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Abstract

We present a novel approach 1o generate functional
test sequences for synchronous sequential non-scan
circuits. The method is applicable when the func-
tional description of the circuit can be obtained in
the cubical form or a Personality Matriz (PM). The
faults are modeled as growth and disappearance faults
in the cubical description of the irredundant combi-
national function of the finite state machine (FSM).
Considering the combinational logic alone, test vectors
for these faults are efficiently derived using a cube-
based method developed for programmable logic arrays
(PLAs). It is shown that these tesls cover 100% of
stuck type faults in any irredundani two-level imple-
mentation and in the multi-level implementations ob-
tained through testability preserving transformations.
To derive tests for the sequential circuit, we repre-
sent it as an ileralive array of the combinational logic
whose PM is modified according to the fault. We give
new PM based algorithms to obtain state justification
and fault propagation sequences. Thus, the cube based
PLA algorithm is extended 1o obtain the entire test
sequence. Ezperimental results on MCNC synthesis
benchmark FSMs and some ISCAS89 sequential cir-
cuits show that our approach can efficiently obtain
functional test sequences which give very high cover-
age of stuck faulls in specific implementations. The
method has the added attraction that the functional
test sequences are implementation independent and
they can be obtained even when details of specific im-
plementation are unavailable or unknown.

1 Introduction

The growth (G) and disappearance (D) faults in
the combinational function of a circuit are a subset
of the faults normally modeled in the programmable
logic array (PLA) implementation [19]. It is known
that the tests for G and D faults cover all stuck faults
in any two level implementation of the combinational
logic [12}. For certain synthesis styles {11, 17], these
tests will also cover allsingle stuck faults in the multi-
level combinational circuit.

The main contribution of this paper is a sequential
circuit test generation algorithm based on the G and D
fault model and its implementation. Many sequential
circuit test generators use the time-frame expansion
method where the circuit is represented as an itera-
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tive array of its combinational logic [1]. At the core
of such a method there usually is a combinational test
generation algorithm. In order to find a test sequence,
the test generator repeatedly uses the combinational
algorithm. Thus, the overall efficiency depends upon
how well this algorithm performs. We model the com-
binational logic at the functional level by its person-
ality matrix and develop an efficient cube based test
generation algorithm [14] to obtain test sequences for
G and D faults in the finite state machine (FSM).

Some recent approaches [5, 16] to functional test
generation for sequential circuits rely on the tran-
sition fault model. Drawbacks of these approaches
are that the number of single transition faults can be
very large even for relatively small machines and it
may often be necessary to consider multiple transi-
tion faults to achieve adequate single stuck fault cov-
erage. In our approach, the number of functional (G
and D) faults is quite reasonable and is of the same
order as the number of single stuck faults in gate level
implementations of the sequential function. Further,
just like other functional approaches, our method also
generates implementation independent test sequences.
These tests have been shown to achieve high fault cov-
erage of stuck faults in specific multi-level implemen-
tations and the test generation can be performed much
fa:lster compared to the conventional gate level meth-
ods.

Another approach, reported by Ghosh et al [10],
also uses a cube based technique for justification and
propagation on the fault free FSM, employing both
the ON and OFF sets of the primary outputs and next
state outputs. In our approach we use the faulty FSM
for state justification and fault propagation to gener-
ate valid test sequences. We only require the ON sets
of the primary output and next state functions. Our
approach of functional test generation targets G and D
faults in the extracted PLA and the test sequences can
be applied to any multi-level implementation of the
sequential function. The method of Ghosh et al [10]
generates test sequences targeting stuck faults in a
specific implementation. In their approach justifica-
tion sequences start from a reset state, whereas we
start from the last state of the previous test sequence.

