory takes place at the end of a work-group

execution. This allows an accelerator to be relinquished at

the end of work-group if required without the heavy penalty

of configuration read-back. Note, since the length of a work-

group execution and the number of work-groups is application

dependent and commonly bounded, it provides means for a

co-operative scheduling scheme.

42

Given an OpenCL kernel, we can perform the migration

by pausing the kernel on a source node and transferring the

necessary state and data information to a target node and

then resuming the execution again on the target node (as

shown in Figure 2b). We call this process ‘blocking migration’,

whereby the computation stops while the state information is

being transferred between the nodes. Similar techniques are

employed for GPUs [11], where a kernel is broken down

into sub-kernels (a group of work-groups) and executed one

after the other, allowing the application execution to be paused

and resumed at the end of sub-kernel execution for migration

purposes. However, the blocking nature of the process repre-

sents the major limitation, as the overhead becomes directly

proportional to the amount of data transfer required for the

application.

As a faster alternative, we propose a non-blocking approach

which relies on the data-parallel nature of the OpenCL execu-

tion model to overcome this limitation. Given the assumption

that input data is not being overwritten during the execution

process, input data could be transferred while the execution

takes place on the source node along with necessary control

information and bitstream of the accelerator to the target node.

Further, as the execution order of different work-groups are

undefined, the target node can start execution of the next work-

group before the source node completes its own work-group

execution. In detail the algorithm works as follows (see also

the corresponding execution trace shown in Figure 2c):

1) Transfer the accelerator bitstream and the input data while

continuing execution on the source FPGA.

2) After initialization of the accelerator on the target FPGA,

stop issuing new work-groups to the source FPGA accel-

erator.

3) Start issuing new work-groups to the target FPGA accel-

erator.

4) After finishing all outstanding work-group executions on

the source FPGA, transfer the output data to the target

FPGA.

5) Continue execution of the remaining work-groups on the

target FPGA and perform data merging on the output data

in the background.

The above scheme leads to no-break execution from the

user’s perspective as, at any point in time, computation is

taking place in the system. Moreover, the technique can be

modified to support rollback in case of an unexpected fault or

emergency migration, by re-executing the work-group on the

target FPGA to reduce the total time needed to perform the

migration, at the cost of an overhead for total kernel execution

time. This allows masking of node failures in a large system.

To mask node failures, input data and configuration data has

to be stored redundantly in the system and node or task

monitoring is needed (e.g. heart-beat monitoring messages).

B. Virtualization Architecture

Our virtualization architecture is based on a master and

slave approach which is similar to Apache Hadoop YARN [12]

(one of the industry standard cluster management systems), as

Fig. 3: Virtualization architecture to abstract number of nodes in the system.

Fig. 4: Software architecture required for REV and live migration.

shown in Figure 3. Here each node has a copy of both master

and slave run-time such that the master can be selected based

on a standard election algorithm in case of a fault occurrence.

The slave run-time system (as shown in Figure 4) employs

Resource Elastic Virtualization (REV) such that the number of

instances or module implementations can be changed dynami-

cally based on the workload [9]. This allows our system to test

one of the prime use cases of migration i.e. migrating a kernel

from an overloaded FPGA to a free FPGA for load-balancing.

Further, the slave run-time provides heart-beat signals and

checkpoint information to a master node on a regular basis

to detect and mitigate unexpected crashes. The master run-

time is responsible for host code execution and can be used

to distribute workload across multiple FPGAs.

The data payload between slave nodes is transferred using

Transmission Control Protocol (TCP) to ensure reliability and

error checking of the data during transit. The transferred data is

then picked up by the slave run-time running on the target node

and is used to set up buffers, control state and the programming

of OpenCL kernels via partial reconfiguration and a generic

OpenCL driver.

Merging of the output data requires identification of the

memory locations in buffers written by the source and target

nodes respectively. In case of mapping the output data from

a source buffer to a target buffer, only the memory locations

written by the source must be updated into the target buffer.

This can be performed by tracking the memory location with

write flags and updating only the memory location in the

target buffer where it is set in the corresponding source buffer.

