



Abstract- Phasor Measurement Units (PMUs) are being

rapidly deployed in power grids due to their high sampling

rates. PMUs offer a more current and accurate visibility of

the power grids than traditional SCADA systems.

However, the high sampling rates of PMUs bring in two

major challenges that need to be addressed to fully benefit

from these PMU measurements. On one hand, any

transient events captured in the PMU measurements can

negatively impact the performance of steady state analysis.

On the other hand, processing the high volumes of PMU

data in a timely manner poses another challenge in

computation. This paper presents PDFA, a parallel

detrended fluctuation analysis approach for fast detection

of transient events on massive PMU measurements

utilizing a computer cluster. The performance of PDFA is

evaluated from the aspects of speedup, scalability and

accuracy in comparison with the standalone DFA

approach.

Index Terms - detrended fluctuation analysis (DFA), parallel

computing, phasor measurement unit (PMU), event detection,

Amdahl’s Law.

I. INTRODUCTION

Sustainability in power systems is so vital that an enormous

effort must be made to avert power system breakdown

scenario. The blackout in North East America (August, 14

2003) and previous critical events all over the world are

driving the industry to develop more automatic, adaptive and

efficient computational tools for power system stability and

monitoring analysis. It is becoming highly impossible for

traditional supervisory control and data acquisition (SCADA)

systems to predict or avert eventualities in a timely manner

which may lead to power system catastrophes [1, 2, 9].

One solution to these challenges is the development of the

Wide Area Monitoring System (WAMS). WAMS consists of a

network of synchronized PMUs [1, 5] which provide a high

sampling rate up to 60 samples per second that can be used to

enhance the reliability, stability and security of power

systems. For this reason PMUs are being rapidly deployed in

power systems globally. It is worth noting that the current

standard IEEE C37.118 only defines PMU performance under

stead-state conditions of power systems, leaving transient

This research is supported by the UK EPSRC under grant EP/K006487/1

and National Grid.

performance undefined [7]. Any transient or dynamic events

captured by PMU devices can distort the steady-state view

around the network and such incidents should be detected and

isolated for alternative analysis. As a results, a number of

research works have been proposed for detection of PMU

events [10, 11, 13, 15, 16, 17].

We have also conducted some research for detection of

transient PMU events using detrended fluctuation analysis

(DFA) [12]. However, processing the high volumes of PMU

data in a timely manner necessitates a high performance and

scalable computing infrastructure. For this purpose we have

parallelized the work presented in [12] using the MapReduce

programming model [3, 4] which has become a de facto

standard software technology for big data analytics

capitalizing on a cluster of inexpensive commodity computers.

This paper presents the design and implementation of the

parallel detrended fluctuation analysis (PDFA) using the

MapReduce model. The performance of the PDFA is

compared with the sequential DFA in terms of efficiency and

accuracy.

The remainder of this paper is organized as follows. Section

II presents an overview of the deployment of WAMS in the

UK National Grid. Section III briefly introduces the sequential

DFA method. Section IV presents the design and

implementation of the parallel DFA method using the

MapReduce model. Section V evaluates the performance of

the PDFA and analyzes its speedup in computation. Section

VI concludes the paper and points out some future work.

II. WIDE AREA MONITORING SYSTEM

The WAMS at the UK National Grid is in the early stages

of its deployment. PMUs have been installed on the

transmission system of England and Wales through upgrades

to digital fault recorders and the installation of 4 standalone

devices. The majority of the PMUs are configured to report

back to a central Phasor Data Concentrator (PDC), installed in

the national control centre, for short-term storage and online

oscillation analysis. Alarms are sent from this system in real-

time to the energy management system to alert the operators

when the system is believed to be approaching instability.

The primary role of the system is to monitor any oscillatory

behaviour between the generators in Scotland and those of

England and Wales. An inter-area mode had been previously

identified at around 0.5Hz involving all of the GB system and

remains a cause for concern across a major system constraint

boundary; two 120km 400kV double circuits that connect the

Scottish Network with the North of England, which at present

is considered to hinder the transfer of future renewable

Big Data Analytics on PMU Measurements

Mukhtaj Khan

1
, Maozhen Li

1
, Phillip Ashton

1
, Gareth Taylor

1
 and Junyong Liu

2

1
School of Engineering and Design, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK

2
School of Electrical Engineering and Information Systems, Sichuan University, 610065, China

Email: Mukhtaj.Khan@brunel.ac.uk

generation in Scotland to the main demand centres in England

and Wales.