Our functional test generation method is general
but is particularly suited for the automatic synthesis
environment. In the synthesis of FSMs, after the state



assignment is done, the circuit is described as a com-
binational function. The description at this point is
often in the form of Boolean cubes and resembles the
functional specification of a PLA in the personality
matriz form. A two-level non-redundant form, that is
easily obtained using the available tools [2], is the in-
put to our test generator. For the tests to retain their
fault coverage, 1t is preferable to use only the testa-
bility preserving transformations [11, 17] in the syn-
thesis of multi-level logic from the two-level minimized
form. In cases where a two-level functional description
is not available, we can use a cover enumeration tech-
nique [15] to obtain the personality matrix from the
gate-level description of the sequential circuit. Such
a strategy has been employed to extract the two-level
descriptions of some ISCAS89 sequential benchmarks
for which results are reported in this paper.

There are cases like the arithmetic or parity func-
tions where the number of cubes in the two level sum-
of-products form is exponential in the number of pri-
mary inputs. Our method, presently cannot handle
these cases efficiently. However, the technique can be
extended to large gate level combinational and sequen-
tial circuits if we partition them into interconnection
of moderately sized functional blocks. This approach
is under investigation.

2 Background

A broad outline of our algorithm for FSM test gen-
eration without the implementation results appeared
in a recent paper [12]. For completeness, in this sec-
tion, we repeat certain aspects of the PLA test gener-
ation methodology. Figure 1 (a) shows the personality
matrix (PM) description of the combinational portion
of an example FSM having two primary inputs (Pls),
R and I, one flip-flop (FF) and one primary output
(PO), C. The FF output, that feeds back into the
combinational logic, is the present state input, PS,
and the FF input is the next state output, NS, of
the combinational logic. Figure 1 (b) shows the Kar-
naugh maps of the PO and next state functions. Fig-
ure 2 shows a two-level AND-OR implementation of
the FSM. -

The personality matrix (lf’M consists of two ar-
rays: the AND array and the OR array. The cubes
or product terms in the AND array are denoted as
p1, p2 and ps. A cube is a conjunction of literals rep-
resenting PI and present state signals. In this case,
p1 = I.PS, p2 = R.I.PS and ps = R.I.PS. The
output functions realized are given by:

NS =p;+ps=RIPS+R.IPS;
C=p1 =I1.PS

A missing literal in a product term causes a growth
(G) fault. If the literal correspondin%lto the j*# input
z; 1s missing from product term p;, the corresponding
G fault is denoted as G(i, j). For example, if the literal
I is missing from product term p;, then this product
term will grow as shown by the dotted lines in the
Karnaugh map in Figure 1 (b). This is the fault G(1,
2). A missing product term from an output function
in the OR array causes a disappearance (D) fault. If
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the product term p; is missing from the k' output
2k, the corresponding D fault is denoted as D(i, k).
For example, the fault D(2, 1) will cause the product
term ps to vanish from the Karnaugh map of the first
output function NS in Figure 1 (b).

For the G fault G(i, j), we define the candidate test
cube (CTC) as the cube p; with the j*» input comple-
mented. For the D fault D(i, k) the CTC is defined
as the cube p; itself. For a personality matrix PM
we define PTLIST(i, k) as the set of product terms
connected to function z; excluding p;. For the PM in
Figure 1, PTLIST(2, 1) = p3 = {111}.

We assume that the reader is familiar with the basic
cube operations [9] such as union (U), intersection ()
and set difference or sharp (#). Now the tests for
the fault G(i, j) and D(i, k) detected on output z
(provided p; is connected to z;) can be given as CTC
# PTLIST(, k), where the appropriate definition of
CTC is used. A G fault may be detectable on any
output fed by the affected product term but a D fault
can only be detected at the output whose function is
affected by the fault.

Consider the fault G(2, 3) in the PM of Figure 1.
CTC = 101; PTLIST(2, 1) = ps = 111. Hence test for
G(2, 3) = CTC # PTLIST(2, 1) = {101}. The com-
putation of tests for G and D faults using the above
method is straightforward and allows very efficient im-
plementation [19].