However, in most cases, this can be easily determined based on

43

Fig. 5: Design flow for relocatable accelerator generation from OpenCL
kernels.

the work-item ID as it tends to correspond one-to-one or one-

to-N with the index in the output buffer. It allows the tracking

to be completely eliminated if the information of how many

output values are generated per work-item is available. This

can either be provided by the user as an additional argument

in the execution API call (extension of OpenCL API) or

by a compiler as meta-data. In this paper, we take the API

extension approach to minimize the data merging time as the

current OpenCL compilers for FPGAs do not provide such

information. Note, this does not require extra effort from the

developer to identify this information as it is a part of the

algorithmic design (i.e. how much work each thread needs to

perform).

C. Accelerator Generation

Studying the example from Figure 1 again, we can see

that migration may require relocating a module to different

positions in the system or even using different sized modules

while always being able to integrate and communicate with

these modules. To generate relocatable accelerators for mi-

gration within an FPGA fabric, we use the design flow shown

in Figure 5. It takes the user-level OpenCL code as an input

and translates it into partial bitstreams without further user

intervention. The resulting design satisfies the following key

properties to support module relocatability:

1) Identical top-level communication interfaces must be

used in terms of bus protocols and the number and

position of interfaces signal wires generated by Vivado

HLS for OpenCL accelerators.

2) All physical resources of an accelerator must stay in a

pre-defined bounding box, including routing wires. No

wiring violation to surrounding regions is allowed.

The above conditions are guaranteed by utilizing a custom

Partial Reconfiguration (PR) methodology [13] instead of

DCT – 4 slots

DCT – 2 slots

Spmv – 1 slot

FIR filter – 1
slot

Normal est. – 1
slot

Sobel filter –
2 slots

Mmult – 1
slot

Histogram –
1 slot BFS – 1 slot

(a)

XCZU9EG-
FFVC1156

Static part

1

2

3

4 AXI bus
macro

Reconfigurable part

(b)

Fig. 6: The physical implementation of the system on Zynq UltraScale+
(ZCU102) where a) shows the accelerators from Spector Benchmark [8] and
b) shows the static system with neighbouring partial regions (slots) based on
the ZUCL framework [13].

following the default Xilinx PR flow [14]. In this custom

PR flow, required place-and-route constraints are transformed

to TCL scripts with automatic assistance from the GoAhead

tool [15]. These TCL scripts are then applied to Vivado for

the accelerator’s physical implementation.

In order to use the same accelerator bitstream at different

positions on the chip, the bitstream manipulation tool and API,

BitMan [16] is used to generate partial bitstreams at design

time and to relocate accelerators at run-time. Figure 6 displays

our static systems and 8 implemented relocatable accelerators

from the Spector benchmark suite [8]: Sobel filter, Sparse

Matrix-Vector Multiplication (SPMV), 3D-distance Normal

Estimation, Finite Impulse Response (FIR) filter, Histogram,

Matrix Multiplication, Breadth First Search (BFS) and Dis-

crete Cosine Transform (DCT).

Note, our approach can also potentially be used with other

platforms such as PCIeHLS [17].

IV. EXPERIMENTAL EVALUATION

To evaluate the different mechanisms and scenarios for

live migration, we use OpenCL kernels from the Spector

Benchmark suite [8] representing applications from signal

44

TABLE I: Spector benchmark suite implementation and its resource usage.

Applications Slots
3D Normal Estimation of Point Cloud 1
Sparse Matrix-Vector Multiplication 1
Sobel Filter 2
Time-domain FIR 1
Discrete Cosine Transform 2, 4
Histogram’s main kernel 1
Matrix Multiplication 1

Breadth First Search1 1

TABLE II: Resources available per slot i.e. partial region.

Resource Type Quantity
CLB LUTs 32640
BRAM Tiles 108
DSPs 336

processing, machine learning, computer vision and statistics.