A typical architecture of WAMS is shown in Fig.1 where

PMUs collect the data from various sources of power systems.

The data sets collected by PMUs are delivered to a local PDC.

The data collected by a local PDC is transmitted to a master

database called super-PDC. The consolidated data sets

collected by super-PDC are fed into analytics applications

such as state estimation, stability assessments, data

visualization, real-time monitoring and control [6].

Fig.1. WAMS architecture based on PMUs.

We have installed 2 PMUs at 3-phase 415V AC domestic

supply level to measure power system parameters including

frequency and voltage phasors. Synchrophasor data measured

locally at 50Hz is sent via the Internet from 3 additional UK

universities (i.e. Strathclyde, Manchester and Birmingham) to

a server in Ljubljana, Slovenia hosted by ELPROS. Fig.2

shows a snapshot of the system. The PMUs are well

geographically distributed across the Scottish to England

system and give good visibility over the impact of any system

events through the Anglo-Scottish connection. The PMUs,

connected to voltage only, on the domestic supply, are

therefore measuring voltage (magnitude and phase), frequency

and rate of change of frequency.

 We have installed openPDC software [14] to collect the

data from installed PMUs. openPDC is an open system that

was designed by the Tennessee Valley Authority (TVA) and

administered by Grid Protection Alliance (GPA). The

openPDC is used to collect, manage and process real-time

synchrophasor measured values from various sources.

Fig.2. A snapshot of PMU deployment at Brunel.

III. DETRENDED FLUCTUATION ANALYSIS

In this section, we give a brief description on the

implementation of the sequential DFA method presented in

our previous work [12].

The first step is to remove any DC offset from the original

signal x using Eq.(1).

][)(
1

xxky
k

i

i 


 (1)

where

 k is number of samples.

 ix is the
thi sample of a signal x .

 x is the mean value of the overall signal from

ki  .

)(ky is the integrated signal.

 In the second step, the integrated signal)(ky is equally

divided into blocks with a size of n . The trend of each block

)(kyn is computed using a least square first-order linear

approximation.

In the third step, the detrended signal is removed from the

integrated signal by subtracting the local trend)(kyn denoted

in Eq. (2).

)()()(k
n

ykyke  (2)

In the final step, the root-mean-square fluctuation of (2) is

then computed using Eq. (3).

 


n

k

ke
n

nF
1

2)]([(
1

)((3)

Here n represents the total number of samples in the signal.

The value of fluctuation is then used to detect the presence of

incident or gross measurement error captured by the PMUs.

The greater the value of F, the higher the variance in the

signal.

IV. THE DESIGN OF PDFA

In this section we present the design and implementation of

the PDFA for event detection on a large amount of PMU data

using a MapReduce computer cluster. We first give a brief

introduction to the MapReduce programming model, and then

present PDFA in detail.

A. MapReduce Programming Model

MapReduce is a parallel and distributed programming

model originally developed by Google for processing massive

amounts of data in a computer cluster environment [3, 4]. Due

to its remarkable features such as fault-tolerance, simplicity

and scalability, MapReduce has become a major software

technology in support of data intensive applications [19].

MapReduce is a highly scalable model because thousands of

commodity computers can be used as an effective platform for

parallel and distributing computing. As shown in Fig.3, the

MapReduce model divides the computation into Map and

Reduce functions where the Map function is responsible for

splitting input data (files) into small segments while the

Reduce function collects and combines the results. In the Map

phase, the job is divided into several Map tasks and executed

in parallel on cluster nodes. Each Map task is produce

intermediate result in the form of key/value pairs and store in

local storage. In the Reduce phase, the Reduce function collect

the intermediate result and combine the values all together

corresponding to single key to produce the final result. The

Map and Reduce functions are executed independently.

Fig.3. MapReduce model.