3 Fault Model

The functional faults described above are a subset
of the crosspoint faults, commonly used in PLA test
generation [19]. Of the four types of crosspoint faults,
namely, growth (G), shrinkage (S), appearance (Acg
and disappearance (D) faults, we have chosen the
and D faults that constitute the missing crosspoint
faults, as the target faults for FSMs.

The usefulness of the G and D faults stems from
their ability to model stuck faults in irredundant two-
level circuits. It has been shown that all single stuck
faults in an irredundant two-level single/multiple out-
put circuit will be detected by the tests for G and
D faults in the equivalent PLA provided the tests set
each primary output to 0 at least once [13]. A nat-
ural question then is whether the G-D tests, that is
the tests for all G and D faults, will also detect all de-
tectable multiple stuck faults. It is known that redun-
dant multiple stuck faults can exist even in single stuck
fault irredundant two-level multi-output circuits. An
example of such a circuit is given by Bryan et al [4].
It is also known that in an irredundant two-level sin-
gle output circuit, a test set for all single stuck faults
will detect all multiple stuck faults [18]. In a recent
paper [13], it has been shown by a simple counter-
example that this result is not directly applicable to
irredundant multiple-output circuits.

The detection of multiple G and D faults (which
model multiple stuck faults in the two-level circuit)
by a test set for single G and D faults is important in
the present case since some stuck faults in the multi-
level implementation may map onto multiple G and
D faults in the equivalent PLA. It is known [20] that
in a G-D irredundant PLA, a test set for all single G
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and D faults will detect all multiple G and D faults,
provided we can find an output ordering 2;..z, among
the ¢ outputs such that all G faults in the cone of
output z; are detected via one or more outputs z;..z;
(1 €1 <j < q). This means that all faults in the
cone of output z; will be detected on z;. All faults in
the cone of z5 will be detected via 22 except the ones
already detected via z, and so forth. A similar result
holds for stuck faults in multi-output circuits [13].

Many logic minimization algorithms used in synthe-
sis yield single stuck fault irredundant two-level rep-
resentations in the personality matrix form. Hence
a test set for all single G and D faults, derived such
that the output ordering discussed above is satisfied,
will indeed detect all multiple stuck faults in any ir-
redundant two-level gate implementation of the com-
binational function. There is also a high probability
that this test set will detect most single stuck faults in
a multi-level implementation as these faults are likely
to have an equivalent multi-fault representation in the
two-level circuit. If, however, the multi-level circuit is
obtained by testability preserving transformations on
the single-output minimized two-level form [11, 17],
the tests for G-D faults will continue to cover all single
and multiple stuck faults in the synthesized combina-
tional circuit.

4 Test Generation for Combinational

Circuits

We have implemented a new test generation and
fault simulation program, GDCOMB, in C language.
Tests are generated using the algorithm of Jacob and
Biswas [14]. Fault simulation, performed after each
test vector is generated, involves finding the Ham-
ming distance between the test vector and the product
terms. A G fault (D fault) on a product term is de-
tected if the distance between the product term cube
and the test vector is one (zero) and no other cube
with a distance zero from that product term is con-
nected to the same output.

We employed GDCOMB to derive tests from the
personality matrix description of the combinational
portion of six synthesis benchmark circuits. These
results are given in Table 1. GDCOMB derived vec-
tors to cover all G and D faults. These vectors were
then used to simulate all collapsed single stuck faults
in multi-level implementations of circuits. The cover-
age, as shown in Table 1, was 100% for all circuits.

