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Abstract—In recent years, intravital skin imaging has been
increasingly used in mammalian skin research to investigate cell
behaviors. A fundamental step of the investigation is mitotic cell
(cell division) detection. Because of the complex backgrounds
(normal cells), the majority of the existing methods cause several
false positives. In this paper, we proposed a 2.5D cascaded end-
to-end convolutional neural network (CasDetNet) with temporal
information to accurately detect automatic mitotic cell in 4D
microscopic images with few training data. The CasDetNet
consists of two 2.5D networks. The first one is used for detecting
candidate cells with only volume information and the second
one, containing temporal information, for reducing false positive
and adding mitotic cells that were missed in the first step. The
experimental results show that our CasDetNet can achieve higher
precision and recall compared to other state-of-the-art methods.

Keywords—mitotic cell detection; cascaded convolutional neural
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I. INTRODUCTION

Division of the cell in adult mammalian epidermis is impor-
tant for maintaining the epidermal structure as these cells are
important for replenishing eliminated keratinocytes [1]. Can-
cer, atopic dermatitis, ichthyosis vulgaris, and skin diseases
disrupt the balance between the proliferation and elimination
of keratinocytes and create abnormal skin structures [2], [3],
[4]. Though detecting the mitotic cell (cell division) is essential
in investigating cell behaviors, the majority of the methods and
experiments were performed with 2D dynamic images that
may overlook the important information can result in wrong
detection. 3D live cell dynamic images (4D images) can be
obtained by using a two-photon microscopy [1]. A typical slice
image of an observed 3D dynamic image is shown in Fig.1,
with blue bounding boxes indicating the mitotic cells (cell
division). Automatic detection of mitotic cells from such 3D
dynamic images (4D images) is a challenging task. Recently,
deep learning architecture has demonstrated the powerful
ability of computer vision tasks by automatically learning
hierarchies of relevant features directly from the input data.
The deep convolutional neural network has been successfully

applied for image classification and object detection, especially
for ImageNet classification competition, which has been the
most successful network for image classification since 2012
[5]. Moreover, Fast Region-based Convolutional Networks
(Fast R-CNN) for object detection and Single Shot MultiBox
Detector (SSD) are powerful methods, both of which have
outperformed several other methods, that use CNN as base
network to perform object detection [6], [7]. However, these
methods are designed for 2D natural image detection. In
the field of mitotic cell detection, varies methods have been
proposed, most of which are based on image binarization [8]
or segmentation of cells [9]. Though those methods is that
they do not require training dataset to train the model, they
require proper alignment between each slice or time sequence
to obtain good results, which is time-consuming. Anat et al.
[10] used a deep learning method called pixel-wised method
to improve detection accuracy and accelerate the computation
time. This method is based on 2D patch classification using
a simple CNN network and takes considerable computation
time. Though we can apply Fast R-CNN and SSD, which are
widely used for object detection in natural images, they will
cause several false positives because the object (mitotic cell)
is similar to the background image (normal cells), as shown
in Fig.1. In this paper, we proposed a 2.5D cascaded end-to-
end convolutional neural network (CasDetNet) with temporal
information for accurate automatic detection of 4D (x, y, z, t)
mitotic cell division events in epidermal basal cells with few
training data. The CasDetNet consists of two 2.5D networks.
The first is used for detecting candidate cells with only volume
information and the second one, with temporal information,
is used for reducing false positives (normal cells) and adding
mitotic cells that are missing in the first step. We also intend to
use a 2.5D CNN as a base network. Compared to conventional
2D CNN, our 2.5D CNN (2D image with neighbor slices)
can include more information for detection (the first step)
and reduction of false positives (the second step). Though
the 3D CNN can include more information than 2D and
2.5D CNN, it can use limited number of training samples
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Fig. 1. One typical slice image of an observed 3D live cell dynamic image(4D
image) and mitotic cells (cell division) are indicated by blue bounding boxes.

Fig. 2. Overview of our proposed CasDetNet.

(3D images) and thus cause overfitting. Results show that
CasDetNet can deliver higher precision and recall comparing
to other advanced methods.

The paper is organized as follows. Section II introduces
the proposed CasDetNet for mitotic cell detection method is
introduced in section II. Section III describes the experimental
results. Finally, Section IV presents the conclusion.