This diversity of applications is important to capture the

various different compute to data ratios required, as migration

overhead is assumed to be highly sensitive to it. Further,

Spector is denoted with various optimization parameters for

testing design space exploration tools which, in our case,

are used to generate different implementation alternatives for

employing resource elastic scheduling as part of our load-

balancing mechanism. Note, Spector was originally written for

Altera OpenCL platforms, hence we ported 8 of 9 application

benchmarks (as shown in Table I) to Xilinx platforms, the only

difference being that the SIMD optimization pragma is not

employed as it is unavailable for Vivado HLS. The remaining

application benchmark (merge sort) is not considered as it can

potentially change input data, which violates our constant input

data assumption and tends to generate incorrect results (at run-

time) when synthesized with Vivado HLS 2016.2. It can be re-

written such that our requirements are met and a correct result

is produced, however, this would require changing the bench-

mark implementation considerably. All the experiments con-

sidered here perform migration halfway through the applica-

tion execution for a fair comparison. The effective data transfer

speed between the local and remote node is about 238 Mbps

over the Gigabit Ethernet connection when performing TCP

and therefore contributing to the main bottleneck during data

transfer phase. The source and target FPGA platforms are

Zynq UltraScale+ (ZCU102 development boards) consisting

of 4 slots (partial regions) on an XCZU9EG-FFVC1156-1-I

device (see Figure 6b). Each region provides the same resource

footprint, allowing relocatable modules to be employed as

shown in Figure 6b. The reconfigurable resources available per

slot are listed in Table II. The relocatable modules for these

regions are generated using the flow described in Section III-C.

A. Maintenance & Load-Balancing Scenario

Migration for maintenance can be coupled with load-

balancing algorithms, to re-distribute workload across the

other nodes while the system is upgraded/recovered. Hence

in this section, we evaluate both scenarios (maintenance and

1We merged two kernels of BFS by manual in-lining for better overhead
representation of the entire application.

Fig. 7: Various migration scenarios of hardware tasks on a 4-slot FPGA are
highlighted: a) shows migration to an equivalently busy node, b) to e) shows
migration to the target node with free resources using replication and f) shows
migration where module implementation is changed to maximize the benefit
from free resources on the target node.

Fig. 8: The relative execution latency of kernels w.r.t. no-migration with the
smallest module is shown for blocking migration mechanism. Note that the
x-axis begins at 40%.

load-balancing) together and highlight the key aspects of mi-

gration in terms of performance and overhead. In particular, we

test the scenarios shown in Figure 7, where a kernel is migrated

to a target node with equal or more resources. The migrated

kernel may replicate or change module implementation on the

target node, if possible, based on resource elastic scheduler [9].

Figure 8 shows the execution overhead of the migration

when performing blocking migration using replication on

the target node. Overall, it results in overhead ranging from

0.064% for Breadth First Search to 14% for an FIR filter

accelerator depending upon the compute-to-data ratio. In par-

ticular, when performing migration to another node with a

lower workload (allowing more resources for acceleration), we

note that the overhead is paid off by the acceleration achieved

for all 8 applications, which implies migration coupled with

load-balancing is preferable to migration to an equally busy

node (even when performing maintenance). However, there

still exist applications, like 3D normal estimation and FIR

filter, which suffer from 13% overhead on average when

45

Fig. 9: The relative execution latency of kernels w.r.t. no-migration with the
smallest module is shown for non-blocking migration mechanism. Note that
the x-axis begins at 40%.

Fig. 10: The latency of important steps involved in migration for DCT
benchmark.

moving to an equivalently busy node. These latency penalties

are considerable for environments such as the cloud, where

the service availability requirements could be strict as well as

the probability of faults or need for load-balancing is high due

to its large scale.

In contrast to blocking migration, non-blocking migration

allows for almost zero overhead in terms of service downtime

(i.e. when user computation is not taking place). Figure 9

shows the execution latency for the applications using repli-

cation on the target node, where the maximum overhead is

0.96% for FIR filter, consisting mainly of the software latency

and partial reconfiguration. In the general load-balancing case,

when migrating to lower workload node, applications show

performance benefits ranging from 17% to 37.5% using repli-

cation despite the considerable latency of data and bitstream

transfer latency (as shown in Figure 10).

To understand the gap between these two migration mech-

anisms, consider the case of DCT migration, as shown in

Figures 11 and 12. The major contribution of additional

latency belongs to the data and bitstream transfer over Ether-

net. Thus, when utilizing the non-blocking mechanism where

the computation continues on the source node while all the

necessary data transfer for next work-group execution takes

place, it essentially absorbs this major latency to provide very

Fig. 11: The latency breakdown of execution trace for blocking migration
scenario for DCT benchmark.

Fig. 12: The latency breakdown of execution trace for non-blocking migration
scenario of DCT benchmark.

low overhead by increasing the time spent on the source node.