Table 1 also gives the results of test generation for
stuck faults in multi-level circuits by a gate level test
generator, Gentest [6]. While both test generators
could cover all faults, the run times of GDCOMB are
significantly better. Vector sets of Gentest are, how-
ever, smaller. This is because the vector sets of GD-
COMB are independent of the implementation. Such
implementation-independent tests can also be derived
from Gentest if vectors are generated for all single
stuck faults in two-level AND-OR circuits. The fault
set size and vector set size then will be comparable
to those of the G-D faults and GDCOMB tests but
the run time of Gentest will be even higher than that
given in Table 1. The use of test vectors generated



Table 1: Test Generation for Combinational Part of FSMs (SUN Sparc 1)

Personality Matrix | Multi-Tevel Implementation

Circuit PI, PO, GDCOMB Gentest
Name | Prod. Terms G-D T No. of | CPU Stuck Faults | No. of [ Cov [ CPU
Faults | Vect. | Sec. [ Total | Cov% | Vect. % | Sec.
bara 7,5, 26 126 447 0.01 132 100 23 | 100 0.8
dk14 6,8, 51 239 447 0.01 244 100 30 | 100 1.8
16 7, 8,104 625 106 | 0.10 526 100 73 | 100 8.6
planet 13,25, 235 1541 204 | 0.50 | 1066 100 1081 100 | 25.9
sand 16, 14, 228 1547 346 1.00 | 1087 100 130 | 100 | 30.0
styr 14,15, 228 1678 369 1.00 [ 1127 100 1401 100 | 344

from two-level AND-OR description was suggested by 5.1 State Justification

Dave and Patel [8].

The multi-level combinational circuits were synthe-
sized from the single-output minimized two-level de-
scription, employing algebraic factorization and a sim-
ple technology mapping scheme that uses only AND
and OR gates of up to four inputs and inverters.
The synthesis system MIS [3] was used in our exper-
iments. Since only testability preserving transforma-
tions [11, 17] were employed, the 100% fault coverage
was expected. The two-level and multi-level combi-
national circuits of the FSMs were irredundant with
respect to single stuck faults.

To examine the importance of testability preserving
transformations in synthesis, we experimented with
the circuit styr. A multi-level implementation of this
circuit was synthesized from a multiple-output mini-
mized personality matrix description of the function,
and a technology mapping that used a standard cell li-
brary. The multiple output minimized PM of styr had
only 118 cubes as compared to 228 in the single-output
minimized version. GDCOMB obtained a test set of
391 vectors for the 1239 G-D faults in the PM descrip-
tion in 0.7 seconds. However the vectors covered only
99.45% (i.e., 1085 of 1091) of detectable stuck-faults
in this multi-level implementation.

5 Test generation for FSMs

We use an extension of the PLA test generation
method described in Section 2 to derive tests for the
G and D faults in the FSM. The algorithm consists of
the following three steps:

Step 1: Combinational Test generation.
Step 2: State Justification.
Step 3: Fault Propagation.

We sandwich the combinational test vector from
Step 1 (derived using the cube based algorithm de-
scribed in Section 2) between the state justification
and fault propagation sequences to obtain a complete
test sequence for the G or D fault under considera-
tion. A functional fault simulator for G and D faults
was implemented and was used to reduce the fault list
after the test sequence for a fault is generated.

The combinational test generation procedure, as
implemented in GDCOMB, produces a set of test
cubes C; with possible don’t care entries for some
present state (PS) bits. Any one of these vectors is suf-
ficient to activate the fault in the present time frame¢.
The state Sy corresponding to any chosen vector must
be justified to the state S, at which the FSM was left
after the application of the last vector in the previous
sequence. The state for the first fault considered is
justified to the reset state, assuming that the machine
can be reset at power up even under faulty conditions.
This assumption, used for simplicity in the present im-
plementation, is not a basic limitation of our technique
and can be removed in the future implementations.

Justification involves finding a sequence of vectors
that will bring the FSM from the state S, to the state
S,. In our implementation, reverse time processing is
used to generate a justification sequence, starting from
current state S;, back to Sp. If any of the vectors gen-
erated in time frame ¢ has the present state S; which
covers the state Sp, we do not have to generate a jus-
tification sequence for the fault under consideration.
If no such cube exists, first we check if a single vec-
tor justification sequence exists. This can be gone by
finding all input cubes that have the fanin states of .S
(present state part) in the previous time frame ¢ — 1.
These cubes can be found by simple cube intersection
(M) and sharp (#) operations on the ON set cubes of
the next state functions corresponding to the state S;.

