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COMMUNICATION-SPACE TRADEOFFS
FOR UNRESTRICTED PROTOCOLS*

PAUL BEAME!, MARTIN TOMPAT, anp PETYUAN YAN?

Abstract. This paper introduces communicating branching programs and develops a general technique for
demonstrating communication-space tradeoffs for pairs of communicating branching programs. This technique is then
used to prove communication-space tradeoffs for any pair of communicating branching programs that hashes according
to a universal family of hash functions. Other tradeoffs follow from this result. As an example, any pair of communi-
cating Boolean branching programs that computes matrix-vector products over GF(2) requires communication-space
product 2 (n?), provided the space used is o(n/ log n). These are the first examples of communication-space tradeoffs
on a completely general model of communicating processes.
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1. Communication and space. The amount of communication required among pro-
cessors cooperatively performing a computation is often the dominant factor in determining
the efficiency of parallel or distributed systems, in both practical and theoretical terms. In
addition, communication complexity has found surprising applications in the complexity of
Boolean circuits (Karchmer and Wigderson [14], Raz and Wigderson [19]), Boolean decision
trees (Hajnal, Maass, and Turdn [13]), combinatorial optimization (Yannakakis [23]), VLSI
(Aho, Ullman, and Yannakakis [3], Lipton and Sedgewick [16], Mehlhorn and Schmidt [18],
Yao [25]), and pseudorandom number generators (Babai, Nisan, and Szegedy [5]).

Nearly all the previous work on the communication complexity of various problems has
focused on their communication requirements alone, in the absence of any limitations on
the individual processors. Lam, Tiwari, and Tompa [15] initiated the study of communication
complexity when the processors have limited work space. As is customary, the systems studied
consist of two communicating processors that are given private inputs x and y, respectively,
and are to output some function f(x, y). With no restriction on the workspace it is impossible
to prove superlinear lower bounds on the amount of communication, since one processor can
send its entire input to the other, which then computes and outputs f(x, y). In contrast, Lam,
Tiwari, and Tompa proved several nonlinear lower bounds on communication in the straight-
line model, when space is limited. For example, one of their results of particular relevance to
what follows is that multiplication of an n x n matrix by an n-vector in the Boolean straight-
line model with one-way communication requires communication C = ®(n?/S) when the
processors’ workspace is restricted to S.

In this paper we remove the restrictions of straight-line computation and one-way com-
munication, proving for the first time communication-space tradeoffs on a completely general
model of communicating processes. This result is analogous to Borodin and Cook’s time-space
tradeoff for sorting on a general sequential model [7].

More specifically, we introduce the notion of communicating branching programs. We
use these to demonstrate that if one of the branching programs is given a member # of a
universal family of hash functions (Carter and Wegman [9], [10]) and the other is given x
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and their goal is to compute 4 (x) cooperatively, then their communication C and space S
must satisfy the tradeoff CS = Q (nm), where A maps n-bit inputs to m-bit outputs, provided
S = o(n/logm). As an example, any pair of communicating Boolean branching programs
that multiplies an n x n matrix by an n-vector over GF(2) satisfies CS = Q(n?), provided
S = o(n/logn). Similar applications hold over more general finite fields and for other hash
functions such as arithmetic over large finite fields, convolution, and matrix multiplication.
If a single processor can compute f(x, y) in time C and space S, then a system of
two processors can compute f(x, y) in communication O(C) and space O(S), simply by
communicating the result of every instruction executed by either. Thus, the lower bounds
outlined above imply the corresponding time-space tradeoffs of Grigoriev [12] for straight-
line programs and Abrahamson [2] for branching programs. The converse, however, is false.
Whereas the time T and space S must satisfy 'S = €2 (n*) when computing the discrete Fourier
transform [2], [21], [27] or sorting [6], [8], [21], Lam, Tiwari, and Tompa [15] demonstrated
that both of these functions can be computed in linear communication steps and O (logn)
space simultaneously. Thus, these results strictly generalize previous time-space tradeoffs.