B. MapReduce Implementation with Hadoop

The MapReduce programming model has been

implemented in a number of systems such as Mars [20],

Phoenix [21], Dryad [22] and Hadoop [8]. Hadoop is the

most popular implementation of MapReduce and has been

widely employed by the community due to its open source

nature. Hadoop was originally developed by Yahoo to

process huge amounts of data (over 300TB) across a cluster

of low-cost commodity computers [23]. It is worth noting

that Hadoop not only works in computer cluster

environments, but also in cloud computing systems such as

Amazon EC2 Cloud [18]. Hadoop has its own file system

called Hadoop Distributed File System (HDFS) [24]. HDFS

is designed to store massive amount of data (terabytes or

petabytes) over a large number of computers cluster and

provide fast, scalable access to data. HDFS follows a client-

server architecture where the name node (NameNode) is the

server and the data node (DataNode) is a client. HDFS has

only one NameNode and multiple DataNodes. HDFS

automatically splits input file into an equal-size blocks (64

MB or 128 MB by default) that are distributed across the

DataNodes. Each data block has multiple replicas (3 by

default) and is stored on different data nodes. If the cluster

network topology has more than one rack then the block

replicas will be stored on different rack machines. The

purpose of data replication and distributing on different

machines is to achieve the reliability and availability of data.

The NameNode manages the namespace of the file system

and regulates the client access to files. It does not store data

itself, but rather maintain metadata file that contain

information such as file name, block id, number of replicas,

mapping between blocks and DataNodes on which the

blocks are stored and location of each block replicas. The

DataNodes manages the storage directly attached to each

DataNode and executes Map and Reduce tasks.

The JobTracker runs on the name node (NameNode) and

is responsible for dividing user jobs into multiple tasks,

scheduling the tasks on the data nodes (DataNode),

monitoring the tasks and re-assigning the tasks in case of a

failure. The TaskTracker runs on DataNodes receiving the

Map and Reduce tasks from JobTracker and periodically

contacts with JobTracker to report the task completion

progress and requests for new tasks.

C. PDFA Implementation

The parallel detrended fluctuation analysis is implemented

using the Hadoop MapReduce framework, through the

following steps:

Step 1: A large data set is split into a number of small data

blocks such as nBBB ,...., 21 , where n is total number

of data blocks.

Step 2: Each data block is assigned to a Map task. Map tasks

process data blocks in parallel and compute

fluctuation values.

Step 3: Through the Reduce phase, the fluctuation values are

combined and compared with a threshold value to

detect any transient events.

PMU data is collected through the openPDC software and

buffered in a local hard disk. A software application (data

agent) continuously monitors the buffered data. Once the new

data file is created in buffered area, the data agent application

automatically transfers the file to Hadoop HDFS storage. The

HDFS divides the data file into small data blocks, producing

three replicas of each data block and distributing over a cluster

data nodes. As depicted in Algorithm 1, when a user job is

submitted, Hadoop divides the job into multiple tasks. Each

Map task processes one data block at a time in parallel and

computes the fluctuation value (F). The output of each Map

task is stored in a local disk as an intermediate result (IR).

Once the Map phase is completed, the Reduce phase is

initiated to collect the fluctuation values calculated by the Map

tasks and these values are compared with a threshold

value(F>0.2x
310

) for identification of an event. If at any

stage a Map task is failed due to software or hardware

problems, Hadoop will automatically assign the failed task to

another available data node to complete the task.

Algorithm 1: PDFA Implementation.

Input: A PMU data file which will be split into data blocks and

 distributed in a Hadoop computer cluster

Output: Transient events

Mapper:

 // calculates the fluctuation values

 // emits the fluctuation values in form values

Map (fluctuation values):

 data
 window_size  50

 while(!NOB): // Not-End-Block

 PMU buffer  data[sliding window sample-by-sample]

 F DFA(PMU buffer, win_size) //call DFA method

 Emit(F)

 End while

End Map

DFA(x, win): // calculates fluctuation

 While(loop through all boxes):

 



k

i

x
i

xky

1

][)(// remove DC offset

 End while

 While(loop through all boxes):

 Calculate the trend in each box

 End while

 While(loop through all boxes):

 Calculates the value for the straight line, yn(k) in

 each box

 End while

 While(loop upto Nb):

)()()(kynkyke 

 End while

//calculates the fluctuation in each sliding window

 F(n) 


n

k
ke

n 1

2)]([(
1

 return F

End DFA

Reducer:

 // collects the values emitted by mappers

 //emits the event as output

Reduce (values):

 For each val in values

 If (val>threshold)// here val is the fluctuation value

 Emit (event)

 End For

End Reduce

V. EVALUATION AND EXPERIMENTAL RESULTS

We have compared the performance of the PDFA with that

of the sequential DFA from the aspects of both efficiency in

computation and accuracy. In this section we present the

evaluation results.