As an example, suppose we want to find all input
cubes that will set the three next state signalsin ¢ —1
as NS; =1, NS, = 0and NS3 = 1, i.e,, S; = 101.
The input cubes that have the fanin states of S, are
given by NS N NS, M NS3 = (NS1#NS2) N NS;,
where NS;, NS; and N S3 are the ON sets of the cor-
responding next state lines. Once we find the fanin
cubes C;_; of S;, we search C;_; for a cube whose
present state portion covers S,. If such a cube exists
in Cy_1, we have found a single vector justification
sequence. Otherwise, we heuristically select a cube
in Cy_; whose present state part S;_; does not sub-
sume S; (to avoid self loops), find the fanin cubes C;—»
of S;_1 and search for a cube in C;_2 whose present
state portion covers Sp. This process is continued un-



til either we reach a predefined limit on the length of
the justification sequence or a user defined time limit
or the set of fanin cubes for a given S;_, becomes
empty, at which point backtracking is started. Back-
tracking is done by advancing the time frame forward
and choosing the next available cube among the fanin
cubes to be justified. If no more cubes are available,
advancing the time frames continues until we exhaust
all cubes in C; of the time frame ¢.

One significant advantage of our G and D fault
model is that the effect of a fault can be represented
by a single bit change in one of the cubes constituting
the ON set of the affected function. For example, the
effect of a G fault G(i, j) is to change the j*» variable
in cube p; to z from 0 or 1. Similarly, the effect of a D
fault D(i, k) is to change the k** entry in the output
part of cube p; from 1 to 0. A G fault causes the ex-
pansion of the affected cube in the functions fed by it,
as seen on the Karnaugh map (see Figure 1 (b)). AD
fault will cause a cube to disappear from the affected
function and thus cause a contraction of the function
as seen on Karnaugh map.

5.2 Fault Propagation

This step is required if the initial combinational test
vector generated for the target fault does not propa-
gate the effect of the fault to any PO but only to one
or more next state lines, We will illustrate the algo-
rithm using the example FSM of Figure 1. Consider
the G fault G(2, 3) in the FSM. Step 1 yields the
combinational test vector 101 as we derived in Sec-
tion 2. This implies that 10 is the test vector and
the machine should be in state 1 for this test to be
effective. In step 3 we require a sequence that will
propagate the fault effect to a PO. Since the fault ef-
fect has reached the next state output N.S we look for
a product term of a PO function which uses the PS
input corresponding to the output NS and derive the
input conditions to observe this product term signal at
the PO. This can be achieved by simple cubical oper-
ations. Let p; be the chosen product term which uses
PS, connected to PO z; and does not have conflict in
other present state positions with the output on the
corresponding next state lines. We derive PTLIST(i,
k) for p; with respect to output z;. In order to avoid
simultaneous propagation of D and D values to the
PO, we change the bit corresponding to input PS in
the cubes in PTLIST(i, k) to z if it differs from the
value of the bit position for PS in p;. PTLIST also
consists of cubes that do not have any conflict with
p; and are connected to z;. Now, p;# PTLIST(), k)
will give the required sensitizing condition. In our ex-
ample, p; is the only product term for the output C
which is the only PO. PTLIST(1,2) is empty. Hence
the propagation sequence is x1.

If during step 3, we cannot find a product term of
a PO that uses the required present state variable,
we propagate the fault effect to some other next state
output before we finally reach a PO, taking care not
to allow propagation to the same next state line as in
a previous time frame. Since we implicitly search the
function space, we may have to backtrack at certain
steps, but the algorithm is complete and will even-
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tually find a test sequence, if one exists. To check
for fault masking due to multiple path propagation, a
fault simulation just for the fault under consideration
is done for every propagation vector as soon as it is
generated. If there is fault masking, then a different
product term is chosen for propagation.

