
ar
X

iv
:1

90
6.

00
21

7v
1

 [
cs

.L
O

]
 1

 J
un

 2
01

9

Abstract Predicate Entailment over Points-To

Heaplets is Syntax Recognition

René Haberland, Kirill Krinkin, Sergey Ivanovskiy†

Saint Petersburg Electrotechnical University ”LETI”

Saint Petersburg, Russia

haberland1@mail.ru, kirill.krinkin@fruct.org

Abstract—Abstract predicates are considered in this paper
as abstraction technique for heap-separated configurations, and
as genuine Prolog predicates which are translated straight into

a corresponding formal language grammar used as validation
scheme for intermediate heap states. The approach presented
is rule-based because the abstract predicates are rule-based, the
parsing technique can be interpreted as an automated fold/unfold
of the corresponding heap graph.

I. INTRODUCTION

In order to understand the term of an abstract predicate

better let us consider a simple example from Computational

Geometry [1], the doubly-connected edge list. As the name

tells us it is a list of edges, where each edge connects two two

or three dimensional vertices, usually. If a mesh is triangulated

each face consists primarily of three edges, however each

vertex coincides twice with a neighbouring vertex, because one

edge starts and one edge ends at a vertex. Each vertex may

coincide with at least two other vertices. The face structure

chosen might improve certain calculations, for instance, the

normal vector or seeking for neighbouring faces, etc.

In a points-to heap a location points to some value, in case

of the previous example that might be vertices or edges which

are pointed to by some variable location. According to the

mentioned doubly-linked edge list each list entry may point

forward to the next edge or backward to the previous edge.

In terms of a points-to heap it is only necessary to specify

linked heap entries, non-linked/interleaved memory does not

coincide by definition. Imagine, faces, which consist of at

least three edges, would need to be specified every time for

a heap in a points-to model. That is why a heap predicate

may express a complex but intuitive situation very easily, for

instance face(p1,p2,p3) may denote that three vertices

p1,p2,p3 are connected along a closed circuit building

up a face, rather than specifying every time ∃v1.v2.v3, s.t.

p1.data 7→ v1 ⋆ p2.data 7→ v2 ⋆ p3.data 7→ v3
⋆ p1.next 7→ p2 ⋆ p2.next 7→ p3 ⋆ p3.next 7→
p1 ⋆ p1.prev 7→ p3 ⋆ p3.prev 7→ p2 ⋆ p2.prev 7→
p1.

First of all abstraction means a generalisation, often by

introduction of an additional parameters. In this paper the

parameter will be primarily Prolog terms, but the underlying

assertion language could be abstracted too. By an abstract

predicate we would like to refer to an arbitrary predicate of the

heap (here) in Horn clause form with any number of parame-

ters, which may refer potentially to any number of further ab-

stract predicates. Although introduced by some authors in the

past with capital letters, we tend to characterise those special

predicates only with an adjective “abstract”, we believe that

should be fine. For the example above, face(p1,p2,p3)

stands for the longer ⋆-separated heaplets. Depending on the

actual proof entailment it might be more or less appropriate to

perform a fold or an unfold of face causing a proof step to

succeed, proceed, fail or block. However, in a fully automated

proof, the decision may be hard to find. This paper formalises

this problem and chooses a non-traditional approach at a first

glance in order to resolve this issue for heaps.

Warren [2] chooses the term “Programming by Proving”

to stress Prolog can be used as programming language, and

what happens, in contrast to other programming languages, is

Prolog is searching for a solution – this is what Warren means

by proving. Apart from that the Howard-Curry isomorphism

states there is an interconnection between proving on the one

side and programming on the other side. W.r.t. heaplets, the

main thesis behind this paper can be summarised in a simplis-

tic way as “Proving is Parsing”, meaning by parsing one can

prove correctness of specified heap behaviour and that heap

behaviour is in a representation close to programming, namely

to Prolog rules. A main observation is abstract predicates

describe implicitly a language, and so a program’s semantic

problem can be resolved by pure syntax recognition.

The structure of this paper is as following: First, current

approaches are presented, current restrictions and open ques-

tions are provided. Then, heaps and assertions are introduced

formally. Abstract predicates and related defintions follow.

Afterward the translation problem is formulated. Then the

major contribution of this paper is presented – the observation

that abstract predicates entailment for points-to heaps can be

reduced to syntax parsing, properties of the translation are

considered. Finally, implementation details are discussed and

conclusions are wrapped up.

II. CURRENT APPROACHES

Since the approach presented in this paper does seem to

not follow traditional approaches, only a short review on the

closest topics is thought to be meaningful.

First, abstract predicates as presented in this paper are

supposed to be understood intentionally close to [3], [4], the

most important claim is there is a spatial operator ⋆ which

http://arxiv.org/abs/1906.00217v1

conjuncts two separated heaps and furthermore, for which

the rules and axioms of the Separation Logic hold which

is basically a substructural logic where the contraction rule

does not necessarily hold. In this paper abstract predicates

just serve as placeholders for ⋆-conjuncted heap expressions,

so no fundamental changes to the core logic are made.

Abstract predicates may be controlled by the user, as it was

implemented by verifast [5], or semi-automated as done with

some tactics applicable to inductively defined predicates as

part of Coq [6], or fully-automated but with external fold-

/unfold [7] hints for the automated proof entailment. Although

the last approach is most convenient from a user’s perspective

it is challenging from an algorithmic point of view.

Prolog is used in this paper as assertion language. [8]

demonstrates how Prolog can be used in order to express in

general first-order predicate logic by Horn-clauses. [2] presents

what a Prolog semantics in terms of an abstract machine

denotes to. Kallmeyer [9] provides a good introduction into

Prolog used for parsing. Particularly adjoint-trees are pro-

posed as recognition technique of natural language mutations

which do not occur in formal or programming languages.

However, Prolog is used intensively for implementation. [10]

demonstrates by example how Prolog can be used to ad-

dress ambiguous parsing issues coming from natural language.