A. Experiment Setup

The experiments were carried out using a high performance

Intel Server machine. The Intel Server has 4 Intel Nehalem-

EX processors running at 2.27GHz each with 128GB of

physical memory. Each processor has 10 CPU cores with

hyper thread technology enabled in each core. As a result, the

Intel Server machine has a total of 40 CPU cores and can run

up to 80 threads simultaneously. Two disks were configured,

with 320GB and 2TB storage capacity respectively for storing

a large amount of PMU data. Oracle Virtual Box was installed

on the Server for virtualization and 8 Virtual Machines (VMs)

were configured into a computer cluster. We installed Ubuntu

12.04 TLS, CDH4.5, Python3.3, numpy and JDK1.6 on the

VMs. OpenPDC software was installed on a PC to collect the

PMU data.

B. Experimental Results

A number of experiments were carried out to evaluate the

efficiency and accuracy of the PDFA method. From Fig.4 we

can see that the PDFA outperforms the sequential DFA in

computation significantly using 8 VMs. The execution time of

the sequential DFA increases with an increasing number of

data samples, while the execution time of the PDFA almost

keeps consistent.

Fig.4.The efficiency of PDFA.

As shown in Fig.5, the accuracy of PDFA is very close to

that of the sequential DFA, especially in the cases when the

number of data samples is large.

Fig.5. The accuracy of PDFA.

We also evaluated the scalability of the PDFA in terms of a

varied number of both VMs and data samples. Fig.6 shows the

execution times of the PDFA when processing 3 data sets

using a varied number of VMs from 1 to 8. It can be observed

that the execution time of the PDFA on each data set decreases

with an increasing number of VMs employed. It is worth

noting that PDFA performs best in scalability on the largest

data set with 32 million data samples.

Fig.6. The scalability of PDFA.

Based on the results presented in Fig.8, we plotted Fig.7

which shows the speedup of the PDFA in computation when

processing the 3 data sets. Again, the PDFA achieves the best

speedup in computation on the largest data set with 32 million

data samples.

Fig.7. The speedup of PDFA.

VI. CONCLUSION

In this paper, we have presented PDFA, a parallel detrended

fluctuation analysis for detection of transient events on a large

set of PMU data. PDFA builds on the MapReduce model for

data partition and distribution among a cluster of computer

nodes. Experimental results have shown the speedup of PDFA

in computation while keeping a similar level of accuracy in

comparison with the sequential DFA.

 The MapReduce Hadoop framework has over 180

configuration parameters. It has been widely recognized that

the performance of a Hadoop cluster is largely affected by the

varied configurations of these parameters. Following the

works presented in [25, 26], we are currently researching the

methodologies to optimize the performance of Hadoop based

on Starfish [27], a self-tuning system for big data analytics.

REFERENCES

[1]. M. Zima, M. Larsson, P. Korba, C. Rehtanz and G. Andersson ,

“Design aspect for wide-area monitoring and control system”,
Proceedings of the IEEE, vol. 93, no. 5, pp. 980-996, May 2005.

[2]. P. M. Ashton, G. A. Taylor, M. R. Irving, A. M. Carter, and M.

E.Bradley, “Prospective wide area monitoring of the Great Britain
transmission systemusing phasor measurement units,” in Proc. IEEE

Power Engineering Society General Meeting, 2012.

[3]. J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large cluster”. Communication of the ACM, vol. 51, no. 1, pp. 107-133,

January 2008.

[4]. R. Lammel, “Google’s MapReduce programming model –Revisited”,
Science of Computer Programming, vol.70, no.1, pp. 1- 30, 2008.

[5]. M. Rihan, M. Ahmed and M. S. Beg, “Phasor measurement units in the

Indian smart grid”, in Proc. of IEEE Conference on Innovative Smart
Grid Technologies - India (ISGT India), IEEE PES, pp. 261-267, 2011.

[6] M. Hurtgen, J. Maun, “Advantages of power system state estimation

using phasor measurement units”, in Proc. of 16th Power Systems
Computation Conference (PSCC), 2008.

[7]. IEEE Power and Energy Society, IEEE Standard C37.118.2-2011, IEEE

Standard for Synchrophasor Data Transfer for Power System,
December 2011.

[8]. Apache Hadoop, http://hadoop.apache.org [Accessed on 14 August

2013].
[9]. Hauer, J.F.; Bhatt, N.B.; Shah, K.; Kolluri, S., "Performance of

"WAMS East" in providing dynamic information for the North East

blackout of August 14, 2003," in Proc. of IEEE Power Engineering
Society General Meeting, pp.1685-1690 Vol.2, 2004.