The key aspect which needs to be noted for load-balancing

is that, when a bitstream transfer represents a considerable

amount of latency during migration, while moving from a

small module on the source node to a large module on

the target node, the large module must provide super-linear

performance to overcome the overhead caused (i.e. a module

taking n times the slots (resources) has to deliver more than

n times the performance). This super-linear benefit can be

gained by better sharing of data and control logic compared to

replication for many applications. Additionally, the work left

on the target node also needs to be enough for acceleration.

An example of this is the DCT (as shown in Figure 12) where

switching to a large module is preferable as the data transfer

phase does not increase the time spent on the source node

considerably.

Note that the bitstream transfer latency can be mitigated fur-

ther by keeping local copies. It is also possible to reconfigure

while receiving the bitstream with a more complex protocol

to handle transfer problems.

B. Fault Tolerance Scenario

Migration can also help to provide support for fault tol-

erance at node level (i.e. when a node is unable to function

correctly while other nodes can continue their progress). This

46

Fig. 13: Fault tolerance scenario where an unforeseen fault occurs halfway
through the execution of 3D normal estimation benchmark.

fault scenario may occur due to a software bug, hardware

fault (e.g., power failure) or problem in the local operating

system. Hence, to evaluate this, we consider two scenarios:

1) Unexpected fault leading to a loss of work and 2) Full

static system update to mitigate bugs or add new features.

1) Unexpected Fault: To test the first scenario, we im-

plemented a regular checkpoint mechanism using a server,

as it is performed in traditional distributed systems with the

help of logs [2]. In our test environment, the snapshot of

the application is taken every 25% of execution length based

on the number of work-groups and the unexpected fault is

mimicked by a forced operating system shutdown. After fault

occurrence, kernel execution is resumed again on another

node. The standard implementations of OpenCL run-times

for FPGAs [18], [19] do not perform context switching and,

hence, they fail to leverage checkpoint mechanisms in case of

fault occurrence, leading to a complete rollback (i.e. restart)

of the kernel execution. In contrast, our technique allows the

standard distributed computing mechanism to be integrated

with OpenCL such that partial rollback can be performed for

unexpected faults (e.g. power failure). This can save up to

75% of completed work in our scenario over standard OpenCL

mechanisms (as shown in Figure 13) and the advantage is

proportional to the frequency of check-pointing until check-

pointing overhead starts to dominate. Equation 1 states this

relation formally, where T is the total time taken for kernel

execution with mean time to fault μ, n is the number of work-

groups with latency of Lw, D is the downtime, R is the time

taken for recovery, c is the number of work-groups between

checkpoints (i.e. checkpoint interval) and Lc is the checkpoint

latency.

T ≈ nLw

(
1 +

1

μ

(
D +R+

cLw

2

))
+

nLc

c
(1)

2) System Update: Here, we describe the steps as needed

for the ZCU102 prototype system running Linux on the

embedded ARM core. Firstly, a new Linux image with updated

static logic needs to be written to SD-Card while the migration

to another node is performed. This allows the ARM core

on chip to boot correctly with new device tree information.

Then a reboot sequence needs to be initiated on the source

node using the SD-Card, followed by initialization of the

run-time system and migration back to the source node. The

latency of each of these steps for the Matrix-Multiplication

benchmark using 4 slots through replication is shown in

Table III. The total latency for the static update is 33.26

seconds, the majority of which corresponds to the Linux boot

up period. In terms of the total execution time of the Matrix-

Multiplication benchmark, the overhead represents 13.25% of

the total execution time. During this period live migration

can allow continuous provisioning of acceleration services by

moving to another node without pausing the kernel execution.

V. RELATED WORK

This section highlights the related work for the crucial

aspect of the FPGA accelerator migration: context-switching.

Followed by migration techniques employed for GPU accel-

eration.

A. Hardware Check-pointing

Preemptive hardware context-switching shares its root with

software systems, where the idea is to relinquish control of

the reconfigurable resources on demand for sharing the FPGA

in the time domain. To perform this transparently, earlier

approaches employed configuration readback techniques to

store and restore the accelerator state at run-time [3]–[5],

[20]. However, this imposes heavy penalty on performance in

addition to partial reconfiguration as every memory element in

the FPGA fabric (i.e. registers, BRAMs and distributed RAM)

must be read and written to for a complete context switch. To

lower this overhead, strict storage element layout has been

proposed such that the resources to be readback is reduced.

