
-____

United States Patent
Masson et al.

[19]

ILIILIL[LII[II[IIIi[IIIIitillLlttlitliillllllii[iiiiiiiiiiiiii[iiiii[iLiiL
US005243607A

[II] Patent Namber: 5,243,607

[451 Date of Patent: Sep. 7, 1993

[54] METHOD AND APPARATUS FOR FAULT
TOLERANCE

[75] Inventors: Gerald M. Matsou; Gresory F,
Sulllvu, both of Baltimore, Md.

[73] Assignee: The Johas Hopkins University,
Baltimore, Md.

[21] Appl. No.: $43,451

[22] Filed: Jun. 25, 1990

[51] Int. Cl.s ... H04L I/I_
[52] U.S. C! 371/69.1; 371/68.3;

371/68.1; 3"/I/19; 395/575

[58] Field of Search 371/69.1, 68.3, 68.1,
371/19, 15.1, 16.1, 67.1,364/200 MS F'de;

395/575

[56] References Cited

U.S. PATENT DOCUMENTS

4.696.003 9/1987 Kerr 371/69.1 X
4.756,005 7/1988 Shedd 371/69.1 X
5,005,174 4/1991 Br'uckertetal.................... 371/68.3

OTHER PUBLICATIONS

H. Geng, "Circuit for the Complete Check of a Data--
Processing System", IBM TDB, vol. 16, No. 4, Sep.
1974, pp. 1144-1145.
K. Knowhon, "A Combination Hardware-Software

Debugging System," IEEE Transactions on Comput-

ers, Jan. 1968, pp. 81-86.

Primary Examiner--Robert W. lkattsoliel, Jr.
Assistant E.xaminer--Ly V. Hua

Attorney, Agent,or Firm--Ansel M. Schwartz

[57] ABSTRACT

A method and apparatus for achieving fault tolerance in

• computer system having at least a first central process-
ing unit and • second central processing unit. The

method comprises the steps of first executing • first

algorithm in the first central processing unit on input
which produce* • first output as well at • certification
trail. Next. executing • tecond algorithm in the second

central processing unit on the input and on at least •
portion of the certification trail which produces • sec-
ond output. The second algorithm has • faster execution
time than the fast algorithm for • given input. Then,

comparing the first and second outputs such that an
error result is produced if the first and second outputs
are not the same. The step of executing a first algorithm

and the step of executing It second algorithm preferably

takes place over essentially the saline time period.

18 Chdms, 6 Drawing Sheets

N??3co g

INPUT

INPu_UTPUT OR ERROR

INPUT _ OUTPUT OR ERROR

L

L

U.S. Patent Sep. 7, 1993 SheetI of6 5,243,607

t..
INPUT

INPUT

DUPLICATE

INPUT

FIRST EXECUTION

CERTIFICATION
TRAIL

OUTPUT OR ERROR

SECOND OR ERROR

OUTPUT OR
ERROR

FIG. I

w

Algor;thm MINSPANI, G,welghI)
Input, Connected groph G • (V,E) where V • {1. n} with edge weights.
Output, Sponning tree-of G which hot minimum weight
I
2
3
4
5
6
7
8
9
I0
II
12
I_,
14 END WHILE

IS FOR ALL u. V- {root}
END MINSPAN

CHOOSE root •V
FOR ALL u. V, keytu):, ¢o END FOR
h:'O; v:, rOOt
WHILE v # empty DO
key{v):, --_
FOR EACH Iv.w]. E DO
IF weightt(v,w])< key(w) THEN
key(w):z weight ([v,w]);prefer (w): • [v,w]
IF member |w,h) THEN chongekey (w, keyLw),h)
ELSE insert (w, ksy (w),h) END IF

END IF
ENO FOR

iv,k):, deletemin {h)

OUTPUT Lprefe.tu)) END FOR

FIG. 3

U.S. Patent Sep. 7, 1993 Sheet2 of 6 5,243,607

m

, __.._

m

i •

w_m

FI G.2 (a) _ F/G, 2(b) _

_oo...O...zoo
®'"'" ® ""'®

F'IG.2 (c)
G..._.oo

@.....;.,o.....:;®
" 800

® ®

F/G. 2 (d) Q,_o

¢...Z "¢
| "=_,

..o i "-® _oo
!

® ®

® ®

w

FIG.2

25O

c_J _oo ,_,o.ec,s O,_o
-.,495

"_ 250

):.::_---_,5.....®
700 -._

U.S. Patent sep. 7, 1993 Sheet 3 of 6 5,243,607

w

L2

-_-_=

= =

w

w

m

u

0 - 0

1 I

2 2

3 3

4 4

5 5

6 6

7 7"_
m

F/G. 4(0) FIG.4(b)

Aloorithm HUFFMAN {FREO)

Input:Sequence of positive integers FREQ.=_f[1],f[2],...,f[n]j'
,.,

Output: Pointer tooHuffmon tree for the input frequencies
1 FORi:,t tO n DO

2 insert (i,f (i],h)

3 ptr (i]' • ollocote()
4 info [ptr (i]]:, (i,f[i])
5 END FOR

6 FORJ:,n+I to 2n-1 00
7 (itemS, keyS): • deleteminth)

8 (item 2, key2): • deletemin (h)
9
I0
II
I")

13

ptr [J]', OIIocote()
info(ptr (j]]: ,(j, keyl + key2)

left [ptr (I]J' • ptr (item 1]
right[ptr [j)]'.ptr (item 2)
insert (j.key 1 + key 2.h)

14 END FOR

15 OUTPUT Lptr [2n-1])
END HUFFMAN

F/G. 5

i ,

U.S. Patent Sep. 7, 1993 Sheet 4 of 6 5,243,607

m

FIG. 6

m

F_

m

i lib

i

i, _r-- i

Algo¢ithm CONVE XHULL(S}
Input: Set of points, S, in R 2
Output: Counterclockwise sequence of points in R 2 which define convex hull of S

I Let pl be the point with the largest x coo(dinote (and smallest y to break ties}
2 For each point p (except pl) calculate the slope of the line throuQh pt end p
3 Sort the points (e_¢ept pt} from the smallest sloDe to the largest. Coil themp2,...,on

4 qt:,pt;q2:,p2;qS:*P_; m,5
S FOR k - 4 ton IX)
6 WHILE the angle formed by qm-l.qm.pk is :, 180 degrees DO m ",m-| END FOR
7 m :, m+l

qm :" pl

9 END FOR
I0 FOR i, 1 to m IX), OUTPUT(qi) £ND FOR

END CONVEXHULL

FIG. 7

U.S. Patent Sep. 7, 1993 Sheet $ of 6 5,243,607

m

M

J

,. ._, I I P q2

-'-.',, \:

poe PTe"2_'"_ Pl
......... qs["_q_

FIG. 8(0) FIG.8(b) FIG.8(c)

i

n
m
m

l

H

w

M
D

m

CPU

MEANS
FOR
FAULT

TOLERENCE
FIRST J
ALGORITHM

I Ico,_.l-

I IALGORITHM

w

FIG. 9

m

Sheet 6 of 6 5,243,607U.S. Patent Sep. 7, 1993

w

INPUT

FIRST CENTRAL
PROCESSING UNIT

I FIRST
ALGORITHM

CERT IFIC AT ION
TRAIL

SECONO CENTRAL
PROCESSING UNIT

I SECONDALGORITHM

FIG. I0

FIRST OUTPUT

SECOND OUTPUT 1

w

FIRST COMPUTER ['1

F_FRST MEMORY I

,.T --I I
A_OR_.THMiJ

SECOND COMPUTER

_NSECOND

PUT PORT]

I I.

"--------- -_"_C_ PARI NG

FIG. II

= •

m

METHOD AND APPARATUS FOR FAULT
TOLERANCE

LICENSES

The United States Government has a paid-up non-
exclusive license to practice the claimed invention
herein as per NSF Grant CCR-8910569 and NASA
Grant NSG 1442.

FIELD OF THE INVENTION

The present invention relates to fault tolerance. More
specif..ally, the present invention relates to a first algo-
rithm that provides a certification trail to a second algo-

rithm for fault tolerance purposes.