For fault propagation, we always use the ON set of
the faulty function, if the function is affected by the
fault. Note that we can obtain the ON set of a faulty
function by a simple bit change in one of its cubes.

5.3 Fault Simulation

A simple fault simulation based on the single fault
propagation technique is implemented. When a test
sequence is found for a fault, the vectors in the se-
quence are run through the fault simulator. For each
vector first a fault free logic simulation is carried out
with the PI portion concatenated with the fault free
state bits for the present portion portion. The next
state bits (fault free state) is saved for consideration
with the next vector. Next, for each fault, modifi-
cations are introduced in the PM and the simulation
is repeated with the PI portion of the vector concate-
nated with the faulty state bits of the fault under con-
sideration. The output responses are compared in the
PO portion to check whether the fault is detected. If
the fault is not detected the next state bits (faulty
state) are saved for the particular fault, for consider-
ation with the next vector.

Since we use the cubical description of the logic
function, simulation requires finding the Hamming
distance of the vector to product terms. The outputs
of all those product terms that have a distance of zero
with the vector will be set to logic 1, and all other
outputs will be set to logic 0.

6 Experimental Results

We developed a C program, GDSEQ, to gener-
ate test sequences for PLA based FSMs and general
sequential circuits whose combinational function can
be obtained in personality matrix form. We experi-
mented on six synthesis benchmark FSMs and 16 of
the ISCAS89 benchmarks. The characteristics of these
circuits are shown in Table 2. The first six circuits
are the synthesis benchmarks and the personality ma-
trices of these circuits were available. As two-level
functional description for the ISCAS89 benchmarks is
not available we extracted the ON set cubes of all PO
and next state functions of these circuits. The SUN
Sparc 2 run times for cube extraction using a Podem
based technique [15] and single output minimization
using Espresso [2] are given in the last two columns of
Table 2.

The results obtained from GDSEQ are given in
Table 3. In the synthesis benchmark circuits (bbara
through styr), 100% of G and D faults were covered
almost always. As stated earlier, a power-up reset was
assumed only at the beginning of the test sequence.
The coverage of G and D faults in ISCAS89 circuits
was lower due to the time frame limit and the back-
track time limit used in the justification stage of the
program.

Next, the GDSEQ vectors were used to simulate
all collapsed single stuck faults in the multi-level gate



Table 2: Characteristics of Benchmark FSMs

No. of | No. of | No. of | Extracted PLA | Multilevel Circuit SUN Sparc 2 CPU s

FSM In- Out- Flip- rod. G-D | No. of Stuck Cube Mini-
puts puts | Flops | Terms Flts. | Gates Flts. | Enumeration | mization

bbara 4 2 3 26 126 42 132 - -
dk14 3 5 3 51 239 85 244 - -
dk16 2 3 5 104 625 182 526 - -
planet 7 19 6 235 1341 360 1066 - -
sand 11 9 5 228 1547 354 1087 - -
styr 9 10 5 228 1678 379 1127 - -
827 4 I 3 15 47 10 32 0.12 0.14
5208 11 2 8 30 202 96 215 0.29 0.49
8298 3 6 14 68 309 119 308 0.96 0.96
s344 9 11 15 249 1495 160 342 2.39 2.37
8349 9 11 15 249 1495 161 350 2.42 2.37
5382 3 6 21 167 1080 158 399 2.32 1.62
s386 7 7 6 51 407 159 384 1.10 0.61
s400 3 6 21 167 1080 162 424 2.63 1.71
s444 3 6 21 167 1080 181 474 2.89 1.58
s510 19 7 6 109 580 211 564 1.58 0.75
8526 3 6 21 142 740 193 555 1.93 1.40
8526n 3 6 21 142 740 194 553 1.84 1.40
5820 18 19 5 126 969 289 850 0.92 2.98
8832 18 19 5 126 969 287 870 0.92 2.98
s1488 8 19 6 277 1876 653 1486 1.05 3.46
51494 8 19 6 277 1876 647 1506 1.09 3.28

Table 3: Test Generation on Multilevel FSMs using Functional Vectors (SUN Sparc 2)

Personality Matrix I Multi-Tevel Implementation

FSM GDSEQ Kandom Gentest
No. of G-D | TGen. | FSim. | Useful Stuck Vector [ No. of [ Stuck CPU
Vect. Fit. CPU | CPU | Vect. Fault Cov % | Vect. Fault Sec.