This was further improved by employing scan chains for the

important state registers in HDL [10] as well as automatic

identification of such variables in HLS [21].

Moreover, accelerators with functionality for state access

have also been proposed to lift the burden of constrained

resource allocation for storage elements [6]. In particular, the

co-operative approach of only performing the context-switch

at minimal state space in execution has been proposed by

Koch et al. [10] and Xia et al. [22] for custom hardware

accelerators in user RTL descriptions.

However, all these approaches impose either heavy penalties

or restrictions on accelerator design. Which, in turn, lower

the potential performance in most practical cases, as the opti-

mization techniques (e.g., latches, retiming, multi-cycle paths,

TABLE III: Full static system update latency breakdown.

Phase Latency (ms)
Write-to-SD-Card + Migration to Temp. Node 852
Shutdown Period 600
Boot-up Period 29420
Static Logic Reconfiguration 104
Run-time Initialization 2010
Migration to Source 278
Total Time Taken 33264

47

multicycle I/O transactions, pipeline registers in primitives

such as in multipliers and memory blocks) cannot be applied

freely and lead to additional resource consumption or may not

be supported at all.

B. GPU migration

GPUs are typically integrated into Virtual Machines (VM)

to allow sharing between multiple different tenants [23], [24].

There are two ways in which the access to GPU is provided.

1) A pass-through mechanism where a GPU is directly ac-

cessed (mutually exclusive) by the application which does not

allow transparent migration. 2) The other mechanism involves

trapping the command calls [25]–[27] or memory allocation

from the applications and mapping them into separate buffer

spaces to provide memory isolation [28]. Since the commands

tend to run-to-completion for GPUs, the usual approach is

to block the issuance of new commands to GPU and wait

for the current command to finish (or in some cases wait for

the whole command queue to drain), to transfer state between

nodes safely [28]. However, this applies block migration on

coarse granularity. A more fine-grained approach specifically

for OpenCL is to break the kernel execution call into sub-

kernels i.e. execute n work-groups at a time out of the whole

NDRange [11]. This allows reducing the overall waiting time

for migration, using the blocking migration.

VI. CONCLUSION

In this paper, we presented a novel approach for live

migration of OpenCL FPGA accelerators using asynchronous

mechanisms and co-operative scheduling for hardware check-

pointing. It allows migrating accelerators not only within

FPGA but also across FPGAs for fault tolerance, maintenance,

and load-balancing purposes. Our analysis with the Spector

benchmark suite shows that the asynchronous approach for

data parallel applications on FPGAs can allow almost zero

overhead for migration and can be performed transparently

from the user. Moreover, the check-pointing and migration

mechanism can provide fault tolerance for FPGAs when cou-

pled with a standard distributed system architecture, by resum-

ing the accelerator execution from the last known consistent

state. Consequently, this provides fault tolerance with fewer

spare nodes (i.e. lower cost for redundancy), as the resource

allocation across the cluster can be changed dynamically with

low overhead. Further, it can serve as a base of dynamic

load-balancing systems to provide a service with less compute

nodes for saving cost and power. Lastly, it enables to perform

system updates such as changing static FPGA configuration

or upgrading the OS without service downtime.

VII. ACKNOWLEDGEMENTS

This work is supported by the European Commission under

the H2020 Programme and the ECOSCALE project (grant

agreement 671632).

We would like to thank Dr James Garside from the Uni-

versity of Manchester for his valuable suggestions during

manuscript editing.

Finally, we thank the Xilinx University Program for sup-

porting this research with hardwares and design tools.

REFERENCES

[1] A. Vaishnav, K. D. Pham and D. Koch, “A Survey on FPGA Virtual-
ization,” in FPL, 2018.

[2] M. Treaster, “A Survey of Fault-Tolerance and Fault-Recovery
Techniques in Parallel Systems,” CoRR, vol. abs/cs/0501002, 2005.
[Online]. Available: http://arxiv.org/abs/cs/0501002

[3] H. Simmler et al., “Multitasking on FPGA Coprocessors,” in FPL, 2000.
[4] A. Morales-Villanueva and A. Gordon-Ross, “Partial Region and Bit-

stream Cost Models for Hardware Multitasking on Partially Reconfig-
urable FPGAs,” in IPDPSW, 2015.