Matthews discusses recursive tree recognisers in Prolog which

seem to match LL(k)-parsers by obeying several modifications

to a grammar which is provided as Prolog program: an

accepting state needs to be made explicit, rule recursion is

simulated by stack which is put onto parameter lists. Matthews

uses difference lists in order to implement in fact a partial

derivation automaton for regular languages (see [11]). Finally

he proposes Definite Clause Grammars and built-in commands

in order to alter Prolog’s knowledge base dynamically.

[12] can be considered as a de-facto standard reference on

Prolog for natural language processing. From [12] one can find

Prolog is incomplete because of possible left-recursive clauses,

even when a solution to a given Prolog program exists in

general. A model used in order to understand the structure of a

natural sentence is a λ-annotated parse tree which – depending

on its context – may be interpreted arbitrarily.

III. POINTS-TO HEAPLETS

Definition 3.1. A heap assertion H is inductively defined:
H ::= emp | true | false | x 7→ E | H ⋆H

| H ∧H | H ∨H | ¬H | ∃x.H | a(~α)

The assertion emp denotes an empty heap which by default

is always true, it is the neutral element for “⋆” which separates

two non-intersecting heaps. The assertion true denotes any

heap (which always is satisfied), where false denotes an

arbitrary heap which always interprets as false. This definition

is similar to Reynolds’ definition [3]. The core component of

this definition is x 7→ E, where x is some location identifier

(might be an object field, like o1.f ield1), and where E is some

valid assignable expression. This definition does no checks on

types, this is what is supposed to be processed at an earlier

stage [13]. In this paper it is also less of importance if it shall

be the immediate meaning or just an address in heap space

that stands on the right-hand side (compare with [14]).

Let us consider now, for example, two arbitrary heap

predicate definitions formed into Prolog:

p2(X,Y):-pointsto(loc2,X),pointsto(loc3,Y).

p1(X,Y):-pointsto(loc1,val1),p2(X,Y).

Here, p2 denotes some predicate with two symbols X and

Y, which are values pointed by fixed locations loc2 and

loc3. In contrast p1 is different, hence it refers to predicate

p2. Whenever we call p2 with two syntactically valid term

arguments we would have a the form a(~α). Let us remind

Prolog just does not find a solution for syntactically valid but

semantically invalid terms (meaning the predicate’s domain

does not include such term).

Interpreting some heap formula H for a given heap maps

from a heap domain and a comparison heap into the boolean

co-domain, meaning if the provided heap matches the existing

heap the interpretation succeeds, and fails otherwise (applying

only existing facts and rules which is equivalent to modus

ponens). The proof in Prolog succeeds iff a true goal is found

– a possibility to succeed or a refutation rejects the proof,

which with no doubt is exactly the desired behaviour.

For sake of simplicity we agree to canonise heaplets, s.t.

we conjunct them all along ’⋆’, having the normal form

a0 ⋆ a1 ⋆ · · · ⋆ an or shorter
∏n

∀j aj for some n ≥ 0. Further,

∧ and ∨-connected heaps are turned into Prolog subgoal

enumerations of kind sj , sj+1, · · · sj+k , alternatively split up

into separate rule alternatives (or join using the “;”-operator).

The negation of an assertion is treated as an functor-guarded

negate of a predicate, e.g. not(P), where not is a reserved

keyword and P some predicate. Just to be mentioned prior to

the next sections – negating a sequence of (sub-)goals means

those may not follow whilst parsing. The quantification of a

fresh variable is allowed spontaneously by simply introducing

a fresh variable besides the existing predicate variables.

Moreover, we agree to keep in emp, true and false, although

they are syntactic sugar. The heap assertion emp is sugar

because it could be dropped entirely instead, true may be

substituted by a tautology in its interpreting conjunction, false

may be interpreted analogously.

Corollary 3.2. Without going too deep into details, the previ-

ous definition implies any valid heap graph can be expressed

by induction (and vice versa under the assumption indefinite

elements are removed prior to transformation, such as true

for instance). The proof(s) would be straight forward and

inductively defined over the mentioned definition(s).

Definition 3.3. A heap graph is a connected graph within the

heap memory section and whose vertices may be pointed by at

least one local variable from the stack memory. Each vertex is

associated with a heap memory address, its length depends on

its data structure. If a vertex is pointing to another vertex, both

memory vertices coincide with a directed heap graph edge. If

a vertex is pointed by two vertices, then one of which becomes

an alias of the other.

IV. ABSTRACT PREDICATES

Prolog is in this paper as programming language in which

the assertion language for the heap is specified, and abstract

predicates are part of it. Abstract predicates are defined as

regular Prolog rules prior to using these rules later in an

assertion formula. Often the assertion language does not

match a formal specification, particularly for the heap, so this

approach is an attempt to bridge this gap by using a logical

programming language for logical reasoning, which abstract

predicates are finally used for. For example, [4] introduces an

assertion language for predicates which is very independent,

semantically and intentionally totally different from the sur-

rounding programming and even assertion language, in fact

(class-)typed variables are propagated typeless to predicates,

program variables are simulated as being symbols rather than

unidirectionally assignable locations, and the predicates are –

with big efforts – tried to make up logical predicates as much

as possible for what we usually understand under a genuine

(first-order) logical predicate.

The approach demonstrated in [15] introduces symbols for

heaps, but not for denoting entire heaplets, so X ⋆Y may not

be used, for instance. In contrast to that, we allow symbols

without such restrictions in Prolog, and we are not going to

restrict ourselves to maximum matching rules only in general

– this does not imply there may not be introduced some tactics

later on.

We use Prolog rather than an imperative programming

language to specify the heap graph, because we believe the

graph can be described better with predicates which are basi-

cally relations, and because the logical programming paradigm

seems to be closer to the 1st-order predicate logic [2] rather

than the functional, for instance. It is also that the way heap

assertions are supposed to be checked is closer to facts, rules

and questions when it comes to reason logically about heap

assertions.

Abstract predicates allow us to specify what the heap should

look like, however the concern of compact specifications is

due to the developer, regardless of how advanced abstract

predicates are being processed.

The following formalisations will help us to describe the

translation from abstract predicates into a grammar in the next

section.