2. Communicating branching programs. The general framework for dealing with prob-
lems of two party communication requires an accurate notion of both the computational power
of the two parties involved and their method of communicating with each other. A restricted
model in which each party executes a straight-line program was defined by Lam, Tiwari, and
Tompa [15]. In their model each straight-line program is augmented with send and receive
instructions. They leave open the question of defining an appropriate nonoblivious model.

Since branching programs have proved to be useful sequential models for the simultaneous
measure of time and space [1], [2], [6], [7], [8], [27] it is natural to use them to model the
communicating parties. Making the analogous changes to branching programs that Lam,
Tiwari, and Tompa made to straight-line programs leads to the following model.

A communicating pair of (Boolean) branching programs consists of two branching pro-
grams, known as the X-program and the Y -program, that have input vectors x € X = {0, 1}"¥
and y € Y = {0, 1}, respectively. The X-program is a labeled directed acyclic graph with a
designated start node, and each of whose nodes has outdegree O or 2. Each node of outdegree
2 is labeled either by an index in {1, ..., nx} or by receive, and its two emanating edges are
labeled O and 1, respectively. In addition to its O or 1 label, an edge may be labeled either by
an output statement of the form z; = 0 or z; = 1 or a communication statement of the form
send(0) or send(1). The Y-program is defined analogously.

The pair of branching programs computes a function f : X x ¥ — Z C {0, 1}5"Z in
the following natural way. Each program accesses its portion of the input and, starting at its
start node, operates like a conventional branching program by following the edge labeled x;
(respectively, y;) when encountering a node labeled i. Outputs are produced according to the
output label on this edge, if any. When a program encounters a receive node it waits until
the other program traverses an edge labeled send(b), and then the receiving program follows
the edge labeled b. Similarly a program executing a send is blocked until the other program
reaches a receive node. When a program reaches a node of outdegree 0, it halts. We require
that each output bit may only be produced once on any given input pair. The function f is
computed correctly on inputs x and y if the union of the outputs produced by the two programs
comprises the bits of f(x, y).

The space of each branching program is the base 2 logarithm of the number of its nodes.
(This is the standard definition for branching programs [8], motivated by the fact that each
node represents a different configuraiion of the program.) The space of the pair of programs is
the maximum of the space of the two branching programs, and the communication is the length
of the longest sequence of send-receive pairs executed on any input (x, y). The definitions
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can be generalized to communicating R-way branching programs for any R [7].

This model is a very natural one and a very general one as well. It can simulate, for
example, two communicating space-bounded random access machines with a common write-
only area for their output values.

One aspect of communicating branching programs that is somewhat subtle is the way in
which output values are produced. Since all branchings of one of the programs that do not
affect its communication with the other program are hidden from that other program, output
values may be produced by one branching program without the explicit knowledge of the other
branching program. In fact, all the bits communicated by the pair of branching programs may
not be sufficient to determine the value of the function. However, the model in which all
output values are communicated explicitly is a useful special case. We say that a pair of
communicating branching programs is open if and only if the natural encoding of each output
statement produced by either processor is communicated bit by bit to the other processor.

3. The general lower bound. The technique we develop here is an extension of the
technique of Borodin et al. [7], [8] for time-space tradeoffs on sequential branching programs.
Being purposely vague for the moment, their technique requires the following:

(1) a probability distribution on the set of inputs such that, with high probability, a large
number of output bits are produced on any given input, and

(2) a proof that, given the distribution in (1), for any way of fixing a limited number of
input variables, the probability that an input whose variables are so fixed produces a given set
of k output bits whose values are fixed in any given way is exponentially small in .

We develop a similar pair of conditions that allow proofs of communication-space trade-
offs. We first state our general technique for open pairs of communicating branching programs
since this is the most natural argument. Then we outline how it can be extended to arbitrary
pairs of communicating branching programs.

In order to motivate the properties that are appropriate for showing lower bounds for pairs
of communicating branching programs, we first develop some facts about their operation.