BACKGROUND OF THE INVENTION

Traditionally, with respect to fault tolerance, the

specification of a problem it given and an algorithm to
solve it isconstructed. This algorithm is executed on an
input and the output is stored. Next, the same algorithm
is executed again on the tame input and the output is

compared to the earlier output. If the outputs differ then
an error is indicated, otherwise the output is accepted as
correct. This software fault tolerance method requires
additional time, so called time redundancy [Johnson, B.,
Design and analysis of fault tolerant digital systems,

Addison-Wesley, Reading Mass., 1989; Siewiorek, D.,
and Swarz, R., The theory and practice of reliable de-
sign, Digital Press, Bedford, Mass., 1982]; however, it
requires not additional software. It is particularly valu-
able for detecting errors caused by transient fault phe-
nomena, if such faults cause an error during only one of
the executions then either the error will be detected or
the output will be correct.

A variation 04"the above method uses two separate
algorithms, one for each execution, which have been
written independent]y based on the problem specifw.a-

tion. This technique, call N-version programming
[C'hen, L., and Avizienis A., "N.version progrtmmins:
• fault tolerant approach to reliability of software oper-
ation," Digest of the 1978 Fault Tolerant Computing

Symposium, pp. 3-9, IEEE Computer Society Press,
1978; Avizienis, A., "The N-version approach to fault
tolerant software," IEEE Trans. on Software Engineer-
ing, voL 11, pp. 1491-1501, December, 1985] (in this
case N=2), allows for the detection of errors caused by
some faults in the software in addition to those caused

by transient hardware faults and utilizes both time and
software redundancy. Errors caused by software faults
are detected whenever the independently written pro-
grams do not generate coincident errors.

SUMMARY OF THE INVENTION

The present invention pertains to • method for
achieving fault tolerance in • computer system having
at least a first central processing system and a second
central processing system. The method comprises the
steps of ftrst executing a first algorithm in the rant cen.

tral processing unit on input which produces • first
output as wen as a certification trail. Next, executinB •

second algorithm in the second central processing unit
on the input and on at least a portion of the certification
trat] which produces a second output. The second also-
rithm has a faster execution time than the first algorithm

for • given input. Then, comparing the first and second
outputs such that an error result is produced if the first
and second outputs are not the same. The step of execut-

5,243,607
2

ing • first algorithm and the step of executing a second
algorithm preferably takes place over essentially the

same time period.
The present invention also pertains to a method for

$ achieving fault tolerance in • central processing unit.

The method comprises the steps of executing a first

algorithm in the central processing unit on input which

produces the first output as well as acertiftcation trail.

tO Then, there is the step of executing a teoand algorithm

in the central proce_ing unit on the input and on at least
• portion of the certification trail which produces a

second output. The second algorithm has a faster execu-
tion time than the first algorithm for It given input.

t5 Then, there it the step ofcomparing the fult and tec_nd

output* such that an error result is produced ff the first
and second output• are no4 the same.

The present invention also pertains to • computer
system. The computer system comprises • first com.

20 puter. The tint computer has • finn memory, The first

computer also has • first ceatrt] proce_ng unit in com-
munication with the memory. The first computer addi.

tiomdly hits • first input port in communication with the
memory in the first _tral processing unit. There is a

25 first algorithm disposed in the first memory which pro-

duc4_ • first output as well as • certification trail based

on input received by the input port when it is executed

by the first central processor. The computer system is

30 additiomdly comprised of • second computer. The sec-
ond computer is comprised of • second memory. The

second computer is also comprised of a second central
processing unit in communication with the memory and
the first cenmd processing unit. The second computer

3S additionally is comprised of• second input port in com-
munication with the memory in the second central pro-

cussing unit. There is a second algorithm disposed in the
tecond memory which produces a second output based

on the input and on at least • portion of the certification
40 trail when the second algorithm is executed by the sec-

ond central processing unit. The second algorithm has •

faster execution time than the furst algorithm for a given

input. The computer system is also comprised of a

45 mechanism for comparing the fu'st and tecond outputs
such that an error result it produced if the first and

second outputs are not the same,
Moreover, the present invention also pertains to a

computer. The computer is comprised of a memory.
SO Additionally, the computer is comprised of • central

proce_ing unit in communication with the memory.
The computer is additionally comprised of a first input
port in communication with the memory and the central

processing unit. There is • fu_t algorithm disposed in
55 the memory which produces afma output as wed as a

certification trail based on input received by the input

port when the input is executed by the first cenmd
processor. There is •secood algorithm also disposed in
the memory which produces a second output bcued on6O
the input and on at least • portion of the ce_tion

trail when the second algorithm is executed by the cert.

tral processing unit. The second algorithm has a faster
execution time than the first algorithm for a given input.

t_ Moreover, the computer is comprised of • mechanism
for comparing the first and second outputs such that an

error result is produced if the first and second outputs
are not the tame.

L

L i

5,243,607
4

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, the preferred em-
bodiments of the invention and preferred methods of

practicing the invention are illustrated in which:
FIG. I is a block diagram of the present invention.
FIGS. 2A through FIG. 2F shows an examples of a

minimum spanning tree algorithm.
FIG. $ with the source code for a mince man aigo-

rithm.
FIG. 4A and 4B shows an example of 8 data structure

used in the second execution of • mince man algorithm.
FIG. S with the source code for • Huffman algo-

rithm.
FIG.
FIG.

rithm.
FIG.

pie.

6 shows an example of a Huffman tree.
T with the source code for Graham's scan algo-

8A through FIG. 8C shows a convex hull exam.

FIG. 9 is a block diagram of aa apparatus of the

present invention.
FIG. I0 is a block diagram of another embodiment of

the present invention.
FIG. II is a block diagram of another embodiment of

the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The central idea of the present invention, essential]y •
fault tolerance mechanism, as illustrated in FIG. I, is to

modify a first algorithm so that it leaves behind a trail of
data which is called a certification trail. This data is

chosen so that it can allow • second algorithm to exe-

cute more quickly and/or have a simpler structure than
the first algorithm. The outputs of the two executions
are compared and ate considered correct oniy if they
agree. Note, however, care must be taken in defining
this method or else its error detection capability might
be reduced by the introduction of data dependent be-
tween the two algorithm executions. For example, sup-
pose the first algorithm execution contains a error
which causes an incorrect output and an incorrect trial
of data to be generated. Further suppose thatno error
occurs during the executionof the second algorithm.It

stillappears pos._'blethat the executionof the second

algorithm might use the incorrecttrail to generate an
incorrect output which matches the incorrect output
given by the execution of the first algorithm. Intu-
itively, the second execution would be "fouled" by the
data left behind by the fu3t execution. The definitions

given below exclude this possibility. They demand that
the second execution either generates a correct answer
or signals the fact that an error has been detected in the
data trail. Finally, it should be noted that in FIG. I both
executions can signal an error. These errors would in-

' clnde run-time errors such as divided-by-zero or non-
terminating computation. In addition the second execu-
tion can signal error due to an incorrect certification
trail. The fault tolerance means can be used in hardware

or software systems and manifested as firmware or soft-

ware in • central processing unit.
A formal definition of a certification trail is the fol-

lowing.
Definition 2. !. A problem P is formalized as a relation

(that is, 8 set of ordered pairs). Let D be the domain
(that is, the set of inputs) of the relation P and let S be
the range (that h, the set of solutions) for the problem.
It can be said an algorithm A solves• problem P if for

all d • D when d is input to A then an s (S is output such
that (d,s) (P.

Definition 2.2. let P : D - S be a problem. Let T be
the set of certification trails A solution to this problem

S using • certification trail consists of two functionsFs
and F2 with the following domains and ranges FI:D --
S x T and F2:D X T --- SU error. The functions must

satisfy the following two properties:
(l) for all d (D thereexistss • S and there exists t (

tO T such that Ft(d) : (t,t) and Fdd,t) = s and (d,s) (P

(2) for alld i D tad for all t ¢ T either (Fdd,t) = s and

(d.s)_ P) or Fdd, O = error.
The definitions above assure that the error detection

capability of the certification trail approach is oampara-
IS ble to that obtained with the simple time redundancy

approach discussed earlier. That it, if _t hard-
ware faults occur during only one of the executions

then either an error will be detected or the output will

be correct. It thould be further noted, however, the
20 example* to be con_dered willindicatethat thh new

approach can also save overall execution time.
The certification trial approach also allows for the

detection of faultsin software. As in N.ve_ion pro-

gramming, separate rearm can write the tpecification
2S now must include precise information describing the

generation and use of the certification trial. Because of
the additiomd data available to the second execution,

the specifications of the two phases can be very differ-
ent; timilarly, the two algorithms used to implement the

30 phases can be very different. Thh will be illustrated in
the convex hull example to be considered later. Aherna- -

tively, the two algorithms c,an be very similar, differing
only in data structure manipulatious. This will be ilhw
trated in the minimum spinning tree and Huffnum tree

3S examples to be considered later. When significantly
different algorithn_ ate used it is sotnetimes posu'hle to
save programming effort by sharing program code.
While this reduces the ability to detect errorsin the

software it does not change the ability to detect tran-
40 sient hardware errors as discussed earlier.