Definition 4.1. A predicate rule is defined as ∀n.a : −qk×n.

⇔ a : −qk,0, qk,1, . . . , qk,n. for some arbitrary but fix integer

k.

It is said that a holds whenever all its subgoals qk,j hold

for 0 ≤ j ≤ n. The syntax of a predicate rule is defined as

can be found in Fig. 1. <number> denotes any valid Prolog

number, where <atom> ’(’ <arguments> ’)’ denotes

some functor with atomic name <atom> and an arbitrary

number of arguments. <var> denotes some variable symbol,

which must start with an uppercase character letter, e.g. X.

Fig. 2 demonstrates an Prolog example.

Some predicate a is evaluated by its subgoals left-to-right

updating its symbol environment σ every time:

〈predicate〉 ::= 〈head〉 [’:-’ 〈body〉] ’.’

〈head〉 ::= 〈atom〉 [’(’ 〈arguments〉 ’)’]

〈body〉 ::= 〈sub goal〉 { ’,’ 〈sub goal〉 }*

〈sub goal〉 ::= ’!’ | ’fail’ | 〈functor term〉
| 〈term〉 〈rel〉 〈term〉

〈functor term〉 ::= 〈atom〉 ’(’ [〈arguments〉] ’)’

〈arguments〉 ::= 〈term〉 { ’,’ 〈term〉 }*

〈term〉 ::= 〈atom〉 | 〈var〉 | 〈list〉 | 〈number〉
| 〈functor term〉

〈rel〉 ::= ’=’ | ’\=’ | ’<’ | ’<=’ | ’>’ | ’>=’

〈list〉 ::= ’[’ [〈term〉 ’|’] 〈arguments〉 ’]’

Fig. 1. Extended Backus-Naur form for Prolog clauses

C(a)Ja(~y) : −q(~xk,n)k×nKσ =
DJqk,nKσ(~xk,n) ◦ · · · ◦DJqk,1Kσ(~xk,1).

By convention the term-vector ~y may intersect with ~xk,n,

∀k, n and C is of kind atom → predicate → σ → σ,

D has kind subgoal → σ → σ, and σ is of kind term∗

→ term, where ∗ denotes the Kleene-star operation for an

arbitrary number of repetitions.

A subgoal qk,j′ does not necessarily need to span a con-

nected heap graph. However, if it does then obviously this

does not only indicate some complete degree of separating

concerns which is a good pattern in software engineering,

it also means that one abstract predicate actually pictures

one entire problem locally. The corollary we can imply is:

“One abstract predicate shall correspond to one subheap”,

where a subheap contains a non-empty subset of vertices

from the corresponding connected heap graph. Furthermore,

by adding more and more ⋆-conjuncts we actually make the

corresponding heap graph grow successively. The collection of

⋆-conjuncts forms a set of possibly connected with each other

heaps which corresponds with abstract predicates, therefore

abstract predicates in terms of points-to heaplets can be con-

sidered as a technique of specifying frames, or more generally

speaking as a syntactic approach of specifying heaps. When

talking about folding/unfolding of abstract predicates – similar

to function calls – there exist parameters, namely heap graph

vertices, which are available to both sides: a predicate’s caller

and callee side, and there are vertices that are only visible

from within a predicate that cannot be references from the

caller (at least not directly).

W.l.o.g. we agree that class objects field accessors,

like a.b, are allowed according to Fig. 1 as

oa(object5,field123) [13]. For sake of modularity

and simplicity of demonstration and w.l.o.g., we further agree

that class objects as well as object fields may be passed to

predicates, and we do not need to worry about as long as

the entire object is passed because in that case the treatment

and behaviour does not change in comparison to regular

automated variables as being mentioned later.

Definition 4.2. The predicate rule set Γa for some predicate

name a ∈ T and ∀i, j.qi,j ∈ (T ∪NT), where T are terminals

and NT are non-terminals is defined as:

Γa ::= a : −qm×n

⇔

a : − q0,0 , q0,1 , . . . , q0,m
...

...
...

. . .
...

a : − qm,0 , qm,1 , . . . , qm,n

If m = 0 then a is a fact. a may be annotated by terms

containing symbols (e.g. when m = 0, n > 0). If t ∈ T then

t has the form loc 7→ val, otherwise t ∈ NT denotes the

predicate name t available in Γ.

It is agreed that in a sequence qk,0, qk,1, . . . , qk,m in qm×n

every line is canonised, such that for s ≤ m non-trivial entries

the first s subgoals are placed and that all remaining m − s

subgoals are tautologic subgoals with a domain entirely being

true (⊤). Moreover, it is agreed that ∃k.a : −qk � a : −qk+1

holds, meaning a predicate rule that occurs earlier in Γa has

a lower precedence than a predicate that is defined later.

Corollary 4.3. For the predicate environment Γ of a Prolog

program Γ =
⋃

t∈T Γt holds. All Γt that depend on each other

lay inside a predicate partition Γt. Γt ⊆ Γ holds.

Proof. (sketch) The idea behind is to show all dependent ∀t.Γt

lay inside a partition, and all independent partitions, obvi-

ously, do not coincide with dependent predicate environments.

Naturally, all predicate environments regardless if dependent

or independent lay in Γ. Predicates Γa and Γb from non-

coinciding partitions in Γ can never depend on each other.

Remark: Obviously, due to the Halting problem the call of

a predicate from a predicate partition may not terminate in

general. Next, the expressibility of predicates is considered.

Remark: Possible naming clashes in Γ may be resolved by

mangling names including the location of the predicate, such

as class where a predicate is defined etc. so the predicates be-

come distinguishable. Predicates within the same location are

believed to be together and hence do not clash by definition.

Lemma 4.4. Abstract predicates cover all first-order predi-

cates.

Proof. Please refer to [8] for first-order predicate logic com-

pleteness expressibility of Prolog.

Lemma 4.5. Abstract predicates may express second- (and

even higher-) order logic predicates.