Fix some ¢ > 0 and any pair (¥, v) of nodes in the pair of communicating branching
programs, u in the X-program and v in the Y -program, and consider the action of the branching
programs on input pair (x, y) starting at (u, v). For each input pair (x, y) we can follow the
paths that the computation would take starting at (1, v) and stop when either a total of ¢ bits
of communication have been sent in both directions or the programs halt. (A third possibility
is that there is no consistent computation on input (x, y) starting at (¢, v), but any input
(x, y) that reaches (u, v) will have a consistent computation. In the following definitions, we
consider such an input pair (x, y) for which there is a consistent computation.) This produces
a string of up to ¢ communication bits, with fewer than c bits only if the programs halt before
¢ bits of communication have been sent. Let y, ,,(x, ») be the following representation of
this sequence of up to ¢ bits communicated on input (x, y) starting at (i, v): represent each
communicated bit b by two bits, using the extra bit to indicate which program sent 5. For each
string & € {0, 1}52¢ we can define a set

Ry ={(x, ) e X XY |y;,,(x,»=a}

Aset R € X x Y is a rectangle if and only if there are sets 4 € X and B C Y such that
R =4 x B.

LEMMA 3.1. Let (u, v) be a pair of nodes in a pair of communicating branching programs,
u in the X-program and v in the Y-program. The elements of {Rg/,v) | @ € {0, 1}=%) are
disjoint rectangles in X x Y whose union contains all input pairs (x, y) that reach (u, v).

Proof. The fact that the sets R{, ) are disjoint is immediate from their definition. Itis also

u,v

clear that if (x, y) reaches (u, v), then y(‘j,'v) (x, y) = « is defined and so (x, y) € R‘(’jlyv). The
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fact thateach R{;,  is arectangle follows by standard arguments in communication complexity
(Yao [24]). It is proved inductively on the prefixes of «. 0

We are now ready to state properties of a function that make it possible to prove communi-
cation-space tradeoffs. These properties will depend on certain parameters p, m, 8, q, a, and
K that will be set in later applications.

If f(x, y) = z, we will call the bits of x and y input values and the bits of z output values.
For a function f : X x Y — Z and a distribution D on X x Y, the two properties are as
follows:

Property A. There are 0 < p < 1 and a positive integer m such that
Prp[ f(x, y) has at least m output values ] > p.

(Recall that, as (x, y) varies, f(x, y) may have varying lengths.)

Property B. Thereare 0 < 8 < 1,0 < g < 1,a > 2, and a positive integer K such that,
for all positive integers £ < K, the following holds: Let R € X x Y be any rectangle such
that Prp[(x, y) € R] > g. Then, for any set V' = {z;, = by, ..., z;, = by} of k output values,

Prp( f(x, y) is consistent with V' | (x, y) € R] < aﬁk.

THEOREM 3.2. Suppose that for f: X x Y — Z there is a distribution D on X x Y
such that Properties A and B hold with p > max(a2~5%!, 2ap™). Then any open pair P of
communicating branching programs computing f using space S and communication C must
satisfy

C-§=Q(mlog,(1/8) min(K, log(p/q))).

(Note that, although the hypothesis p > a275*! refers to the space bound, it is even
weaker than the relatively innocuous assumption p > 2a/n, where n is the number of input
bits, since reading this many bits requires S > log, n. Note also that, since there are 2¢ choices
for k output values and Property B must hold for all choices of output values, 2¥af* > 1.
Thus, log,(1/8) < log,2+ 1/k < 2, so log,(1/8) contributes at most a constant factor to
the lower bound. However, 8 may be close to 1, so the log,(1/8) factor in the lower bound
may be close to 0.)

Proof. Let P be an open pair of communicating branching programs computing f, and
let C and S be the communication and space, respectively, used by P.

Case 1 (S+2 > log,(p/q)/4). As explained above, log,(1/8) < 2. By Property A and
the fact that P is open, C > m. Thus,

6CS > 2C(S +2) >mlog,(1/B)log,(p/q)/4.

Case 2 (S + 2 < logy,(p/q)/4). Let ¢ = min(C,|}log,(p/q) —S—1]) >
min(C, |28 +4 — S —1]) > 0. Fix any pair (¢, v) of nodes, u in the X-program and v
in the Y-program of P. Fix a € {0, 1}=% such that & determines k < K output values, that
is, o contains the encoding of £ output values. Let (x, y) be chosen at random according to

D. Suppose that Prp[(x, y) € R{, ,,]1 > q. By Property B, Lemma 3.1, and the fact that P
correctly computes f,

) Prp[(x, y) reaches (1, v) | (x, y) € R‘(’i,,v)] < aﬂ".