With respect to the above, it has been t._umed that
our method is implemented with software; however, it
is clearly possible to implement the certification trail
technique by using dedicated hardware, it is also possi-

45 ble to generalize the basic two-level hierarchy of the
certification trial approach as illustrated in FIG. I to

higher levels.

Examples of the Certification Trail Technique

50 In thissection, there is illustrated the use of certifica-

tion tralh by means of applications to three well-known

and aignifw..ant problen_ in computer science: the mini-
mum spanning tree problem, the Huffman tree problem,
and the oonvex hull problem. It thould be stressed here

55 that the certification trail approach is not limited to

these problems. Rather, these algorithms have been
•elected only to give illustrations of this technique.

Minimum Spanning Tree Example

60 "l'he minimum spanning treeproblem has been exam-
ined extensively in the literature and an historiod atr-

vey is given in [Graham, R.L., "An efficient algorithm
for determining the convex hull of a planar set", Infor-
matiou Processing Letters, pp. 132-133, I, 1972]. The

65 certification trial approach is applied to a variant of the
Prim/Dijkstra algorithm]Prim, g.c., "Shortest con-
nection networks and some generalizations,: Bell Syst.

Tech. J., pp. 1389-1401, November, 1957; Dijkstra, E.

|
r,.. •

|

_ o

w

E--=

w

z _

U

m

w

$
5,243,607

6
W., "'A note on two problems in connexion with

graphs," Numer. Math. I, pp. 269-1984, Jun. 20-22] as
explicated in [Tarjan, RE., Data Structures and Net-
work Algorithms, Society for Industrial and applied
Mathematics, Philadelph_, Pa. 1983]. The discussion of

the application of the certification trail approach to the
minimum spanning tree problem beings with some pre-
liminary det'mitions.

In our case, there is used two ddTerent data structure

methods to suppor_ these operations. One method will
be used in the first execution of the algorithm and an-
other, faster and simpler, method will be used in the
second execution. The second method relies on a trail of
data which is output by the first execution.

MINSPAN ALGORITHM

Definition 3.1. A graph G ,- (V,E) consists of aver. Before discussing precise implementation details for
tex set V and an edge set E. An edge is an tmordered l0 these methods the overall algorithm used in both execu.

pair of distinct vertices which is notated as, for example, tions is presented. Pidgin code for this algorithm ap-
Iv,w], and it is said v is adjacent to w. A path in t graph potn below. In addition, FIG. 2 illustrates the execu.

from vl to vk is t sequence of vertices v l, v2..... vk such tion of the algorithm on a sample graph and the table

.that Iv1, vl ,,, i]isan edge fori ([I k - I]. A path below records the data structure operations the algo-
tt a cycle if k > 1 and vl = vt. An acyclic graph is a 15 rithm must perform when run on the sample graph. The
graph which contains no cycles. A connected graph is a fat column of the table give, the operations except
graph such that for all pairs of vertices v,w there it a member and the parameter h dropped to reduce clutter.path from v to w. A tree is an acyclic and connected
graph. The second column gives the evolving contents of h.

The third column recofch the ordered pair deleted by
Definition 3.2. Let G - ('V,E) be a graph and let w be 20 the deletemin operation. The fourth column records to• pc_tive rational valued function defined on E_ A

certification tra_ corresponding to these operations andsubtree of G is a tree, T(V',E'), with V' _,, V and E' C

E It is said T spans V' and V' is spanned by T. If V' ,,,
V then we say T is a spanning tree of G. The weight of
this tree is _, _-w(e). A minimum spanning tree is • 25
spanning tree of minimum weight.

Data Structures and Supported Operations

Before discussion of the minimum spanning tree algo-
rithm, there must be described the properties of the 30

principle data structure that are required. Since many
different data structures can be used to implement the

algorithm, initially there is described abstractly the data

that can be stored by the data structure and the opera-
lions that can be used to manipulate this data. The data 35
consists of set of ordered pairs. The first element in
these ordered pairs is referred to as the item number and

the second element is called the key value. Ordered
pairs may be added and removed from the set; however,
at all times, the item numbers of distinct ordered pairs 40

must be distinct. It is possible, through, for multiple
ordered pairs to have the same key value. In this paper
the item numbers are integers between ! and n. inclu-
sive. Our default convention is that i is an item number,
k is a key value and h it a set of ordered pain. A total 45
ordering on the pairs of a set can be defined lexico-

graphically as follows: (i,k) < (i'.k') iff k < k' or (k ==
k' and i < i'). The data structure should support a subset
of the following operations.
member O,h) returns a boolean value of true if h con- SO

rains an ordered p_ with item number L otherwise
returns fahe.

inser" (i,k,h) adds the ordered pair (i,k) to the set h.
delete (i,h) deletes the unique ordered pair with item

number i from h. 55

clumgekey (i,k,h) is executed only when there is an
ordered pair with item number i and h. This pair it
replaced by (i.k).

deletemin ('h)returns the ordered pairwhich is smallest
_:_ording to the total order de|'med above and de- 60
letes this pair. If h is the empty set then the token
"empty" it returned.

predecessor (i,h) returns the item number of the ordered

pair which immediately precedes the pair with item

number i in the total order. If there is no predecessor 65
then the token "smallest" is returned.

Many different types and combinations of data struc-

tures c&n be used to support these operations emcienOy.

it further discussed below.

The algorithm uses a "greedy" method to "grow" a
minimum spanning tree. The algorithm starts by choot-
mg tn arbitrary vertex from which to grow the tree.
During e.ch iteration of the algorithm a new edge is
added to the tree being _ed. Thus, the set of

vertices spanned by the tree increL_ by exactly one
vertex for each iteration. The edge which it added to

the tree is the one with the smallest weight. FIG. 2
shows this process in action. FIG. 2(a) shows the input-
graph, FIGS. 2(b) through 2(e) show several stages of
the tree growth and FIG. 2(/) shows the fired output of
the minimum spanning tree. The solid edges in FIGS.
2(b) through 2(e) represent the current tree and the
dotted edges represent candidates for addition to the
tree.

To etYtciently find the edge to add to the current tree

the algorithm uses the data structure operations de-
sen'bed above. As soon as a vertex, say v, is adjacent to
some vertex which is currently spanned it is/nsened in
the set h. The key value for v is the weight of the mini.
mum edge between v and some vertex tpanned by the
current tree. The array element prefer (v) is used to
keep track of tl_ minimum weight edge. At the tree
grows, information is uixiated by operations such as
insert (i,k,h) and changekey (i,k,h).

TABLE I

D*a ur_u_e operttiom _ _uoe
trail for MINgPAN

01pert_ Set of _ Ptm Dek,_ Trail

ert() (2,2OO) maJ3eu
im_¢S00) OJ_(6,_0) 2

men(_C0) (6,_0)_3,t00) S
cKuseke y(6.4-_0) . (6,4_),(3.1100)
m.,_t.._) (_,oo),oJos),O.mO) t
dektmm O,_0_),O_00) (6,4_)

ctmSek'yO,4t_) 0_0_0.4_5_0.t00) s
delewnm O,4_),O,m0) O,2_0)
clumgekey(3J_O) O.]_o},0._) ananeSt
ws¢_(4._0) ('J.J 50),('Y.4_).(4. _0) ?

d¢letemia (?.4_).(4.XX)) (].350)

clumlelr.ey(4.6_0) ('7,495),(4.(_0) 7
dd¢la_ (4,650) (./._y_)
dek'temm (4._0)
dektemia m_pcy

m

w

i

r_

r

m

L :

m

5,243,607

The deletemin (h) operation is used to select the next
vertex to add to the span of the current tree. Note, the
algorithm does not explicitly keep a set of edges repre-

senting the current tree. Implicitly, however, if (v,k) is
returned by delete•in then prefer (v) i¢ added to the
current tree.