Proof. Up to this point we were only interested to know

through Prolog we can express any first-order predicate logic

formula. The following explanation shows we are not restricted

ourselves to first-order, but we even can express higher-order

in Prolog. In Prolog the built-in predicate call allows to call

a certain predicate with a list of input and output terms to be

passed, for example pred1(X):-call(pred2,X).

For example, let us define the mapping of a predicate

P on an input list, we agree the input parameters shall be

map([],P,[]).

map([X|Xs],P,[Y|Ys]) :-

Goal =.. [P,X,Y],

call(Goal), map(Xs,P,Ys).

Fig. 2. map/3 functional

encoded in [X|Xs] and output to be [Y|Ys]. Then the map

predicate denotes as shown in Fig. 2. Higher-order predicates

may be particularly of interest especially when it comes to

dealing with class-objects and inversion of control, as it is the

case in many behavioural design patterns, for instance in the

Observer-pattern.

The type of map/3 is lista → (lista → listb) → listb.

So, by introducing third and even higher-order predicates, in

analogy to functions we may beat recursion in many cases

by using an implicit recursion via higher-order predicates,

for instance by application of a left fold that consumes

some predicate ⊕ and applies it when appropriate having

the following signature: foldl(⊕ :: a → b → a, ε::a,

X::listb)::a (right folding works in analogy to that). Foldl

defines an algebra with an initial value ε and carrier set X and

one operation ⊕ which is defined on the same type as ε and

element-wise for each element of X and calculates a result of

same type as ε. For example let us assume we have a equal b

are integers and let X = [1, 2, 3] be of kind “list of integers”,

let us further agree our inital counter ε equals 7, then foldl

will calculate ((ε+1)+2)+3) which is 13 which is obviously

an integer.

For sake of completeness of the syntax definition from Fig.

1 and the translation in the following section we need to

think about how to deal with “;” and “!”. Actually, both

are syntactic sugar.

If the body of a predicate rule contains “;” then all right

of it has to be split up into a fresh rule with the same name

as the origin, so b : −a0, a1, ..., am; am+1, ..., an is split up

into b : −a0, a1, ..., am. and b : −am+1, ..., an.. If there is a

cut inside b : −a0, a1, ..., am, !, am+1, ..., an then a0, a1 until

am may fail in which case other rules b may be considered

as alternatives if any existing. “!” makes sure that if only

one subgoal only from am+1 until an fails b entirely fails

without searching for alternatives. This is again, syntactic

sugar, because all possible alternatives may be left-factorised

so no other alternatives may be allowed – so, this sugar would

insist of rewriting existing predicate rule sets with the same

name. This is why without any loss of generality “;” and “!”

may in Prolog be be dropped from further considerations of

expressibility.

Lemma 4.4 and 4.5 conclude that we are able to express all

we would like in terms of Prolog, and that we could rewrite

some predicate classes without explicit recursion. However,

we do not intent to restrict ourselves in terms of µ-recursive

predicates.

Definition 4.6. The predicate unfolding/folding a(~α) of/into

some predicate a for some rule system Γa with ac-

tual term values ~α/subgoals qk is defined as: (because

of lemma 4.5) let Γa be w.l.o.g. a(~y) : −qk with

qk = qk,0(~xk,0), qk,1(~xk,1), ..., qk,m(~xk,m). Now, if ~α =
(α0, α1, .., αA) and ~y = (y0, y1, .., yA), then a(~α) ⇔
qk,0(~xk,0), qk,1(~xk,1), ..., qk,m(~xk,m) with α0 ≈ y0, α1 ≈
y1, ..., αA ≈ yA.

In case of “⇒” of the above equivalence of a(~α) a predicate

is unfold. In case of “⇐” the right-hand side is folded into a

predicate call. “≈” stands for term unification.

V. INTERPRETING ABSTRACT PREDICATES OVER HEAP AS

SYNTAX RECOGNITION

The goal of syntax recognition is to automate the check

of heap predicates in specifications against an inferred heap

state. The technique applied is syntactic for a semantic prob-

lem. The problem with predicates is the non-determinism of

when to fold/unfold. Proof tactics have been implemented in

theorem provers and checkers, like Coq [6], in very dedicated

domains only, but the quality of the fold/unfold is still far

from satisfiable. An automated fold/unfold approach would be

highly desirable, so additional specifications or even manual

interactions can be zeroed. The new approach presented in this

paper requires the following steps:

1) Translate incoming program and annotated assertions

into Prolog terms which are integrated into [13].

2) Define abstract predicates within an annotated section

in the incoming program. These Prolog rules need to be

syntactically correct.

3) Generate formal grammar for found abstract predicates.

File grammar over to a parser-generator which will

finally emit a valid and concrete parser.

4) While running the proof, trigger certain parse rules

depending on abstract predicate calls found.

It will provide a different non-standard way of dealing with

the problem.

Observation 5.1. When looking at how a heap is generated

it reminds a production system for formal languages.

Terminals become points-to expressions (cmp. with defi-

nition 4.2) or relations, and non-terminals become abstract

predicate subgoals. Terminals are concatenated, where points-

to expressions are loosely coupled with ⋆. ⋆ is commutative.

Points-to expressions may be concatenated too, when the pairs

are ordered according to the left-hand side location name. If

local names clash, a namespace would resolve this by full

qualification, e.g. by name prefixes.

Theorem 5.2. The predicate partition builds up an production

system and manifests in fact a context-free grammar.

Proof. The left-hand side of a predicate rule may only be no

more than one non-terminal. It is more than regular because

there is no such claim the right-hand side needs to be right-

recursive. If the head of the rule contains arguments this still

does not change statically the dependencies in between the

predicates. A predicate partition has one starting non-terminal.

Observation 5.3. When looking at how a heap is derived from

abstract predicates one may think about reducing it.

The implication underneath, however, would be both,

inferred heap state and expected heap specification, still

contain some folded predicate definitions which shall be

unfolded until both sides establish an equivalence. This

would be a bi-directional approach. However, that problem

could be reduced to Post’s Correspondence Problem and is

unfortunately undecidable in general, hence is not considered

here any further.