Call ng) tiny if and only if Prp[(x, y) € R(, )] < q. Let T, ) be the set of o such that
R, ) is tiny. For fixed (4, v) and varying o, Lemma 3.1 says that the sets Rf, ) are disjoint
and their union contains all pairs (x, y) that reach (1, v). Let

W = {a € {0, 1}=* | « determines k output values}.
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For all (u,v)andall k£ < K,

Prp[(x, y) reaches (u, v) A )/(”u,v) (x, y) determines k output values]
= Z Prp[(x, y) reaches (u, v) A (x,y) € R, ]

aelW
= Y Prpl(x, y) reaches (u,v) A (x,)) € R, )]
‘XGW\Tlu,w
+ Y Prp[(x, y) reaches (u,v) A (x,y) € R, )]
(2) €T,y
< ) Prpl(x, y) reaches (u,v) A (x,y) € RE, 1+ [Tuwlg
O‘EW\T(u,n)

<2*flg+ Y Prpl(x, y) reaches (u,v) | (x,) € R, ]
€ W\Tww 5 Prp[(x, y) € ng)]
< 22c+1q +aﬂk Z Prpl(x, y) € th.v)]
D(EW\T(u\v)
5 aﬂk + 22L‘+lq,

the last two lines following from inequality (1) and the fact that the sets R, , are disjoint,
respectively.

Inequality (2) is used in two different ways. For the first, by applying it to the start nodes
u and v of their respective branching programs, we have

3) C > min (K, t% log,(p/q) — S — IJ) .

For assume to the contrary that C < K and C < I_% log,(p/q) — S — 1_|. Then by the
definition of ¢, ¢ = C. Now choose £ = m. By Property A and the fact that P is open, k =
m < C < K, so inequality (2) holds. By the definition of ¢, 2%¢+lg < 2loe(p/0)=2+1g — p /3
so inequality (2) and Property A together yield p < af” + 2°°t!q < af™ + p/2. That is,
p/2 < aB™, which contradicts the hypothesis p > 2a8™.

Now let £ = min(K, m/ [C/c] — 1) in inequality (2). Suppose P uses exactly C’ bits
of communication on input (x, y). Divide this sequence of C’ bits into [C’/c] segments,
each consisting of ¢ consecutive bits of communication (except possibly the last segment).
If f(x, y) has at least m output values, then (x, y) reaches some pair (#, v) of nodes such
that y;, , (x, y) determines at least m/ [C'/c1 —1>m/[C/c] — 1 = k output values, for
otherwise fewer than m output values are produced by P on input (x, y). (The —1 term
accounts for the possibility that an output crosses a segment boundary.) Therefore, since
k < K and there are at most 22° node pairs (, v),

IA

Prp[(3u, v)((x, y) reaches (u, v) A
Yiu.vy (¥, ) determines k output values)]
zzs(aﬂk + 220+1q) — 22Saﬂk + 22S220+1q < 22Saﬂk + p/2’

p

IA

by the definition of c. Solving this yields 2S5 +1og,(2a/p) > klog,(1/B). Since p > a2~5+!,
it follows that 3.5 > klog,(1/8).

Case2.1 (K <m/[C/c]—1). Thenk = K. By Property A and the fact that P is open,
C=>=m,s03CS >mKlog,(1/8) > mKlog,(1/8).

Case22 (K >m/[C/c]—1). Thenk+1=m/[C/c] = mc/(C +c), so
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12CS > 6(C +¢)S

> 2(C + o)klogy(1/8)
(C+ o)k +1)log,(1/B)
mclog,(1/8)

1
m log,(1/8) min (C, ‘j log,(p/q) — S — 1J>

=
=

v

“
&)

%

1
m log,(1/8) min (K, LE log,(p/q) — S — 1J)

mlog,(1/B) min(K, log,(p/q)/4)
mlog,(1/8) min(K, log,(p/q)/4).