In the first execution of the M[NSPAN algorithm,

the M[NSPAN code it used and the principle data
structure is implemented with • balanced tree such as an
AVL tree [Adel'son-Vel'tldi, G.M., and Landis, E.M.,
"An algorithm for the organization of information",
Soviet Math. Dokl.. pp. 1259-1262, 3, 1962], • red-black
tree [Ouibas, L3., and Sedgew;,ck, g., "A dichromatic
Framework for balanced trees", Proceedings of the
Nineteenth Annual Symposium on Foundafion¢ of
Computing, pp. S-21, IEEE Computer Society Press,
1978] or • b-tree [Bayer, g., and McCreight' E., "Orga-

nization of large ordered indexes", Act• Inform., pp
173-189, 1, 1972]. In addition, an array of pointers in-

dexed from I to n it used. The balanced search tree

stores the ordered pain in h and is based on the total
order described earlier. The array of pointers is initially
all nil. For each item i, the ith pointer of the array is
used to point to the location of the ordered pair with
item number i in the balanced search tree. If there is no

such ordered pair in the tree then the ith pointer is nil.
This array allows rapid execution of operations such _¢
member (i,h) and delete (i,h).

The certification trail it generated during the first
execution as follows: When CHOOSE root _ V h exe-

cuted in the first step, the vertex which is chosen is

output. Also, each time insert (i,k,h) or changekey
(i,k,h) are executed, predecessor (i,h) is executed after-
wards, and the answer returned it output. This is illus-
trated in column labeled "Trail" in the table above.

The second execution of the MINSPAN algorithm
also uses the MINSPAN code; however, the CHOOSE

construct and the data structure operations are imple-
mented differently than in the fist execution. The

CHOOSE is performed by simply reading the first ele-
ment of the certification trail. This guarantees the same
choice of a starting vertex is made in both executions.
FIG. 4 depicts the principal data structure used which is
called an indexed linked list. The array is indexed from
! to n and contains pointen to • singly linked list which
represents the current contents of h from smallest to
largest. The ith element of the array points to the node

oont_ning the ordered pair with the item number i if it
is present in h; otherwise, the pointer is nil. The 0th
element of the array points to the node containing (0,
-INF). Initially, the array contains nil pointers except
the 0th element. In order to implement the data struc-
ture operations, the following it provided.

To perform insert (i,k.h), it h necessary to read the
next value in the certification trail. This value, say j, is

the item number of the ordered pair which is the prede-
cessor of (i,k) in the current contents ofh. A new linked
list node is allocated and the trail information is used to

insert the node into the data structure. Specifically, the
ith array pointer it traversed to • node in the linked list'
say Y. (If j =- "smallest" then the 0th array pointer it
traversed.) The new node is inserted in the list just after
ncTde Y and before the next node in the linked list (if

.-'_there is one). The data field in the new node it set to (i,k)
-- and the ith pointer of the array it set to point to the new

:" node. FIG. 4 shows the insertion of(7,505) into the data
structure given that the certification trail value is 6.

FIG. 30) is before the insertion and FIG. 3(b)itafter
the insertion.

When the insert operation it performed, some checks
must be conducted. First, the ith array pointer must be

5 nil before the operation it performed. Section, the
sorted order of the pairs stored in the linked list must be
preserved after the operation. That it, if (i',k') is stored
in the node before 0,k) in the linked lat and (i",k") is
stored after ('t,k), then (]',k') < (tit) < (i", k") must hold

10 in the total order. If either of these checks tails then

execution halts and "error" it output.
To perform delete ('t,h) the ith array pointer is tra-

versed and the node found it deleted from the linked

list. Next, the ith array pointer it set to nil. FIG. 4 shows
15 the deletion of item number 7 ffone considers FIG. 3(a)

as depicting the data structure before the operation and
FIG. 3(b) depicting it aP,_wards. When the delete oper.
at•on is performed oae check is made. If the ith array
pointer is ml before the operstion then the execution

2o halts tad "error" is outp.L
To perform changekey (i,i,h) it tuff'tees to perform

delete ('t,h) followed by insert ('t,k.h). Note, tb.h means
the next item in the _l_w.ation trail it read. Also, the

checks assockted with both these two operations sue
25 performed and the execution halts with "error" output

if any check fidls.
To perform detelemin 01) the 0th array pointer k

traversed To the head of the li_ and the next node in the
list it accessed. If there is no such node then "empty" is

30 returned and the operation is complete. Otherwhe,
suppose the node is Y and suppo_ it contains the or-.
dered pair ('t.k), then the node Y it deleted from the Iht,
the ith array pointer is set to nil, and (i,k) it returned.

Lastly. to perform member ('t,h) the ith array pointer
3S is examined. If it is tul then false it returned, otherwise,

true is returned. The predecess_r (i,h) operation is not
used int he second execution.

• This completes the description of the second execu-
tion. To show that there it de_l)ed a correct Staple-

40 mentation of the certifw.ation trail method requires •

proof. The proof has several parts of varying difficulty.
First, one must show that if the tint execution is fault-
free then it outputs • minimum spanning tree. Second,
one must show that if the first and second executions are

45 fault-free then they both output the same minimum
spannin S tree. Both these parts of the proof are not
difficult to show.

The third more subtle pars of the proof deals with the
lituation in which only the second execution k fault-

SO free. This _ an incorrect certification trail may be

generated in the tint execution. In this case, it must be
shown that the second execution outputs either the
correct minimum _,mning tree or "error". The checks
that were descn'bed this property by _g any er-

SS rots that would prevent the execution from generating
the correct outpuL

- In the firstexecution each data structure oper•tion
ca. be performed in O0og(n)) time where [V]=n.
There are at most O(m) such operations and O(m) addi-

60 tional time overhead where [E]=m. Thus, the first
execution can be performed in O(mlog(n)). It is noted
that th is algorithm does not achieve the fastest known
asymptotic time complexity which appears in Oabow,
H.N., Cralil, Z., Spencer, T., and Tarjan, R.E., "Effi-

6S cient algorithms for finding minimum spanning trees in

••directed and directed graphs," Combinatorica 6, pp.
109-122, 2, 1986. However, the algorithm presented
here has • significantly startler constant of proportion-

= _

i

m

3

m

w

m

w

I

m

r_

9
5,243,607

I0
ally which makes it competitive for reasonably sized

graphs, in addition, it provides us with a relatively
simple and illustrativeexample of the use of a cenifica-
tion trail

In the second execution each data structure operation S
can be performed in O(I). There are still at most O(m)
such operations and O(m) additional time overhead
Hence, the second execution can be performed in O(m)
time. In other words, because of the availability of the

certification trail, the second execution is performed in 10
linear time. There are no known O(m) time algorithms
for the minimum spanning tree problem. Komlos [26]

was able to show that O(m) comparisons suffice to rind
the minimum spanning tree. However, there is no
known O(m) time algorithm to actually fred and per- 15
form these comparisons. Even the related "verification
problem has no known linear time solution. In the veri-

fication problem the input consistsof an edge weighted
graph and • subtree. The output it "yes" if the subtree

isthe minimum spanning tree and "no" otherwise. The 20

best known algorithm for thisproblem was created by

Tarjan [Tarjan, R.E., "'Application of path compres-
sionon balanced trees",J.ACM, pp. 690-715, October,

1979] and has the nonlinear time complexity of O(-
m,',{m,n)),where a(m,n) isa functionalinverseof Ack. 25
erman's function The factthatthe dataina certification

trailenables a minimum spanning treeto be found in

linear time is,we believe,intriguing,signir_ant,and
indicativeof the great promise of the certificationtrail
technique. 30

Huff.man Tree Example

Huffman trees represent another classicalgorithmic

problem, one of the original solutions being atm'buted
to Huffman [Huffman, D., "A method for the construc. 35

fion of minimum redundancy codes", Proc. IRE, pp.
1095-1101, 40, 1952]. This solution has been used exten-

sively to perform data compression through the design
and use of so-called Huff.man codes. These codes are
prefix codes which are based on the Huff.man tree and 40

which yield excellent data compression ratios. The tree
structure and the code design are based on the frequen.
ci_ of individual characters in the data to be com-

pressed. See Huffman, D., "A method for the construc.

tion of minimum redundancy codes", Pro<:.IRE, pp.
1098-1101, 40, 1952,for information about the coding
application.

Definition 3.3. The Huffman tree problem it the fol-
lowing: Given a u_quence of frequencies(positive ante.
gers) 1]1], t]2] 1]n], construct a tree with n leaves 50

and with one frequency value assigned to each leaf so

that the weighted path length is minimized. Specifi-
cally, the tree should minimize the following sum: _t_

LF_4_en(i)f_i] where LEAF/¢ the set of leaves, len(]) is
the length of the path from the root of the tree to the 55

leaf I_,1]i] is the frequency assigned to the leaf li.
An example oft Huffman tree is given in FIG. 6. The

input frequencies are: f(l) - 35, t"(2) = 20, f(3) --- 44,
f(4) : 77, f($) : 23, f(6) : 38, and _ - 88. The
frequencies appear inside the leaf nodes as the second 60

elements of the ordered pairs in the figure.