Observation 5.1 seems promising, so the heap predicate

check can be re-formulated as: “Given a ⋆-connected heap,

does it match a given heap specification or not?”. But

there might be further questions related, such as: “What

would be the closest correct heap, s.t. it satisfies the current

heap specification?”, which could deliver us answer to the

counter-example problem.

Lemma 5.4. The word-problem for abstract predicates P can

be formulated as: Given α1, α2 ∈ L(G(P)) does α1 ≡ α2

hold ? G(P) denotes the formal context-free grammar ob-

tained from the predicate partition of P .

Proof. Here α = (a + A)∗, and a ∈ T , A ∈ NT . T denotes

all terminals which are parameterised and encode source and

target of “ 7→”, NT denotes non-terminals which contain all

predicates and parameterise all valid input terms. The rule set

P is the translated set of predicates, L(G(P)) is the language

generated by the generated grammar by Prolog rules. The

starting non-terminal is a predicate call from either α1 or

α2. Regardless of the particular kind of parser to be used

the follow set σ(α) and the first-terminal sets π(α) need to be

calculated (see later). One important fact is there is not a single

start non-terminal, but there might be several depending on

number of predicate calls in α1 and α2. Furthermore, there is

not only one path searched from α1 ⊢∗ α2 but also α2 ⊢∗ α1.

Only if there is no path found in both directions α1 does

not coincide with α2, otherwise it does. In order to check

if two sentences match, it is not only necessary to construct

paths between predicates, it is also necessary to consume

initial and intermittent pointsto-terminals. Parameters on

terminals and non-terminals shall be bound according to the

current binding and unified with α1 and α2.

VI. TRANSLATION OF HORN-CLAUSES INTO GRAMMAR

This section considers how abstract predicates provided as

Prolog rules are translated into a general context-free grammar.

Before that, Prolog rules need to be analysed lexically, so

all expressions of form loc 7→ val are considered tokens.

Multi-paradigmatic programming [16] allows interpreting Pro-

log rules during execution of some main Prolog application,

which, in our case, would be the verification. This process only

needs to be done once until all abstract predicates have been

processed. The translation process from Prolog rules into a

formal grammar is astonishing simple. However, Prolog rules

may have argument terms on the left and the right side of

“:-”, this can be modelled by introducing attributes to the

generated grammar, we finally obtain an attributed grammar.

Hence, the translation CJK can be defined straight:

Definition 6.1. CJK is defined as rule transducer for an

incoming abstract predicate set and attributed grammar as

output:

CJK = ∅
CJC1.C2K = CJC1K ∪̇ CJC2K
CJa(~x) : −q0(~x), ..., qn(~x)K = {a~x → q0~x...q

n
~x}

In contrast to previous notations subgoals here have upper

indices and ~x now accommodates all variable symbols within

of a predicate rule for notational comfort, so if a particular

subgoal qj for some j does not require all components of ~x

then it does not. Remind ∪̇ is a set union where the element

sequence matters. As can be seen from both notations are

pretty similar to each other and are interchangeable, the inverse

operation C−1JK translates an attributed grammar back into

Prolog and can be defined as:

Definition 6.2. C−1JK is defined as rule transducer for an

incoming attributed grammar and an abstract predicate set

as output:

C−1JK = ∅
C−1JC1 C2K = C−1JC1K . C−1JC2K
C−1Ja~x → q0~x...q

n
~x K = {a(~x) : −q0(~x), ..., qn(~x)}

Corollary 6.3. CJK and C−1JK terminate for any well-defined

domain input.

Proof. The proof is rather trivial, since there is no infinite

cycle possible. Both, CJK and C−1JK linearly scan all incoming

rules successively from left to right. Suppose, there was a

cycle in between particular rules. Even so, both translations

will finally terminate because cycles may bother only while

parsing, not while translating. The starting point to a predicate

partition corresponds one to one to the starting non-terminal of

a subgrammar. There might be several entry points for abstract

predicates, and so are the entry points corresponding to non-

terminals for a grammar.

We still need to investigate CJK and C−1JK soundness and

completeness.

Corollary 6.4. CJK and C−1JK are total and both mappings

are complete and sound.

Proof. It is not hard to verify that C ◦ C−1 ◦ C ≡ C hold as

well as C−1 ◦ C ◦ C−1 ≡ C−1 by simple substitution of the

definitions from above. Because of the discussions in section

III, “!” nor “;” do not matter w.r.t. expressibility. If, however,

the domain of CJK is supposed to not terminate, then its co-

domain will cause exactly the same behaviour, same holds for

C−1JK.

VII. PARSING

For the purpose of a simple and intuitive algorithm the

constants from definition 3.1 will not be considered. Because

as mentioned earlier they are not intrinsic and can be dropped

therefore. Essentially those heap constants provide partial heap

expressiveness and may be considered for future research,

w.r.t. class objects a true could possibly mean, for instance, to

consume all pointsto until a (rule-dependent) marker pops

up indicating a safe synchronisation point in terms of error

productions [17] for the ongoing parsing as described briefly.

The input word is finite, however in general the number of

unfolds may be hypothetically infinitely many – but shown

later the π-function allows us to pre-calculate the following

terminal symbols with polynomial efforts.

This section introduces fundamental conventions necessary

to complete some generic LL(k)-parser for demonstration

purposes. Fundamentally, this is not only for an unlimited

forward-looking LL parser, it is also possible to use some

different parser, for instance based on a generalised LR or

Earley parser. First, a sentence is defined as some composite

of pointsto (terminals) and further subgoals with term

arguments (non-terminals) – something that the right-hand side

of a (Prolog) rule comes up with. Second and third, in analogy

to a LL(k)-parser but with functional space rather than single

character as for strings the definitions of first and follow sets

are introduced. Forth, both SHIFT and REDUCE are proposed

for some general parser implementation.

Definition 7.1. An abstract sentence α is a ⋆-conjunction of

heaps which are denoted by a 7→ b, where a is some unique

location identifier and b some value object or nil.