[5] M. Happe, A. Traber, and A. Keller, “Preemptive Hardware Multitasking
in ReconOS,” in ARC, 2015.

[6] T. Wheeler, P. Graham, B. Nelson, and B. Hutchings, “Using Design-
Level Scan to Improve FPGA Design Observability and Controllability
for Functional Verification,” in FPL, 2001.

[7] A. Munshi, “The OpenCL Specification,” in Hot Chips, 2009.
[8] Q. Gautier, A. Althoff, P. Meng, and R. Kastner, “Spector: An OpenCL

FPGA Benchmark Suite,” in FPT, 2016.
[9] A. Vaishnav, K. D. Pham, D. Koch and J. Garside, “Resource Elastic

Virtualization for FPGAs using OpenCL,” in FPL, 2018.
[10] D. Koch, C. Haubelt, and J. Teich, “Efficient Hardware Checkpointing:

Concepts, Overhead Analysis, and Implementation,” in FPGA, 2007.
[11] S. Xiao et al., “Transparent Accelerator Migration in a Virtualized GPU

Environment,” in CCGRID, 2012.
[12] V. K. Vavilapalli et al., “Apache Hadoop YARN: Yet Another Resource

Negotiator,” in SOCC, 2013.
[13] K. D. Pham, A. Vaishnav, and D. Koch, “ZUCL: A ZYNQ UltraScale+

Framework for OpenCL HLS Applications,” in FSP, 2018.
[14] Xilinx, “UG909 - Vivado Design Suite User Guide: Partial Reconfigu-

ration,” Dec. 2017.
[15] C. Beckhoff, D. Koch, and J. Torresen, “GoAhead: A Partial Reconfig-

uration Framework,” in FCCM, 2012.
[16] K. D. Pham, E. Horta, and D. Koch, “BITMAN: A Tool and API for

FPGA Bitstream Manipulations,” in DATE, 2017.
[17] M. Vesper, D. Koch, and K. D. Pham, “PCIeHLS: an OpenCL HLS

Framework,” in FSP, 2017.
[18] L. Wirbel, “Xilinx SDAccel: A Unified Development Environment for

Tomorrows Data Center,” The Linley Group Inc, 2014.
[19] T. S. Czajkowski et al., “From Opencl to High-Performance Hardware

on FPGAS,” in FPL, 2012.
[20] O. Knodel et al., “Migration of Long-running Tasks Between Reconfig-

urable Resources Using Virtualization,” in HEART, 2016.
[21] A. Bourge, O. Muller, and F. Rousseau, “Generating Efficient Context-

Switch Capable Circuits Through Autonomous Design Flow,” ACM
Trans. Reconfigurable Technol. Syst., vol. 10, no. 1, pp. 9:1–9:23, Dec.
2016.

[22] T. Xia, J. Prvotet, and F. Nouvel, “Hypervisor Mechanisms to Manage
FPGA Reconfigurable Accelerators,” in FPT, 2016.

[23] M. Dowty and J. Sugerman, “GPU Virtualization on VMware’s Hosted
I/O Architecture,” SIGOPS Oper. Syst. Rev., vol. 43, no. 3, pp. 73–82,
Jul. 2009.

[24] Gupta, Vishakha et al., “GViM: GPU-accelerated Virtual Machines,” in
HPCVirt, 2009.

[25] L. Shi, H. Chen, J. Sun, and K. Li, “vCUDA: GPU-Accelerated High-
Performance Computing in Virtual Machines,” IEEE Transactions on
Computers, vol. 61, no. 6, pp. 804–816, June 2012.

[26] Giunta, Giulio et al., “A GPGPU Transparent Virtualization Component
for High Performance Computing Clouds,” in EuroPar, 2010.

[27] J. Duato et al., “rCUDA: Reducing the Number of GPU-based Accel-
erators in High Performance Clusters,” in HPCS, 2010.

[28] M. Gottschlag et al., “LoGV: Low-Overhead GPGPU Virtualization,” in
HPCC + EUC, 2013.

48