HUFFMAN ALGORITHM

The algorithm to construct the Huffman tree uses a

data structure which is able to implement the insert and 65
the deletemin operations which are defined above in the

minimum spanning tree example. This type of data
structure is often called a priority queue. The algorithm

also uses the command allocate to construct the tree.
This command allocates a new node and returns a
pointer to it. Each node is able to store an item number
and • key value in the field called info. the item numbers

are in the set (I _ - I) and the key values are
sums of frequency values. The nodes also contain fields

for left and right pointers since the tree being con-
structed b bilxary.

The Huffman tree it built from the bottom up and the
overall structure of the algorithm is based on the greedy
"merging" of subtrees. An array of pointers called par it
used to point to the subtrees as they are constructed.
Initially, n tingle vertex subtrees with the smallest asso-

ciated frequency values. To perform a merge a new
subtree ht created by first alk_dng a new root node
and next tettiag the left and right pointen to the two
subtrees being merged. The frequency associated with

the new subtree is the sum o4' the frequenciesof the two

subtre_ being merged. In FIG. g the frequency associ-
ated with each mbtre¢ is thow_a as the second value in

the root vertex of the subtree. Details of the algorithm

are given below. Note that the priority queue data
structure allows the algorithm to quickly determine
which gubtrees should be merged by enabling the two
smallest frequency values to be found efficiently during
each iteration.

Table 2 below illustrates the data structure operations
performed when the Huffman tree in FIG. 6 is coe-

structed. For ooncbeneut the initial n inset operations
have been omitted. The first column gives the tea of
ordered pa_ in h. The second column gives the result-
of the two deletemin operations during each iteration.

Note that thh oolumn it labeled "Trail" because it is
also output as the certification trail The third column

records the elements which are inserted by the com-
mand on line 121.

TABLE 2

Data mr_ct_ operatmm tad cer_c._tiom u'ud
fm"HUFF_AN

Set of Ordered_ Tmfl linen

(L20),O.23),(1,35),(6,31),(3,44),(__),
_,u)
(1.3$).(6.31).(|.43k(3.44).(4.77).C1J_) 0.J0),(5,2.1) (I.43)
(8.43).(3.44).(9.?3).(4.?';H't.Sl) (135).0k_1) (9.73)

"45 (9,73),(4,77).(!0,lT).o,n) CL43).(3.44) (1O,IITJ
(10.117),('/,H).(II, !_10) (9,73k(4.?'/) (I 1,130)
(11.150).(12,17S) (I0,17),O.IUI) (12.1"/$)
(13,325) (! 1.150).(12,175)(13,325)

First Execution of FFM N

In thh execution the code entitled HUFFMAN it

used and the priority queue data structure is ample.
mented with • heap ['rarja_ R.F.., Data Structures and

Network Algorithms, Society for Industrial and Ap-
plied Mathematics, Philadelphia, Pa. 1983] or a bal-
anced search tree[Ouib_ LJ., and Sedgewick, g., "A
dichromatic framework for balanced trees", Proceed-

ings of the Nineteenth Annual Sympozium on Founds.

tiGriS of Computing, pp. 8-21, IEEE computer Society
Press, 1978; Adel'ton-Vel-Vel'ddi, O.M., and Landis,
E.M., "An algorithm for the organization of informs.

tion", Soviet Math. Doid., pp. 1259-1262, 3, 196_
Bayer, R., and McCreight, F-, "Organization of large
ordered indexes", Acts Inform., pp. 173-189, 1, 1972].
Actually, uy correct implementation it acceptabl_,
however, to achieve a reasonable time complexity for
this execution the suggested implementation are desir.

w

w

m

tame

L

m

m

m

m

mm

m

m

m

11
5,243,607

12
able. the certification trail is generated as follows:
whenever deletemin (h) is executed the item number
and the key value which are returned are both output.
In the table, the certification trail i¢ listed in the second

column.

Second Execution of HUFFMAN

This execution conth_ of two part* which may be

IogicAdly separ&ted but wl_ch are performed together.
In the first logical part, the code called HUFFMAN is
executed again except that the data structure operadot_
are treated differently. All insert operations are not

performed and all deletemin operations are performed

by simply reading the ordered pairs from the certifica-
tion trail. In the second logical pan, the data structure
operations are "verified". Note, by "verify" it does no¢
mean • formal proof of correcme_ based on the text of
an algorithm. The problem of verifw.ation can be formu-
l-ted as follows: given • sequence of insert 0,k,h) and
deletemin (h) operations 0t) operadous check to see if
the answers are correct. It should be noted that while in

our example there is only one Ix, in general there can be

multiple h's to be handled.
The description of the algorithm for the second exe-

cution can be further dmplified because only rome re-

stricted types of operation sequences are generated by
the HUFFMAN code. First, it can be observed that all

elements are ultimately deleted from h before the algo-

rithm terminates; second, it can be further observed that
when an element b inserted into h, its key value it larger
than the key value of the last element deleted from h.
These two important observations allow us to check •

aequence using the timplhqed method which is tie-
scribed neat.

Our simplified method uses an array of integers in-
dexed from ! to 2n - !. This array it used to track the
contents of h. If the ordered pair (i,k) it in h, then array
element i is set to a value of It; and if no ordered pair
with item number i is in h, then array element i is set to
• value of -- 1. Initially, all array elements are set to - I
and then operation sequence is processed. If insert ('t.k)
is executed then array element i is checked to see if it
contains -- 1. (The value of - l is an arbitrary selection
meant to serve only as an indicator.) If array element i
does contain - !, then it is set to k. If deletemin (h) b
executed, then the answer indicated by the certification
trail, ray (i,k), is examined. Array element i is checked
to see if it contains k. In addition, k is compared to the

key value of previous element in the certification trail
sequence to see if it it greater than or equal to that
previous value. If both these checks su&,.eed then array
element i is set to -!.

If any of the checks just described above fails, then
the execution halts and "error" is output. Otherwbe the

operation sequence b considered "verified". It can be
rigorously shown that the checks descn'bed are suffi-
cient for determining whether the answers given in the
certification trail are correct; this proof, however, has
been omitted for the take of brevity. Finally, it is worth
noting that to combine the two logical part* of tl_
execution, one can perform the data structurechecking
in tandem with the code execution of HUFFMAN.
Each time an insert or deletemin it encountered in the

code, the appropriate set of checks are performed.

Time Complexity Comparison of the Two Executiom

Again, as in the minimum spanning tree example, the
availability of the certification trail permit* the second

execution for the Huff'man tree problem to be dramati-

cally more efficient than the first,
In the first execution of HUFFMAN, each data struc.

ture operation can be performed in O(log(n)) time
5 where n isthe number of frequencies in the input. There

are O(n) such operations tnd O(n) additional time over-
head, hence, the execution can be performed in O(n log

(n)). Thh b the tame complexity as the best known
algorithm forco0structinl Huffnum trees.

t0 In the second code execution of HUFFMAN, each

data structure operations b performed in constant time,
Further, verifying the data rd'ucture operations are
correct takes oniy a colts•ant time per operation. Thus,
it follows that the overall oompkxity of the second

IS execution is only O(n).

Convex Hull Example

The convex hull problem is fundamental in computa-
tional geometry. The certificatioa trail solution to the

20 generation oft convex huU b based oe • mlution due to
Graham [Graham, R.L., "An efl_'lent algorithm for
determining the convex hull of • pLtmtr set", Informa-
don Procesd_ Letten, pp. 132-133, ! 1972] which is
called "Graham's Scan." (For be_c definitions and

25 concept* in computational geometry, see the text of
Prep•rats and Shamcs [Prewar• F.P., and Shamos
M.I., Competsticoal geometry; an introduction, Spring-
er-Verhqg, New York, N.Y., 19851,.) For dmplicity in
the discus•ion which follows, it is mumed the point*

30 are in so-c_ed "genera] position" (this m, no three

point* are colmear).It is not difficultto remove this
restriction.