For example, α ::= [pointsto(x,nil),

pointsto(y,1), member(x,[y])] may describe

the current state of the heap during the verification

of an imperative program, and ⋆ is replaced in the

previous list by commas. The specification of a rule

may insist on [pointsto(Y,1),member(X,[Y| -

]),pointsto(X,)]. So, what is necessary to check the

abstract sentence from the program matches the sentence

from the specification is primarily to check whether all parts

from either of both is derivable from each other.

An abstract sentence may also contain term unification,

such as pointsto(X,5),X=Y. Term unification has to

be thoroughly analysed and separated from the remaining

two cases, namely pointsto which denotes terminals, and

predicate calls as subgoals which denote non-terminals later

on. It has to be taken into consideration that not any terms

may be unified, since there is a occurs-check taking place

by intention w.r.t. the given implementation and by default in

Prolog, so indefinite terms or recursive term definitions are

strictly prohibitted.

Let us now formulate an initial algorithm in order to

check two abstract sentences match or do not match, let

us consider algorithms 1. π denotes the function being in-

troduced shortly. The problem is we reduce (factual pred-

Algorithm 1 A naı̈ve algorithm for word equality check for

abstract sentences; Input: α1 = [i0, ..., im1
, p0, ..., pn1

], α2 =

[j0, ..., jm2
, q0, ..., qn2

] with i and j as pointsto-terminals,

and subgoals p and q as non-terminals. Γ contains all predicate

definitions. Result: True in case α1 equals α2, false otherwise.

1: procedure SHIFT-TERMS(Γ, α1, α2)

2: for all k ∈ {0, ...,m1} do

3: if ∃l.l ∈ {0, ...,m2} ∧ ik ≈ jl then

4: α1 ← α1 \ ik
5: α2 ← α2 \ jl
6: end if

7: end for

8: end procedure

9: procedure REDUCE-PREDS(Γ, α1, α2)

10: for all k ∈ [0..n1] do ⊲ try match with terminal

11: if ∃l.l ∈ [0..m2] ∧ jl ∈ π(pk) then

12: expand(pk, α1)
13: else ⊲ try to reduce in α2

14: if ∃l.l ∈ [0..n2] ∧ (π(ql) ∩ π(pk) 6= ∅) then

15: α1 ← expand(pk, α1)
16: α2 ← expand(ql, α2)
17: else ⊲ Match

18: if m1 = m2 = n1 = n2 = 0 then

19: true→ Halt!
20: else ⊲ Non-Match

21: false→ Halt!
22: end if

23: end if

24: end if

25: end for

26: end procedure

icate unfolding) possibly ad absurdum, we do not know

determined when and how often to fold and unfold which

obviously also depends on the rules themselves. Assume,

we had some α1 = [a 7→ b
︸ ︷︷ ︸

i0

, i1, · · · , im1
, q1(x)
︸ ︷︷ ︸

p0

] and some

α2 = [· · · a 7→ b
︸ ︷︷ ︸

j3

, · · · , q1(x)
︸ ︷︷ ︸

q7

] we would like to match against

with. SHIFT-TERMs would first of all unify i0 with j3 and

possibly continue with all other matching terms. REDUCE-

PREDs will try match all matching predicates which may

have to be unfolded first, that is why the first terminal of a

predicate may be required first, the expansion expand(pk, α1)
expands the predicate head by the corresponding body of

pk (compare with definition 4.6 and Fig. 1) into a new

abstract sentence α′ which might be described in Prolog as

concat(α,[i7, i8, i9], α
′), if for instance q1(x) unfolds into

[i7, i8, i9].

Definition 7.2. The first set is defined as co-domain of a

total map π with type (T ∪NT)→ 2T for m > 0, such that:

π(a) ::=







a if a is X 7→ Y or Γa ::= a.

⋃

0≤j≤n π(qj,0) if Γa ::= a : −qm×n, n > 0.

Essentially, π determines all terminals that start with

pointsto or are beginnings (only the first terminal) of

predicate subgoals (independent of its arguments).

Definition 7.3. The follow set σ(t) ⊆ T for t ∈ (T ∪NT) is

defined as:

σ(t) ::=







⋃

i,j π(qi,j+1) if t is at (i, j < n) in qm×n

∧ 0 ≤ i ≤ m

∧ qi,j+1 6= ⊤
∧ ∃a.Γa ::= a : −qm×n

⋃

a σ(a) if t is at (i, n) in qm×n

∧ Γa ::= a : −qm×n

∧ ∃b.Γb ::= b : −qmb×nb

∧ a is at (ib, jb) in qmb×nb

∅ otherwise

The follow set determines literally all terminals that may

follow a pointsto or a predicate subgoal from all con-

sidered rules. Now we have defined π and σ we are able

to synthesise from this a LL(k) recogniser ([17] might be a

helpful introduction).

Example 7.4. Given the following production rules q1 →
a, q2 → aq2 | q3b, q3 → ε | q3a these rules are obviously

ambiguous, for instance in π(q2) = {a}, σ(a) = {ε}∪π(q2)∪
π(q3) ∪ σ(q3).

Example 7.5. Given the following finite specification

[(loc1, v1), p1(loc1, loc2), (loc2, v2)] and the word

[(loc1, v1), (loc2, v2)] which is true, but only if p1 does

not dump a heap.

In case the input word is not particularly a sequence of

terminals, but an abstract sentence, it will be necessary to cut

redundant calculations as early as possible. Hence, memoizing

calculated subgoals would not only enhance the speed of

search (since only the predicate name and its parameters play

a role in memoization), it would resolve matching the first

non-terminal issue, which by the way, matches neatly in the

described definition of π and σ.

Negated predicates are dropped here, refer to section IX for

details.

VIII. PROPERTIES

In Fig. 3 a sample heap configuration is shown. This

configuration consists of 8 triangles, where each triangle

is crossed by either a dotted or a tortuous line. The line

from the midpoint of v0 and v3 to M1 denotes the triangle

∆(v0, v3,M1), where the tortuous line between the midpoint

of v0 and v1 and M1 addresses ∆(v0,M1, v1). And so, Fig. 3

demonstrates there might be more than one way of spanning

the heap graph by some provided heap predicate set, namely

either by the triangles marked with dotted lines or with

the tortuous lines. It is, however, essential that all vertices

need to be included in a heap in order to decide heap graph

isomorphism.