IV 1V

Inequality (4) follows from inequality (3), and inequality (5) from the condition of
Case 2. a

Theorem 3.3 extends Theorem 3.2 to the case when the pair of communicating branching
programs is not necessarily open.

THEOREM 3.3. Suppose that for [ : X x Y — Z there is a distribution D on X x Y such
that Properties A and B hold with p > max(a2~5*!, 2aB™). Then any pair P of communi-
cating branching programs computing f using space S and communication C must satisfy

(C+mlogm)-S=SQ(mlog,(1/8) min(K, log(p/q))).

Proof. For any pair P of communicating branching programs, let the observable behavior
of P on input (x, y) be the sequence of communicated bits and up to the first m output values
produced on (x, ) by P. Because of the structure of branching program pairs, there is no
ambiguity about the order in which communication steps occur. However, the interleaving
of the two programs’ output values between communication steps is not determined, so for
definiteness we assume that, between communication steps, outputs in the observable behavior
produced by the X-program precede those produced by the Y-program. Since each output
value is produced only once by the pair of branching programs, it is easy to see that, for any
input pair, the observable behavior may be encoded using O(C + m log m) bits, where each
output value is encoded using O(log m) bits that specify (1) that it is an output rather than a
communication, (2) which output bit is being produced, (3) its value, and (4) which program
produced it. Let 2C* be the maximum, over all (x, y), of the length of the observable behavior
on input (x, ). (We use 2C* as the analogue of the 2C bits used in Theorem 3.2 to encode
the communication in the strings y, ,,(x, »).)

The proof of Theorem 3.3 is analogous to that of Theorem 3.2, except that the commu-
nication C is replaced by the number of bits needed to describe the observable behavior, C*.
The main technical difference is in the definition of yg, , (x, y), which, instead of being the
string of length 2¢ describing the next ¢ bits of communication on (x, y) starting at (i, v), is
now the string of the next 2¢ bits of the observable behavior of P on (x, y) starting at (i, v).
Since outputs are included in the observable behavior, the string y;, ,, (x, y) determines output
values just as the communication did in the case of an open pair of branching programs. The
crucial fact, which is easily verified, is that the new R{, ) based on this definitionof y;, ,,(x, »)
still are disjoint rectangles that cover the set of input pairs that arrive at (i, v).

The remainder of the proof is identical to that of Theorem 3.2 except for a couple of points.
The part of the proof of Theorem 3.2 where the communication is divided into segments of
length c is slightly different. When ¢ bits of communication are replaced by 2c¢ bits of
observable behavior, it is no longer obvious that every boundary between segments of the
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computation on (x, y) can be chosen to be at a pair of nodes (u, v) since an output value may
be produced along an edge and this is O(logm) bits of observable behavior as opposed to
the single bit of communication that may occur on an edge. However, because the argument
ignores any output whose production overlaps the boundary, if a boundary would naturally fall
in the middle of an edge, then the boundary may be shifted past the edge to the subsequent node
with no loss in the argument. The remaining difference is that, in the places where Property A
and openness were used to show that m < C, in the modified proof m < C* follows directly
from Property A and the definition of C*. The conclusion of the argument is exactly the same
with C* replacing C as required. o

It is not too hard to see how the argument and Properties A and B can be modified to deal
with R-way branching programs (Borodin and Cook [7]) or when the output values described
in Properties A and B are of a restricted type (as in, for example, Abrahamson [1]).

4. Hash functions. We now apply the lower bound technique of the previous section
to universal families of hash functions (Carter and Wegman [9], [10]). This will allow us to
obtain lower bounds for a variety of interesting computational problems. We make use of
a beautiful analog due to Mansour, Nisan, and Tiwari [17] of a lemma of Lindsey [4], [11]
concerning Hadamard matrices.

Our results (and those in [17]) use the more restrictive definition of a universal family of
hash functions given by Carter and Wegman in [10] (which they called “strongly universal”
in [10]) rather than the somewhat broader definition given in [9]. To emphasize the nature of
this stronger requirement we will call such families pairwise universal.