Cov % Sec. Sec. Cov % Cov %

ara 151 100.0 0.17 0.37 150 100.0 78.0 120 100.0 10.0
dk14 89 100.0 0.12 0.39 79 100.0 93.8 64 100.0 10.0
dk16 191 100.0 1.56 1.44 179 100.0 97.9 346 100.0 | 1403.0
planet 644 99.9 | 50.80 5.39 624 100.0 99.0 509 100.0 | 8446.0
sand 1210 100.0 | 719.70 | 14.03 1056 100.0 96.7 580 100.0 | 22425.0
styr 1191 100.0 | 102.20 | 10.96 1191 100.0 74.5 754 100.0 | 35868.0
s27* 23 89.4 0.02 0.03 14 100.0 65.6 18 100.0 0.1
s208* 260 44.6 0.56 2.19 232 69.3 40.0 10 8.3 682.9
s298* 187 72.8 2.84 0.83 182 86.0 51.6 220 86.0 337.9
s344 129 26.1 | 700.50 1.16 129 90.6 87.4 80 96.2 79.9
$349 122 26.9 | 690.90 0.61 122 91.7 86.5 105 95.7 123.7
s382 754 39.8 | 580.48 442 753 87.2 14.5 3796 91.2 | 3165.2
s386* 317 64.1 1.66 1.75 296 81.7 50.0 201 81.7 1707.6
s400 572 35.2 | 343.77 4.21 543 81.6 14.3 1517 90.1 2654.7
s444 387 30.6 | 81.14 4.38 387 75.5 12.2 2441 89.2 | 5447.7
s510* 550 99.1 | 35.74 2.14 550 100.0 99.8 0 0.0 0.4
s526 330 44.9 | 306.44 4.95 330 67.6 9.9 2223 79.3 | 16787.7
s526n 312 41.5 | 312.50 6.18 257 65.6 9.9 3445 80.8 | 19574.4
s820* 1345 88.6 | 145.80 | 14.47 1345 94.0 37.3 392 76.0 | 16735.5
s832* 1527 88.4 | 96.05| 17.98 1500 92.1 36.2 367 76.0 | 19006.0
s1488* 1502 83.5 | 116.49 | 43.85 1502 94.2 57.2 393 91.2 | 30114.6
s1494* 1529 85.1 | 115.04 | 43.85 1529 94.5 56.3 421 90.0 | 22877.0
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implementations of FSMs. A differential fault simu-
lator [7] was used for fault simulation. As shown in
Table 3, these vectors gave 100% fault coverage for
all six synthesis benchmarks. The combinational por-
tion of these FSMs were obtained by the synthesis
program MIS [3] as described in Section 4 and these
FSMs were single stuck fault irredundant. It should be
noted that though testability preserving transforma-
tions were employed in the synthesis of these bench-
mark FSMs, the theoretical result on the multifault
coverage of such circuits is applicable only to combina-
tional circuits [11, 17). We do not have any theoretical
basis to claim 100% stuck fault coverage for sequential
circuits synthesized by testability preserving transfor-
mations.

The ISCAS89 benchmarks were not synthesized by
us but were the same as obtained from MCNC and
the GDSEQ vector fault coverages of stuck faults in
these circuits are lower than the maximum obtainable.
It should, however, be noticed that the stuck fault
coverage is always higher than that of the G and D
fault coverage. The useful vectors given in Table 3
were obtained when the vector set was truncated after
the detection of the last fault. For comparison, the
coverage of a set of random vectors having the same
number of vectors as the useful vectors is also given in
Table 3. The random vector coverage is consistently
lower.