There is (currently) only one position where a non-

deterministic decision has to be taken out, namely the decision

where to bound the input stream w.r.t. object boundaries. If

introducing a convention that only common fields of an object

are allowed and are canonised, the decision becomes deter-

mined. Obeying the convention could be performed within

polynomial effort, as the rest of the parsing routine – which is

well-described and is known to be tractable within polynomial

efforts (refer to [17] on parsing foundations). If all predicate

partitions are parsable, as described with possible practical

restrictions discussed in the previous sections, then entailment

over points-to heaplets becomes decidable and finally termi-

nates with an answer or proof refutation. The proof refutation

will be in fact be a syntax error with corresponding coordinates

in the points-to encoded input word according to the expected

predicate partition.

The core memory model has not been modified nor ex-

tended, except the introduction of abstract predicate definitions

over the existing points-to model. The proposed extension shall

therefore by compatible e.g. with Reynolds’ [3] or Burstall’s

model [14], however in this notation in contrast to Burstall cell

addresses where not used, so this approach is conventionally

closer to Reynolds. The consequences of Burstall’s notation

could be researched, since it is common practice compound

objects are referred in practice by reference, not by its content.

IX. IMPLEMENTATION

The implementation is in GNU Prolog and uses ANTLR

version 4 [18], and is supposed to incorporate the framework

presented in [13], [19]. Initially both tools were chosen for

simplicity and extensibility reasons and for lecturing purposes.

In order to gain from flexibility and a huge support of

existing software packages, the chose programming paradigm

is multi-paradigmatic [16], which allows the developer to write

and run programs in different programming languages and

profit from both of its advantages. The integration of both

works astonishing simple due to a Proxy design pattern and

an interpretation in both directions. There exists also an ex-

perimental user interface based on tuProlog for prototyped de-

velopment. The implementation first translates input language

v0 //

!!❈
❈❈

❈❈
❈❈

��

v1 //

!!❈
❈❈

❈❈
❈❈

v2

��

/o M1

==④④④④④④④

!!❈
❈❈

❈❈
❈❈

❈
M2

==④④④④④④④

v3

==④④④④④④④④ // v4

OO

==④④④④④④④④ // v5

aa❈❈❈❈❈❈❈❈

Fig. 3. A sample heap configuration where vj with j 6= 2, j 6= 5 outgoing
edges are of class object type with more than one associated pointer attributes

into an intermediate representation which are Prolog terms,

afterwards the assertions are copied separately into a Prolog

theory, and abstract predicates are transformed into a ANTLR

4 grammar file as explained earlier. Whenever a parsing is

requested, an internal syntax recognition process is initialised

in the language the ANTLR outputted the recognisers (which

is Java here). The output and control is passed back to the

invoker. This way abstract predicates can be checked fully

automated, and in case of an error the corresponding error

will be processed.

ANTLR makes use of so-called “syntactic and semantic

predicates” in order to fight syntax ambiguity. Since ANTLR

does not necessarily cover in practice all LL(k)-grammars

strictly, there is of course still room for improvement. Practi-

cally this means that occasionally there may appear grammars

which shall, but which do not parse due to current limitations

of the ANTLR parser generator. There were made experiences

other parser generators, e.g. LR(0)-parsers resolve this issue

and even recognise left-recursion by definition, but lack from

known shift-reduce restrictions on the other side therefore, like

with GNU bison, for instance. A good introduction to parsing

techniques can be found in [17].

As an example of required transformation during the analy-

sis of lexemes and tokens some precautions were required.

First, bar 7→ foo is mangled to pt 3bar 3foo where 3

is the length of the name or corresponding accessor. If the

accessor is compound, e.g. b.f.g, then the accessor length

avoid ambiguity. For instance pointsto(X,2) is mangled

to a Prolog atom p X 2. If needed, a mangled name can

be demangled – the internal parsing may be done by a Java

helper which is then visible in Prolog as a helper built-in

predicate via [16]. Second, the left-hand side (de-)canonisation

(on Prolog level). p1(X,[X|Y]):-... is transformed into

p1(X1,X2):-X1=X,X2=[X|Y],.... Third, a Prolog rule

p(X,Y):-α may be translated to a ANTLR-grammar snip-

pet: p[String X,String Y]: α. This way all synthe-

sised attributes may be passed top-down, inherited attributes

may be modified to some predicate p by adding returns

together with the inherited attribute names just before colon.

So, all what is necessary is to decide whether a variable is

inherited or synthesised in order to decide its position in the

grammar snippet.

When abstract predicates are turned into a concrete gram-

mar, e.g. a ANTLR grammar file, the problem arises that

unified terms are together with pointsto terminals and

non-terminals. Unifying terms need to be separated from

terminals and non-terminals, therefore they are moved into

translating rules beside the attributed grammar. For instance,

ANTLR introduces translating rules using the curly brackets

within a sentence. Negated sentences and fragments of it can

be introduced by “∼” and brackets, and mean the included

sentence may not appear. No further cases are discussed since

either by attributes or translating rules additional behaviour

may be mimiced, such as a failing predicate as a parser signal.

X. CONCLUSIONS

The approach presented proposes a technique to auto-

matically entail points-to heaplets by syntax analysis rather

than manually fold/unfold abstract predicates. If a predicate

partition is representable as valid set of a parser’s rule set

then there will be definite answer whether heap specification

and a existing heap configuration match. The model used in

between Prolog and a concrete parser rule set is an attributed

grammar [17] which translates inheriting and synthesising

attributes which correspond to Prolog’s head terms. We believe

the implementation of stack frames which is different to those

of common imperative programming language, gives Prolog an

important advantage in reasoning since it is what we would

expect from the attribute content control – without the need

of additional implementation nor development costs, because

it is part of Prolog’s core [2]. The used points-to heaplets

may correspond to a Separation Logic styled model obeying

its axioms and rules. It is true, Prolog’s abstract machine

is an interpreter and therefore on average slower than any

natively compiled code, but the question of performance is

minor in this case since we are mostly interested in exploring

tractability and expressibility first of all - since verification is

done separately from the generated code, we take intentionally

the risk of being a bit slower occasionally.