Definition 3.4. A convex region in R 2 h • set of

points, My Q, in R 2 inch that for every pair of pointsin
35 Q the line tegtuem connecting the point* lies entirely

within Q. A polygon is • circularly ordered set of line
segments such that each linesegment shares one of its
endpoints with the preceding line segment and shares
the otherendpoint with the succeeding linesegment in

4O the ordering.The sharedendpoints arecalledthe verti.

ces of the polygon. A polygon m•y •Isobe Rx'cifiedby

an orderingof itsvertices.A convex polygon isa poly-

gon which isthe boundary of some convex region.The
convex hull of a set of points, S, in the Euclidean plane

4S is defined as the smallest convex polygon enclosing all

the points. This polygon is unique and its vertices are a
subset of the points in S. It is specified by a counter-
clockwise sequence of its vertices.

FIG. S(c) shows • convex hull for the point* indicated
50 by black dots. Graham's can algorithm given below

constructs the convex hull incrementally in a counter-
clockwise faddon. Sometin_ itit _ for the

algorithm to "beckup" the constructionby throwing
some vertices out and then continuing. The first step of

SS the algorithm select* an "extreme'* point _ calls it pl.
The next two steps sort the remaining points in • way

• which is depicted in FIG. 8(a). It is not hard to show
that after these three steps the points when taken in

order, Pl, P2..... p., form • simple polygon; although,
60 in general, _ polygon is not convex.

Oraham's Scan Algorithm

It is po_'ble to thinkof Oraham's scan algorithm as
removing point* from this dmple polygoa untilit he-

65 comes convex, the main FOR loop iteration adds verti-

ces tO the polygon under const_ I_d the
WHILE loop removes vertices from the construction,
A point is removed when the angle test performed at

J

_=

w

W

= =

r_

u

w

m

13
5,243,607

14
Step 6 reveals that it is not on the convex hull because
it falls within the triangle defined by three other points.
A "mspshot" of the algorithm given in FIG. S(b) show_
that q5 is removed from the hull. The angle formed by
q+,qs, pe is less than 180 degrees. This mean_ q5 lies
within the triangle formed by q,t, ph PC- (Note, ql = P|.)
In general, when the angle test is performed, if the angle
formed by qm- I,qm, pk is less than 180 degrees, then
qm lies within the triangle formed by qm-i,pl,pk.
Below it will he revealed that this h the prinutry infor-
marion retied on in out certification trail. When the

main FOR loop is complete, the convex hull has been
constructed.

First Execution of Graham's Scan

In this execution the code CONVEXHULL is used.

The certification trail is generated by adding an output
statement within the WHILE loop. Specif'w.adly, if an
angle of less than 180 degrees is found in the WHILE
loop test then the four tuple consisting of
qm,qm-l,pl,pk is output to the certification trail.
Table 3 below shows the four tuples of points that
would be output by the algorithm when run on the
example in FIG. 8. The points in Table 3 are given the
tame names as in FIG. I(o). The fmal convex hull points
ql qm are also output to the certification trail.
Strictly speaking the trail output does not consist of the
actual points in R 2. Instead, it consists of indices to the
original input data. This means if the original data con-
sists of st,s2, s_ then rather than output the element
in R 2 corresponding to sithe number i is output. It is not

hard to code the program so that this is done.

TABLE 3

Fu'I pm _ cerufi_ttm trail for GrxhaJn'sw.an
PoOh!not on convexImll "l'hxeesurroundingpoints

I_ P4.pz.l_
I_ p3,pt,Pt
I_ Pc,.pt,Pt

Second Execution for the Convex Hall Problem

Let the certification trail consist of a set of four tu-

pies, (xt.at,bi,cl), (xi,ai,b2,c2) (xr, av,b,_cr) followed
by the supposed convex hull, qbq2 qm. The code
for CONVEXHULL is not used m this execution. In-

deed, the algorithm performed is dramatically different
than CONVEXHULL.

It consists of five checks on the trail data.

First, the algorithm checks for i ((i r) that x, lies
within the triangle defmed by ai, bh and ¢_.

Second, the algorithm checks that for each triple of
counterclockwise comecutive points on the supposed
convex hull the angle formed by the points is lest than
or equal to 180 degrees.

Third, it checks that there is a one to one correspon-
dence between the input points and the points in (xl,
.... x,) U (qt q_).

Fourth, it checks that for i _ (I r), a_bh and c_ are
among the input points.

Fifth, it checks that there is a unique point among the
points on the supposed convex hull which is a local
extreme point. A point q on the hull is a local extreme
point if its predecesser in the counterclockwise order-
ing has a strictly smaller y coordinate and its succes-
sor in the ordering has a smalleror equal y coordi-
l_te.

If any of these checks failthen execution haltsand

"error" is output. As mentioned above, the trail data

actually consists of indices into the input data this does
not unduly complicate the checks above; instead it
makes them ea_er. The correctne_ and adequacy of
these checks must be proven.

5
Time Complexity of the Two Executions

In the fwst execution the sorting of the input points
takes O(nlog(n) time where n is the number of input

points. One can thow that thh ¢out dominates and the
I0 overallcomplexity isO(nlog(n)).

It is p<mu'ble to note that, unlike the minimum qum.
ning tree example and the HulTm, n tree example, the
convex hull example u_zes an algorithm in the second
execution that is ant a close variant of that used int he

15 first execution. However, like the previous two exam-

pies, the second executioe fot the convex hull problem
depends fundamentally on the information in the c_Jfi-
cation_ for emcionc3,and performance.

50 Concurrency o¢ Executions

In the three examples discussed above, it is possible to
start the second executionbefore the first executionhas

terminated. This is a highly desirable capability when
additional hardware is available to run the second axe-

25 cution (for example, with multiprocessor machines, or

machines with coprocetso_ or hardware monitors).
In the case of the m_imum qumning tree problem,

the two executiom can be run concurrently. It is on/y

necessary for the second executiontoread the certifica.
30 tion trsg as it is generated--nee item number at a

Thus, there is a slight time lag in the second executioa.

The case of the H_ tree problem is tin_lar.
executions can be run concurrently if the second exeoa-

3S tion reads the certificatioa trail as it is generated by the
first execution.

The case of the convex hull problem is not quite as
favorable, but it is still possible to partially overlap the
two executions.For example, as each 4-tuple of points is

,tO generated by the first execution, it can he checked by
the second execution. But the teco_ execution must

wait for the points on the convex hurl to be output at the
end of the first executioz before they can be checked.

An additional opportunity for overlapping execution
45 occurs when the system has a dedicated comparator. In

this case it is sometimes pos_'blefor the two executions
to send their output tO the comparator its they generate
it. For example, this caa he done in the minimum span-
ning tree problem where the edges of the tree can be

50 sent individually as they are discovered by both execu-
tions.

Comparison of Techniques

The certificationtrailappronch to fault tolerance,
$_ whether implemented in hardware or software or some

combination thereof, has resemblances with other fault
tolerant techniquesthat have been previously proposed
and examined, but in each case there ate signlfw.ant aad
fundamental distinctioe_ These d_ are primat.

60 ily related to the generation and charsc_ ofthe certifi-
cation trail and the manner in which the tecondary

algorithm or system ases the certification trail to indi-
cate whether the execution of the primary system or
algorithm was in error and/or to produce an output to

6"_ be compared with that ot the pnmary system.

To being, the certification trail approach might be
viewed as a form of N-version programming [Chen, L.,
and Av_denis A., "N-version programming: a fault

w

m

u

uM

m

m

i --

= L_
m

=
m

15
5,243,607

16

tolerant approach to reliability of software operation,"
Digest of the 1978 Fault Tolerant Computing Sympo-
tium. pp. 3-9, IEEE computer Society Press, 1978;
Avizienit, A., and Kelly J., "Fault tolerance by design
diversity: concepts and experiments," Computer, vol.

17, pp, 67-g0. August, 1984]. This apprcach specifies
that N different implementations of an algorithm be
independently executed with subsequent comparison of
the resulting N outputs. There it no relationship among
the executiom of the different veniotu of the algo- l0

rithn_ other than they -I! use the tame input; each algo-
ri0xm i¢ executed independently without any informa-
tion about the execution of the other algorithms. In
marked contrast, the certification trail approach allows

the primaxy system to generate a trail of information 15
while executing its algorithm that it critical to the toc-

ondm'y system's execution of its algorithm. In effect,
N-version programming can be thought of relative m
the certification trail approach as the employment of •
null trail.