[10]. J. Z. Tate, “Event detection and visualization based on phasor

measurement units for improved situational awareness”, PhD Thesis,
University of Illinois at Urbana-Champaign, 2008.

[11]. K. Mei, S.M. Rovnyak, C.ong, “Cluster-based dynamics event location

using wide-area monitoring phasor measurements”, IEEE Transaction
on Power Systems, vol.23, no. 2, pp. 673-679, 2008.

[12]. P.M. Ashton, G.A. Taylor, M.R. Irving, I.Pisica, A.M. Carter, M.E.

Bradely, “A novel application of detrended fluctuation analysis for state
estimation using synchrophasor measurements", IEEE Transaction on

Power Systems, vol.28, no.2, pp.1930-1938, 2013.

[13] J. Interrante, K.S. Aggour, “Applying cluster computing to enable a
large-scale smart grid stability monitoring application”, in Proc. of

IEEE 14th International Conference on High Performance Computing

and Communication, pp. 328-335, 2012.
[14]. OpenPDC, http://openpdc.codeplex.com [Accessed April 2013].

[15]. P. Trachian, “Machine learning and windowed subsecond event

detection on PMU data via Hadoop and the openPDC”, in Proc. of
IEEE Power and Energy Society General Meeting, TVA, USA, pp. 1-

5, 2010.

[16]. S.Sohn, A.J. Allen, S.Kulkarni, W. M. Grady and S.Santoso, “Event
detection method for PMUs synchnrophasor data”, in Proc. of IEEE

Conference Power Electronics and Machines in Wind Application

(PEMWA), pp. 1-7, 2012.
[17] A.J. Allen, S.Sohn, S.Santoso, and W.M.Grady, “Algorithm for

screening PMU data for power system events”, in Proc. of IEEE Int.

Conference on Innovative Smart Grid Technologies, pp.1-6, 2012.
[18]. Amazon Elastic Compute Cloud, Online available:

http://aws.amazon.com/ec2
[19]. M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, A.

Goldberg “Quincy: fair scheduling for distributed computing Clusters”,

in Proc. of the 22nd Symposium on Operating Systems Principles (ACM
SIGOPS), 2009.

[20]. B.He, W.Fang, Q.Luo, N.K. Govindaraju, T.wang.“Mars: MapReduce

Framework on Graphics Processors”, in Proc. of ACM 17th Int.
Conference on Parallel Architectures and Compilation Techniques,

pp.260-269, 2008.

[21]. C. Ranger, R. Raghuraman, A. Penmetsa, G.Bradski, C.Kozyrakis,
“Evaluating MapReduce for multi-core and multiprocessor systems”, in

Proc. of the IEEE 13th Int. Symposium on High Performance Computer

Architecture, pp. 13–24, Feb 2007.
[22]. M.Isard, M.Budiu, Y.Yu, A. Birrell, D. Fetterly, “Dryad: distributed

data-parallel programs from sequential building blocks”, in Proc. of the

European Conference on Computer Systems (EuroSys), pp.59-72, 2007.
[23]. [Yahoo! Launches World’s Largest Hadoop Production Application,

Available online:

 http://developer.yahoo.com/blogs/hadoop/posts/2008/02/yahoo-worlds-
largest-production-hadoop/, [Accessed on 31 March, 2013].

[24]. K. Shvachko, H. Kuang, S. Radia, and R. Chansler, "The Hadoop

Distributed File System", in Proc. of 26th IEEE Symposium on Massive
Storage Systems and Technologies (MSST), pp.1-10, 2010.

[25]. K. Kambatla, A. Pathak, and H. Pucha, "Towards optimizing Hadoop

provisioning in the Cloud", in Proc. of the Workshop on Hot Topics in
Cloud Computing, held in conjunction with the USENIX Annual

Technical Conference, 2009.

[26] S. Babu, "Towards automatic optimization of MapReduce programs", in
 Proc. of the 1st ACM Symposium on Cloud Computing (SoCC), pp.137-

 142, 2010.

[27] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S.
 Babu, "Starfish: a self-tuning system for big data analytics", in Proc. of

 5th Biennial Conference on Innovative Data Systems Research (CIDR),

 pp.261-272, 2011.