Instead of simulating only symbols within an artificially

introduced assertion language, the assertions here are all ex-

pressed in the same language in which proofs will be taken out,

Prolog. There is no overhead of mapping in between assertion

and proof language as it is for instance the case in [6]. Symbols

may be used very closely to the first-order predicate logic,

symbols and terms may be unified, which is a bi-directional

reasoning technique. It is believed expressibility in Prolog

terms, especially with regards to objects, may improve over

non-adequate representations, as it was proven concept in [20]

on markup-notations for terms. It remains an open question

due to term unification and the rule-based predicate partitions

if and how error production rules may in fact advance the

completeness of reasoning rules further, for instance w.r.t.

abduction and proof explanation. Another practical advantage

using Prolog whilst proving is the possibility to load parts

or none of Prolog rules and facts in order to try some

question without loading all at once, which makes error tracing

comfortable.

Open questions and future work includes the possibility of

partial heap specifications using constant keywords like emp,

true and false, and the question if a proof may get simpler just

if the heap graph is required to be connected. The last question

arises for improved error location on proof refutations using

error production rules to be introduced and invoked during

parsing. It could stop, for instance, on a refutation and behave

like in a “panic mode” [17] consuming all input tokens until

a synchronised save state or a sequence of consecutive known

safe tokens.

ACKNOWLEDGEMENT

†This article is dedicated to Sergey Ivanovskiy in remem-

brance.

Parts of this paper are prepared as a contribution to the

state project of the Board of the Ministry of Education of the

Russian Federation (task # 2.136.2014/K).

REFERENCES

[1] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computa-
tional Geometry: Algorithms and Applications. Santa Clara, California,
USA: Springer-Verlag Berlin Heidelberg, 3rd ed., 2008.

[2] D. H. Warren, “Applied logic - its use and implementation as a
programming tool,” Tech. Rep. 290, SRI International, 333 Ravenswood
Ave, Menlo Park, CA 94025, USA, June 1983.

[3] J. C. Reynolds, “Separation logic: A logic for shared mutable data
structures,” in Proceedings of the 17th Annual IEEE Symposium on

Logic in Computer Science, (Washington, DC, USA), pp. 55–74, IEEE
Computer Society, 2002.

[4] M. Parkinson, Local Reasoning for Java. PhD thesis, Cambridge
University, 2005.

[5] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens, “Verifast: A powerful, sound, predictable, fast verifier for
C and Java,” in Proceedings of the Third International Conference

on NASA Formal Methods, NFM’11, (Berlin, Heidelberg), pp. 41–55,
Springer-Verlag, 2011.

[6] Y. Bertot, P. Castran, G. Huet, and C. Paulin-Mohring, Interactive

Theorem Proving and Program Development - Coq’Art: The Calculus of

Inductive Constructions. Texts in theoretical computer science, Berlin,
New York: Springer, 2004.

[7] G. Hutton, “Fold and unfold for program semantics,” in In Proc. 3rd

ACM SIGPLAN International Conference on Functional Programming,
(Baltimore, Maryland), pp. 280–288, ACM Press, 1998.

[8] R. A. Kowalski, “Predicate logic as programming language,” in Informa-

tion Processing (IFIP), pp. 569–574, North-Holland Publishing, 1974.

[9] L. Kallmeyer, Parsing Beyond Context-Free Grammars. Cognitive
Technologies, Springer Heidelberg, 2010.

[10] C. Matthews, An Introduction to Natural Language Processing Through

Prolog. White Plains, NY, USA: Longman Publishing, 1st ed., 1998.

[11] J. A. Brzozowski, “Derivatives of regular expressions,” Journal of the

ACM, vol. 11, pp. 481–494, Oct. 1964.

[12] F. Pereira and S. Shieber, Prolog and Natural-Language Analysis.
Microtome Publishing, 2002.

[13] R. Haberland and S. Ivanovskiy, “Dynamically allocated memory veri-
fication in object-oriented programs using prolog,” in Proc. of the 8th

Spring/Summer Young Researchers’ Colloquium on Software Engineer-

ing (SYRCoSE 2014) (A. Kamkin, A. Petrenko, and A. Terekhov, eds.),
pp. 46–50, 2014.

[14] R. M. Burstall, “Some techniques for proving correctness of programs
which alter data structures,” in Machine Intelligence (B. Meltzer and
D. Michie, eds.), vol. 7, pp. 23–50, Scotland: Edinburgh University
Press, 1972.

[15] J. Berdine, C. Calcagno, and P. W. O’Hearn, “Symbolic execution with
separation logic,” in Programming Languages and Systems, 3rd Asian

Symposium, (Tsukuba, Japan), pp. 52–68, November 2005.

[16] E. Denti, A. Omicini, and A. Ricci, “Multi-paradigm Java-Prolog
integration in tuProlog,” Science of Computer Programming, Elsevier

Science, vol. 57, pp. 217–250, Aug. 2005.

[17] D. Grune and C. J. H. Jacobs, Parsing Techniques: A Practical Guide.
Upper Saddle River, New Jersey, USA: Ellis Horwood publ., 1990.

[18] T. Parr, The Definitive ANTLR 4 Reference. The Pragmatic Programmers,
2012.

[19] R. Haberland and K. Krinkin, “Verifikaciya ob’ektno-orientirovannyx
program s pomo’shu prologa (russian),” in Izvestiya LETI, vol. 11, 2015.

[20] R. Haberland and I. L. Bratchikov, “Transformation of XML documents
with Prolog,” in Advances in Methods of Information and Communica-

tion Technology, vol. 10, pp. 99–111, 2008.

	I Introduction
	II Current approaches
	III Points-to heaplets
	IV Abstract predicates
	V Interpreting abstract predicates over heap as syntax recognition
	VI Translation of Horn-clauses into grammar
	VII Parsing
	VIII Properties
	IX Implementation
	X Conclusions
	References