A pairwise universal family H of hash functions from a set X to a set Z satisfies the
following two properties for # chosen uniformly at random from H:

1. Forany x € X, h(x) is uniformly distributed in Z.
2. For any x,x’ € X with x # x’ and for any z,z’ € Z, the events A(x) = z and
h(x") = ' are independent.

We say that a pair of communicating branching programs computes the universal family
of hash functions A if and only if it computes the function f : X x H — Z given by
S, h) = h(x).

Of the two properties of a function required to apply our lower bound technique, Property
B is the more difficult to prove. The following lemma on pairwise universal hash functions is
critical in proving Property B for families of hash functions.

LEMMA 4.1 (Mansour, Nisan, and Tiwari [17]). Let H be a pairwise universal family of
hash functions from Xto Z. Let AC X, BC H,and E C Z. Then

|E| \H|-|E|
P —_—— < — |
Pl € Bl = o < B 12

X€

This lemma is used by Mansour, Nisan, and Tiwari [17] to prove time-space tradeoffs for
computing hash functions. A somewhat weaker form of this lemma was proved independently
by Yan [22] for the special case when the family of hash functions is given by matrix-vector
product over GF(2).

THEOREM 4.2. Let P be an open pair of communicating branching programs computing a
pairwise universal family of hash functions from X to Z using communication C and space S.
Letn = |log, | X||. m = |log, |Z|| — 1, and Z € {0, 1}="*!, where | < min(log, n, m) —3
is included to allow some slack in the output encoding. Then C - S = Q(nm/1).

Proof. Let D be the uniform distribution on pairs (x, #). Since #(x) is uniformly dis-
tributed in Z, Property A is satisfied with p = 1/2. Let R = 4 x B satisfy |R| > 2K-"| X x H|,
where K = n/2. For any set V = {z;, = by,...,z, = by} of & < K output values, let
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E C Z be the set of vectors consistent with V. At most 2" —*¥+1 yectors are in E so that
|E|/|1Z] < 2~%=D, Then Lemma 4.1 states that

. . . |E| |H| |E|
Prp[h(x) is consistent with V' | (x,h) e R] < — + . [— + —
|Z] IRl |Z]
< 2=k=D +1/ /2K"‘|X|2k“’
< 21+1 . 2—/(’

Thus Property B is satisfied with ¢ = 27"/2, B = 1/2, a = 2'*!, and K = n/2. Since
I < min(logy,n,m) — 3, p = 1/2 > 2a/n and p > 2aB"™, so Theorem 3.2 implies that
C-S=Qmm/l). g

Theorem 4.3 extends Theorem 4.2 to the case in which the pair of communicating branch-
ing programs is not necessarily open.

THEOREM 4.3. Any pair of communicating branching programs computing a pair-
wise universal family of hash functions from X to Z with communication C and space
S = o(n/(Ilogm)) satisfies C - S = Q(nm/1), where n = |_log2 |X|J ,m= |_log2 |Z|J -1,
and Z < {0, 1}="* for | < min(log, n, m) — 3.

Proof. Using Theorem 3.3 in place of Theorem 3.2 in the proof of Theorem 4.2,

(C+mlogm)S = Q(nm/l).

Since, by hypothesis, Sm logm = o(nm /1), the conclusion CS = Q(nm/[) follows. o

Similar statements to Theorem 4.3 can be made for each of the following corollaries. We
simply state our results for open pairs of branching programs for convenience.

In the following corollaries, we can always choose / to be a constant.

COROLLARY 4.4. Any open pair of communicating branching programs computing the
product of an n x n matrix and an n-vector over GF(2) requires communication C and space
S such that C - § = Q(n?).

COROLLARY 4.5. If r > 2", then any open pair of communicating branching programs
computing f : GF(r) x GF(r)> — GF(r) given by f(x, (a,b)) = a - x + b (in GF(r))
requires communication C and space S such that C - S = Q(n?).

The next two corollaries follow from Theorem 4.2 exactly as shown by Mansour, Nisan,
and Tiwari [17] for time-space tradeoffs.

COROLLARY 4.6. Any open pair of communicating branching programs computing the
m-bit convolution of an n-bit string with an (n +m — 1)-bit string requires communication C
and space S such that C - S = Q(nm).