II. THE PROPOSED NETWORK

The proposed CasDetNet for detection of mitotic cells
is shown in Fig.2. It comprises two 2.5D networks. The
first network is used to detect candidate cells using only
volume information and the second, which contains temporal
information, is used to reduce false positives and to add mitotic
cells that were missing in the first step. The second network
is cascaded to the first network and the two networks are
then trained simultaneously (end-to-end training). The details
regarding the first and second networks will be described in
subsections II-A and II-B, respectively.

A. The first network for detection of candidate cells using
volume information

The first network for detecting candidate cells is motivated
by Fast R-CNN to determine the local features for establishing
the region of interest (ROI). The goal is to cause the networks
hidden layers to detect candidate of mitotic cells. The original
Fast R-CNN requires 2D image as input and produces a set
of ROI as detection results. The number of training set and
network architectures determine the quality of detection result.
Further, the conventional Fast R-CNNs drawback is that it
loses 3D spatial information, which is important for accurate
mitotic cell detection. Though we can extend the conventional
Fast R-CNN to a 3D version for 3D volume images, the num-
ber of training samples will be considerably limited and result
in over-fitting. Thus, we propose a 2.5D Fast R-CNN for our
first detection network. As shown in Fig.1, three slice images
{s−1, s, s+1} are used as input to detect the candidate cells in
the target slice image {s}, which is called 2.5D network. The
outputs (ROIs) are indicated as {o1, o2, o3, ..., andsoon}. The
advantage of our 2.5D network is that we can use neighbor
slice information (2.5D information) to distinguish between
the mitotic cell and normal cells, which is important for
detecting mitotic cells divided along z-axis.

Figure 2 (upper part) illustrates our first 2.5D network.
For our base network, we use the VGG network architecture.
To enhance the accuracy of the network, we use transfer
learning from ImageNet data to VGG. Each slice is processed
individually and the processed slices are concatenated to form
a 3D volume. We replace 3D convolutional layer with 3 ×
3× 3 kernel size, followed by a ReLU non-linearity layer
instead of 2D convolutional layer of original Fast R-CNN to
obtain network results oi. In each output oi, the network will
use nearby output o−1 and o+1 to generate the concatenated
output. It will also be used in cell selection process to generate
volume selected output Ot

i . Thus, the network will generate
a set of output Ot

i consisting of 3 outputs {oi1, oi2, oi3}t for
each image slice si. Further, t indicates the time sequence in
4D data. For each set of output Ot

i , we calculate the mean to
obtain first volume output V t

i , as shown in Fig.3.

B. The second Network for reduction of false positive

We propose using the second network to reduce the false
positives generated by the first network. Results from the
first network V t

i contain both correct and incorrect detection
results. In this section, we used the second network to refine
the results (reduce the false positives) by using temporal
{time1, time2, time3, ..., timen} information.

There are several methods to manage extra dimensional
information (temporal information). Taking mean or threshold-
ing from image sequence is a common method to smoothen the
image sequence and removing or adding over-/under-detection.
We concatenate the volume output V t

i at time t, previous
output V t−1

i , and next output V t+1
i time sequence together and

then apply the second CNN classification (for reducing false
positives), as shown in Fig.2 (lower part). The network will
generate the time set of output consisting of three outputs of



Fig. 3. Taking mean result to eliminate normal cell in detected result from both volume and time information detection network.

TABLE I
DETECTION PERFORMANCE OF OUR PROPOSED CASDETNET ON 2D SLICE

IMAGE.

Data true positive false positive ground truth
1 662 183 711
2 628 756 745
3 1296 216 1717
4 1215 895 1576
5 183 229 1563

temporal frames {timet−1
i , timeti, timet+1

i }. The final result
F t
i is obtained by taking the mean of three frames, as shown

in Fig.3.

III. EXPERIMENTAL RESULTS

To validate the effectiveness of our proposed method, we
perform experiments on 4D (temporal 3D volume sequence)
data from JSPE, Technical committee on Industrial Appli-
cation of Image Processing Appearance inspection algorithm
contest 2017 (TC-IAIP AIA2017) [11]. There are five datasets,
each containing approximately 80 temporal frames. The data
size is approximately 480×480×37. Each data contains 13
mitotic cells, as listed in Table III (ground truth). Data
augmentation is added in the training phase to increase the
number of training set so that overfitting that normally occurs
in small datasets can be avoided and the model can be induced
to learn to detect the mitotic cells that will generally be under-
detected in the 2D network. Cropping, rotation, translation,
mirror imaging, noising, and resizing methods are used in
our study. The parameters for cropping, rotation, translation,
noising, and resizing are randomly selected. We determine the
parameter for each augmentation method as follows: 224×224
cropping size with random location; random rotation angle in
the range of 0180; random percentage of Gaussian noise in
the range of 1%-3%; random resizing scale in the range of
0.91.1. Using data augmentation methods helps to generate
varied combination images to train the model.