A software/hardware fault tolerance technique
known as the recovery block approach [RandeU, Bit.,
"System structure for software fault tolerance," IEEE
Tran_ on Software Engineering vol. I, pp. 202-232,
June, 1975; Anderson, T., and Lee, P., Fault tolerance:

principles and practices, Prentice-Hall, Englewood
Cliffs, N.J., 1981; Lee, Y. H. and Shin, IC G., "Design

and evaluation of a fault-tolerant multiprocessor using
hardware recovery blocks," IEEE Trans. CompeL. vol

C-33. pp. 113-124. February 1984.] uses acceptance
tests and alternative procedures to produce what it to

be regarded as • correct output from a program. When
u._ng recovery block& • program is viewed as being
structured into blocks of operations which after execu-

tion yield outputs which can be tested in some informal
for correctness- The rigor, completeness, and

nature of the aco_ptan_ test it left to the program de-
signer, and many of the acceptance tests that have been
proposed for use tend to be somewhat straightforward

[Anderson, T., and Lee, P., Fault tolerance: principles
and practices, Prentice-Hall, Eng|ewood Cliffs, N.J.,
1981]. Indeed, formal methodologies for the definition
and generation of acceptance tests have thus fat not
been established. Regardless, the certification trail no-
tion of a secondary system that receives the same input

as the primary system and executes an algorithm that
takes advantage of this trail to efl'tciently produce the
correct output and/or to indicate that the execution of
the fir_ algorithm was correct does not fail into the

category of an acceptance test.
A watchdog processor is a small and simple (relative

to the primary system being monitored) hardware mon-
itor that detects erro_ examining information relative
to the behavior of the primary system ['M_, A.,
and McCluskey, E., "Concurrent error detection using

watchdog processors," IEEE Trans. on Computers,
vol. 37, pp. 160-174, February, 1988; Mahmood, A.,
and McClu_key, E., "Concurrent error detection using
watchdog processort--a survey," IEEE Tram. on

Computers, vol. 37, pp. 160-174, February, 1988; Ntm-
joo, M., and McOuakey, E., "Watchdog processor3 and
capability checking." Digest of the 1982 Fault Tolerant
Computing Sympo_um, pp. 245-248, IEEE Computer
Society Press, 1982.]. Error detection using a watchdog

processor _ a two-phase _: ".mthe _-t-up phase,
information about system bebavlor tt provided a priori
to the watchdog processor about the system to be moni-
tored; in the monitoring phase, the watchdog processor

collects or is sent information about the operation of the

system to be compared with that which was provided
during the set-up phase. On the b_is of this comparig)n,
a decision it made by the watchdog processor as to

5 whether or not an error has occurred. The information

about system behavior by _s of which a watchdog
processor must monitor for error3 includes memory
zu_ess behavior [Namjoo, M., and McCluskey, E.,
"Watchdog processors and capability checking," Di-
gest of the 1982 Fault Tolerant Computing Sympotium,

pp, 245-248, IEEE Computer Society Press, 1982],
control and program flow [Eifert, J. B. and Shen, J. P.,
"Processor moQitoring using asynchronous tignatuted
inttruction _" Dig. 14th InL Conf. Fault-To k_r-

ant Comput., pp. 394-399, 1984, June 20-22; lyengar,
V. S. and Kinney, L. I.-, "Concurreat fault detectioe in

microprogrammed control units," IEEE Trans. Corn-
put., vol.C-34, pp. 810.-821, September 198S; Kane, J.
It. and Yau, S.S.,"Concurrent tof_wtre fault detection,

_0 " IEEE Tram. Software Eng., voL SE-I, pp. 8"/-99,
March 1975; L,u, D., "Watchdog processor and strnc-

tunl integrity checking. " IEEE Trims. CompuL, vol.
C-31, pp. 6_ 1-6_5, luly 1982; Namjco, M., "Technglu_
for concurrent testing o4"VLSI processor operztion."

25 Dig. 1982 Int- Test Conf., pp. 461-468, November 1982;
Namjoo, M., "_ERBERUS-16: An architecture for s
general purpose watchdog processor," Dig. Papers 13th
Annu. Int. Sump. Fault Tolerant Comput., pp. 216-219,
June, 1983; _ J. P. and Schuette, M.A., 'N3a-line

30 tedf-monitoringus_n_ tiiputtured instruction stream_,"
Proc. 1983 Int. Test Conf., pp. 27_-282, October, 1983",
Sridhar, T. and Thatte, S. M., "Concurrent checking of

program flow in VLSi pro_esso_" Dig. 1982 lnL Test
Conf., pp. 191-199, November, 1982; 46,4"7], or reason-

3_ ablenes_ of results[Mahmood, A., L.u, D. J. and

McCluskey, E. J., "Concurrent fault detection using a
watchdog processor and assertions," Prec. 1983 Int.
Test Conf., pp. 622-628, October, 1983; Mahmood, A.
E._oz, a. and McOu_ey, E3., "concurrent syr_em

40 level error detection using a watchdog proce_or,"
Proc. 1985 Int. Test conf., pp. 145-152, November,

1985]. Using physical fault injection techniques, dhtri-
butions of errors that could be detected suing such types
of information have been determined for tome specific

45 systems [Schmid, M., Trapp, R., Davidoff, A., and gas-
ton. G., "Upset exposure by means of abstraction verifi-
cation," Dig. of the 1982 Fault Tolerant Computing
Symposium, pp. 237-244, June, 1982; Gutmeflo, U.,
Karhu3n, J., and Tori_ J., "Evaluation of error detec-

50 tion _hemes for u_ing fault injection by hetvy-ioa radi-
ation," Dig. of the 1989 Fault Tolerant Compmmg
Symposium, pp. 340-347, June, 1989], and the perfor-
mance of models of error monitoring techniques that
could be realized in the form of watchdog processors

S_ have been analyzed ['Blough, D., and Mssson, O, "Per-
form•rice an•lyre of a generalized concurrent error
detection procedure," tEEE Trans. on Computers vol.
39, January, 1990.]. However, in contrastto the certifi-
cation trail technique, s watchdog procestor uses oniy a

_0 priori defined behavior checks, none of which is aft3.
cient together with the input to the primary system to
efl'zcientlyreproduce the output for direct compari_n
with that of the primary system.

Related to the watchdog processor approach is that

6_ of using executable assertions [Andrews, D., "So_vtre
fault tolerance through executable assertions," Rec.
12th Asilomar Conf. Circuits, Syst-, Compu',-, pp.
641--645, 1978, November 6--8; Andrews, D., "Using

r

Lm

w

L

17
5,243,607

18

executable assertions for testing and fault tolerance,"

Dig. 9th Annu. Int. Sump. Fault-Tolerant Comput., pp.
102-105, 1979, June 20--22; Mahwood. A., Lu, D. J. and
McCluskey E. J., "Concurrent fault detection using a
watchdog processor and j_,ertions," Proc. 1983 Int.
Test Conf., pp. 622-628, October 1983]. An assertion
can be dePmed as an invariant relationship among vari-
• bles of a process. In a program, for examples, asser.

tions can be wrinen as logical statements and can be

inserted into the code to signify that which has been
predetermined to be invariably true at that point in the
execution of the program. Assertions are based on a

priori determined properties of the primary system or
algorithm. This, however, again serves to distinguish
executable assertion technique from the use of certifica-
tion trails in that a certification trail is a key to the

solution of a problem or the execution of an algorithm
that can be utilized to efficiently and correctly produce
the solution.

Algorithm-based fault tolerance [Huang, K--H., and
Abraham, J., "Algorithm-based fault tolerance for tag.
trix operations," IEEE Trans. on Computers, pp.
$15-529, vol. C-33, June, 19114; Nail V., and Abraham,
J., "General linear codes for fault-tolerant matrix opera-

tions on processor arrays," Dig. of the 1988 Fault Tol-
erant Computing Symposium, pp. !gO-155, June, 1985;
"'Fault tolerant FIT networks," Dig. of the 1985 Fault

Tolerant Computing Symposium, June, 1985] uses error
detecting and correcting codes for performing reliable

computations with specific algorithms. This technique
encodes data at a high level and algorithms are specifi-
cally designed or modified to operate on encoded data
and produce encoded output data. Algorithm-hased

fault tolerance is distinguished from other fault toler-
ance techniques by three characteristics: the encoding
of the data used by the algorithm; the modification of
the algorithm to operate on the encoded data; and the

distribution of the computation steps in the algorithm
among computational units. It is assumed that at most

one computational unit is faulty during a spcdfied time
period. The error detection capabilities of the al-

gorithm-based fault tolerance approach are directly
related to that of the error correction encoding utilized.
The certification trail approach does not require that
the data to be executed be modified nor that the funda-

mental operations of the algorithm be changed to ac-
count for these modifications. Instead, only a trail indic-

ative of aspects of the algorithm's operations must be
generated by the algorithm. As teen from the above
examples, the production of this trail does not burden
the algorithm with a significant overhead. Moreover,
any combination of computational errors can be hun.
died.