We used the sequential test pattern generator Gen-
test [6] to verify the efficiency of GDSEQ. Gentest is
a gate-level test generator and uses the time frame
expansion method. It has a differential fault simula-
tor [7] to remove detected faults from the fault list
after a test sequence is generated for a target fault.
We generated test sequences for stuck faults in the
multi-level implementations of FSMs. The vector set
size, fault coverage, and CPU times for Gentest on
SUN Sparc 2 are given in Table 3. Here no power up
reset is assumed. Also, the actual fault coverage can
be higher in some cases due to the undetectable faults
identified by Gentest. It is clear that the total time re-
quired to generate the functional (G-D) vectors using
GDSEQ and fault simulate them on multi-level FSMs
is far less than the time taken by Gentest.

For nine of the sixteen ISCAS89 circuits (shown
with an asterisk in Table 3) the GDSEQ vectors gave
equal or higher fault coverage than that obtained by
Gentest. This is due to the fact that some of the
faults aborted by Gentest were detected by GDSEQ.
Seven circuits have lower fault coverage for GDSEQ
than that obtained by Gentest. For these circuits
GDSEQ can be run with different values of time limit
and frame limit per fault to generate more functional
vectors to improve the multilevel stuck fault coverage.
The lower fault coverages for these circuits may also
be due to the fact that these circuits were not syn-
thesized using testability preserving transformations.
It may be noted that for two circuits, namely, s208
and s510, for which Gentest coverage was 8.3 and 0%,
the GDSEQ vectors gave 69.3 and 100% coverage, re-
spectively. This is due to the initialization difficulty
in these circuits and the power up reset assumption of

GDSEQ.

The CPU times for the functional approach and
that of Gentest cannot be compared meaningfully for
all ISCAS89 circuits since the coverages are different.
However considering the nine circuits (shown by aster-
isk in Table 3) where the GDSEQ vectors gave equal
or greater coverage than Gentest, the functional ap-
proach (test generation + simulation) is 1 to 500 times
faster compared to Gentest.

To examine the advantage of using testability pre-
serving transformations in the synthesis of sequential
circuits, we experimented with the circuit styr. The
multi-level combinational portion of styr synthesized
from a multiple-output minimized personality matrix
(as already described in Section 4) was used to con-
struct the multi-level FSM. GDSEQ generated a test
sequence of 1354 vectors for the 1239 G-D faults in
multiple-output minimized PLA based FSM. These
vectors gave only 98.9% coverage (i.e., 1080 of 1091) of
detectable stuck faults in the multi-level implementa-
tion, as opposed to the 100% coverage obtained for the
testable implementation reported in Table 3. Thus,
the loss of fault coverage due to improper synthesis,
though not large, is noticeable.

7 Conclusion

The model of growth and disappearance faults in
the logic function of a finite state machine allows ef-
ficient test generation. We found that the functional
test sequence derived by a prototype implementation
of our test generation algorithm could achieve a very
high coverage of single stuck faults in actual multi-
level FSM implementations. We must, however em-
phasize the usefulness of testability preserving trans-
formations in synthesis, as is evidenced by our experi-
ment with the circuit styr. The functional fault model
also allows us to generate tests that are independent
of the specific logic implementation. A major advan-
tage of this approach is that functional test generation
combined with fault simulation is considerably faster
than gate level algorithms that target stuck faults in a
specific implementation. For the relatively few stuck
faults that may not be detected by the functional test
sequence, it is possible to generate additional tests us-
ing any gate level sequential circuit test generator.

For generating tests for large circuits with only the
gate-level implementation given, it is not necessary to
extract the functional behavior (personality matrix) of
the entire circuit. A better approach may be to parti-
tion the circuit and solve the test generation problem
for an interconnection of functional blocks.
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