Fig. 4. Typical detection results on 2D slice image by our proposed
CasDetNet (a) and SSD (b).

TABLE II
QUANTATIVE COMPARISON OF OUR PROPOSED CASDETNET WITH THE

STATE-OF-THE-ART METHODS ON 2D SLICE IMAGES.

Method precision recall time(sec)
2D FAST R-CNN [6] 0.0870 0.9310 239.409
3D FAST R-CNN 0.0592 0.4143 1989.012
SSD [7] 0.0411 0.7221 102.551
Our first network 0.3591 0.7532 253.005
CasDetNet 0.7228 0.70358 329.771

In our experiments, we use leave-one-out method. Further,
for training our model, we use Adam optimization method. As
described in the previous section, two networks are cascaded
and trained simultaneously (end-to-end). The learning rate for
Adam in our network starts with 0.5× 10−5 and changes
into 0.5× 10−6 after finishing the 10k batch, with each batch
containing five image slices.

A. Detection results on 2D slice images

First, we present detection results on 2D slice images. Each
slice image is considered as a sample. The total number
of mitotic cells (2D slice images) is shown in Table I as
ground truth, and precision and recall are used as quantitative
measures. For evaluation, we compare the precision and recall
of our method with SSD [7], FAST R-CNN [6], and 3D
convolution FAST R-CNN, which is a modified version of



TABLE III
DETECTION RESULTS ON 4D IMAGES.

Data Sugano[12] Our method ground truthTP FN FP TP FN FP
1 1 0 0 1 0 0 1
2 1 0 3 1 0 0 1
3 2 0 0 2 0 0 2
4 3 0 0 3 0 0 3
5 2 1 0 1 2 0 3

the original FAST R-CNN. All methods are calibrated from
ImageNet except 3D FAST R-CNN. The detection results
for 2D slice images using CasDetNet are shown in Table I.
The number of true positive ROI of all data is largely the
same as the number of ground truth ROI, except for Data
No. 5 that cannot be detected properly as its mitotic cells
were difficult to detect because they occur at the edge of
the image. The detection results for 2D slice images obtained
using our proposed method and SSD are shown in Fig.4. It
is evident that our method can detect mitotic cell correctly.
On the other hand, several false positives are detected by
SSD (Fig.4(b)). Compared to the SSD result (Fig.4(b)), our
proposed method (Fig.4(a)) can significantly reduce false
positives. The quantitative comparisons are shown in Table
II. Though both 2D FAST R-CNN and SSD present high
recall, they also present low precision because of several false
positives being detected. Both precision and recall for 3D
FAST R-CNN are lower because of overfitting. The 3D FAST
R-CNN also has high computation cost. If we only use the
first 2.5D network, we can improve the precision compared
to 2D FAST R-CNN and SSD because of the 2.5 D network.
However, it still contains a large number of false positives. We
can also significantly reduce these false positives by using the
second network with temporal information. It should be noted
that we do not compare our method with Anats method [10]
because it is a pixel-wise method and takes more time than
3D FAST R-CNN in both training and testing.

B. Detection results on 4D data

Our aim is to detect mitotic cells on 4D data. We combine
our detection results on 2D slice image, as described in
the previous sub-section, for final results and compare our
results with the winner of the TC-IAIP AIA2017 contest [11].
The detection results (TP, FN, FP) regarding 4D data are
summarized in Table III. Except Data No. 5, perfect detection
is achieved without any FP and FN. For Data No. 5, two
mitotic cells are not detected, the reason for which has been
described in the previous sub-section. Sugano method [12],

the winner in TC-IAIP AIA2017 contest, can also properly
detect mitotic cells. However, there are 3 FP for Data No. 2.

IV. CONCLUSION

We have proposed a 2.5D cascaded convolutional neural
network for automatic detection of mitotic cells in 4D image
(x, y, z, and time). The proposed network consists of two
networks, the first of which is a modified 2.5D Fast R-CNN
for detecting candidate cells and the second is used for re-
ducing false positives using temporal information. The results
demonstrated that our proposed method is more accurate than
the other established methods such as Fast R-CNN, SSD, and
the TC-IAIP AIA2017 contest winners method.
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