COROLLARY 4.7. Any open pair of communicating branching programs computing the
product of two n x n matrices over GF(2) requires communication C and space S such that
C-S=Q@m.

Corollaries 4.5, 4.6, and 4.7 are interesting in their own right and because they demonstrate
tradeoffs in cases where the lower bound is greater than the total number of inputs that the two
programs receive.

Using the natural generalization of communicating branching programs to pairs of r-way
branching programs that are allowed to send and receive values in GF(r) one can prove, either
by direct simulation or an analog of Theorem 3.2, the following analog of Theorem 4.2 for
hash functions whose domain and range are vectors over GF(r).

THEOREM 4.8. Any open pair of communicating r-way branching programs computing
a pairwise universal family of hash functions from X to Z requires communication C and
space S such that C - S = Q(nm(logr)/1), where n = |log, | X||, m = |log, 1Z|| — 1, and
Z € (GF(r))="*!, for I < min(log, n, m) — 3.
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This theorem has corollaries analogous to those of Theorem 4.2, such as the following.
COROLLARY 4.9. Any open pair of communicating r-way branching programs computing

the product of an n x n matrix and an n-vector over GF(r) requires communication C and
space S such that C - S = Q(n*logr).

5. Open questions. It is an interesting question whether or not similar bounds hold for
A-V matrix-vector product. The results of Lam, Tiwari, and Tompa [15] show that such results
do hold in a more restricted model in which the programs are restricted to being oblivious,
i.e., straight-line, and the communication is one-way.

A natural approach to proving such a bound would be to try to prove Properties A and B for
this problem using the distribution D employed by Babai, Frankl, and Simon [4] for proving a
distributional communication complexity lower bound of € (/n) for A-V dot product (i.e., set
disjointness) and by Abrahamson [1] for proving a time-space tradeoff of TS = Q(n'>) on
matrix-vector product. However, this approach cannot yield any interesting communication-
space tradeoff since under this distribution, which chooses each input bit independently to be
1 with probability 1/./n and 0 with probability (1 — 1/4/n), the program with the vector can
simply communicate its value in expected O(/n log n) bits to the matrix program, which can
store this value and perform the rest of the computation on its own.

An alternative approach would be to try to generalize the distribution on inputs that
Razborov [20] used to prove that the distributional communication complexity of the set
disjointness problem is Q(rn). Unfortunately, the fact that this distribution does not set the
values of the inputs to the two programs independently creates serious problems when trying
to generalize from a problem whose input consists of two vectors to a problem with a matrix
and a vector as input. It seems unlikely that one can maintain sufficient independence between
the inputs to the two programs while maintaining sufficient information content in the two
inputs. It may be that the oblivious one-way result is leading us astray, but it seems more
likely that we are unable to generalize it because our technique is fundamentally distributional
in nature.

The question of the communication-space tradeoff for A-V matrix product and GF(2)
matrix-vector product raises another interesting question. Suppose that function f on
X x Y has e-error distributional communication complexity (Yao [24], [26]) at least D..
Under what circumstances does the function F on X" x Y given by F((x1,...,X,),y) =
(f(x1, ), ..., f(xx, ) have communication-space tradeoff Q2 (n D)? Asshownby Yao [24],
[26] and extended by Babai, Frankl, and Simon [4], a lower bound D, > k can be obtained
by showing that, for an appropriate distribution on X x Y under which f takes on each value
at least a constant fraction of the time, any rectangle R, in which the probability of f(x, y)
taking on a particular value is less than €, must have total probability at most 1/2%. This
condition is very similar to our Property B, the important difference being that we require that
this be true for € much smaller than a constant, that is, for ¢ = /8" for B < 1. If the only
rectangles 4 x B in X" x Y had A of the form 4; x --- x A4,, then there would be a direct
translation of distributional communication complexity lower bounds for f to those for F. It
is not clear what conditions on f will allow the handling of general 4 as well. The technique
of Mansour, Nisan, and Tiwari [17] and Yan [22] implies that it is sufficient to have not only a
small probability of a value in such a rectangle R but also a small variance in the probability
of the value occurring in the rows (or columns) of R.
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