Recently Blum and Kannan [Blum, M., and Kanmm,
S., "Designing programs that check their work," Pro-
ceedings of the 1989 ACM Symposium on Theory of
Computing, pp. 86-97, ACM Press, 1989] have defined
what they call a program checker. A program checker
is an algorithm which checks the output of an other
algorithm for correctness and thus it is similar to an
acceptance test in a recovery block. An example of a

program checker is the algorithm developed by Tarjan
[Tarjan, R. E., "Applications of path compression on
balanced trees," J. ACM, pp. 690-715, October, 1979]
which takes as input a graph and a supposed minimum

spanning tree and indicates whether or not the tree
actually is a minimum spanning tree. The Blum and
Kannan checker is actually more general than this be-

cause it is allowed to be probabilistic in • carefully
specified way. There are two main differences between
this approach and the certification trail approach. First,

a program checker way call the aigorithm it is checking
5 a polynomial number of times in the certification trail

approach the algorithm being checked is run once.
Second, the checker is designed to work for a problem
and not a specific algorithm. That is, the checker design
is based on the input/output specification of a problem.

10 The certification trail approach is explicitly algorithm

being checked is run once. geo:md, the checker is de-
signed to work for a problem and not a specific algo-
rithm. That is, the checker designishas_ on the input-

/output spociflcatioe of a problem. The certification
15 trail approach is explicitly algorithm oriented. In other

words, a specific algorithm fora problem is modified to
out put a certificatiom trail. This trail sotaetim_ allows
the second execution to be fav, er thaa any known pro-

gram checkers for the problem. This is the case for the
2O minimum •panning tree problem.

Other hardware and software fault tolerance and

error monitoring techniques have beett proposed and

studied that might be thought of as bearing some t'es_n-
blance to the certification trail approach. Extensive

25 summaries and deacriptiom of these techniques can be
found in the fiterature [Siewiorelh D., and Swan, g.,

The theory and practice of reliable design, Digital
Press, Bedford. Ma._, 1982; Avizlenis, A., "Fault toler-

anoe by meam of external monitoring of computer Ws-

30 terns,"Proceedings of the 19$I National Computer
Conference, pp. 27-40, AFIPS Press, 191D, Johnson. B.,
Design and an•lyre of fault tolerant digital systems,
Addison-Wesley, Reading, ML_., 1989;, Mahmood. A.,
and McCluskey, I_, "Cochin'rent error detection u_g

3S watchdog processors--a survey," IEEE Tram. on

Computers, voL 37, pp. 160-174, Febnmry, 1988]. Ea.
• ruination of these techniques reveah, however, that iu
each case there are fundamental distinctions from the

certification trail approach. In temmm'y, the certifica.

40 •ion trail approach stands along in its employment of
secondary algorithms/systems for the computation of
an output for comparison that because of the availability
of the trail not only proceeds in a more eff_.'ient manner

than that of the primary but also can indicate whether
4S the execution of the primary algorithm was correct.

Although the invention has been descn'bed in detail in

the foregoing embodiments for the _ of illustra-
tion, it is to be understood that such detail is solely for
that purpose and that variations can be made therein by

50 those skilled in the art without departing from the spirit
and scope of the invention excel_ as it may be described
by the following

What is claimed is:
1. A method for achieving fault tolerance in a com-

aS purer system having at least a first central processing
unit and a second central processing unit comprising the

steps of:
executing a first algorithm in the first camtral process-

ing unit on input so that a first output and a certi_
60 cation trail are produced;

executing a aecond algorithm in the second central

processing unit on the input and ou the certification
trail so that • second output is produced, said sec-

ond algorithm having a faster execution time than
65 the tint algorithm for a _ven input; and

comparing the first and second outputs such that an
error result is produced if the first and second out.

puts are not the same.

w

m

m

L.1

N

w_:J
N

m

w

19
5,243_607

20
2. A method as describedinclaim I wherein the step

of executing the second algorithmincludesthe stepof
determining whether the certificationtrailisin error.

3. A method as describedinclaim 2 includingbefore

the stepof executingthe firstalgorithm,thereisthe step

of duplicatingthe inputsuch thatthe inputthatispro-

vided to the step of executing the fur_t algorithm is also

the input that is provided to the step of executing the
second algorithm

4. A method as described in claim 3 wherein the step
of executing the first algorithm includes the step of
determining whether the tint output it in error.

5. A method as descn_ed in claim 4 wherein the step

of executing the first algorithm includes the step of

determining whether the tecoed output it in error.
6. A method as descnl:m:l in claim $ wherein the

second algorithm generates the =econd output oorrectly
when the second algorithm is executed by the second

processing unit even if the certification trial produced
by the first algorithm when the rust algorithm is exe-
cuted by the first processing unit is incorrect.

7. A "method as described in claim 1 wherein the

second algorithm is derived from the first algorithm.
II. A computer system comprising:

a first computer comprising:
a first memory,

• first central processing unit in communication with
the memory,

• first input port in communication with the memory

and the first central processing unit,
a first algorithm disposed m the first memory, said

furst algorithm produces a first output and produces
• certification trail based on input received by the

input port when the first algorithm is executed by
the first central processor;

a second computer comprising a second memory,

• second central processing unit in communication

with the second memory and the first central pro-
cessing unit;

a second input port in communication with the sec.

ond memory and the second central processing
unit;

a second algorithm disposed in the second memory,
said second algorithm produces a second output
based on the input and the certification tr_ when

the second algorithm is executed by the second

central processing unit, raid second algorithm hav-
ing a faster execution time than the first algorithm
for a given input; and

a mechanism for comparing the fur_t and second out-
puts such that an error result is produced if the first

and second outputs are not the same.

9. A computer as described in claim II wherein the

second algorithm generates the second output correctly
when the second algorithm is executed by the second

processing unit even if the certification trail produced

by the first algorithm when the first algorithm is exe-
cuted by the first processing unit is incorrect.

I0. A computer system as described in claim 9
wherein the mechanism forcomparing isa compamtor.

5 11.An apparatusasdescribedinclaim 10 wherein the

second algorithm isderived from the firstalgorithm.

12. A method for achievingfaulttolerancein a cen-

tralpruce_ing unit comprising the steps of:
executing • first algorithm in the central processing

l0 unit on input =3 that t first output and • certifica-

tion trail are produced;
executing = second algorithm in the central process.

ing unit on theinput and oe the certificationtrailso
that • second output is produced, utid second algo-

l5 rithm having a faster execution time than the first
algorithm for = given input; and

coml_u'ing the first and second outputs such that an
error result is produced if the first and second out-
puts are not the mine.

20 13. A method as descn'bed in claim 12 wherein the

socond algorithm generates the tecond output correctly
when the teo3od algorithm is executed by the process-
ing unit even if the certification trail produced by the
first algorithm when it is executed by the processing

2S unit is incorrect.
14. A method as described in claim 13 wherein the

second algorithm is derived from the first algorithm.

15. A computer comprising:
g memory,

30 a central processing unit in communication with the
memory,

a first input port in communication with the memory
and the central processing unit,

• rust algorithm disposed in the memory, said first
35 algorithm produces a first output and a certff'w..a-

tion tr_ based on input received by the input port

when the input is executed by the central process-
ing unit;

a second algorithm disposed in the memory, tald
40 second algorithm produces a second output based

on the input and on at least a portion of the certifi-

cation trail when the r_¢ond algorithm is executed
by the central processing unit, said second algo-
rithm having s faster execution time than the tint

45 algorithm for a given input;and
a mechanism for comparing the firstand second out-

puts such that an error result is produced if the first

and second outputs are not the tame.
16. A computer as described in claim 15 wherein the

50 second algorithm generates the second output correctly
when the second algorithm is executed by the process-
ing unit even if the certification trail produced by the
lust algorithm when the first algorithm it executed by
the processing unit is incorrect.

55 17. A computer as descn'bed in claim 16 wherein the
mechanism for comparing is = comparator.

111.An appartxusasdescribedinclaim 15 wherein the
second algorithm is derived from the first algorithm.

• • • • •

6O

65

