
Fast Simulation of Steady-State Availability in Non-Markovian 
Highly Dependable Systems 

Victor F. Nicola* 
Perwez Shahabuddin 
Philip Heidelberger 

IBM T.J.Watson Research Center 
Yorktown Heights, NY 10598 

Abstract 
Thi s  paper considers e f i c i en t  simulation techniques f o r  

estimating steady-state quantities in models of highly de- 
pendable computing systems with general component failure 
and repair t ime  distributions. Earlier approaches in this 
application setting fo r  steady-state estimation rely o n  the 
regenerative method of simulation, which can be used when 
the failure t ime  distributions are exponentially distributed. 
However, when the failure t imes are generally distributed 
the regenerative structure is  lost and a new approach mus t  
be taken. The  approach we take is  to  exploit a ratio rep- 
resentation f o r  steady-state quantities in terms of cycles 
tha t  are no longer independent and identically drstributed. 
A “splitting” technique i s  used in which importance sam- 
pling is  used to speed u p  the simulation of rare sys tem fail- 
ure events during a cycle, and standard simulation is  used 
to estzmate the  expected cycle length. Experimental results 
show that  the method is  effective in practice. 
1 Introduction 

This paper is concerned with the efficient simulation 
of certain steady-state quantities in models of highly de- 
pendable computing systems. (By “simulation” we mean a 
discrete event stochastic simulation.) In particular, we will 
consider techniques for accurately estimating the steady- 
state unavailability, U ,  for models in which the failure and 
repair time distributions are generally distributed. Be- 
cause the system being modeled is assumed to be highly 
dependable, system failure events are rare and therefore 
U M 0. Standard simulation of such systems require enor- 
mous sample sizes in order to accurately estimate U; typ- 
ically, the closer U is to zero, the longer a standard simu- 
lation needs to be run. 

We seek to avoid such long run lengths by using the 
technique of importance sampling [13], [16]. In impor- 
tance sampling, the system is simulated using a new set 
of input distributions (e.g., failure distributions) that are 
chosen in such a way as to make the rare event much more 
likely to occur. An unbiased estimate is then obtained by 
multiplying the output of the simulation experiment by 
the likelihood ratio. If the new method of sampling is cho- 
sen properly, then the variance of the new estimator will 
be much less than the variance of the standard estimator. 
Importance sampling has been effectively employed in a 
variety of situations, including queueing models (see, e.g., 
[9], [26] and [27]). Another approach to variance reduction 
when estimating long-run averages in models of communi- 
cation networks is considered in [22]. 

Its use in simulating highly dependable systems of the 
type described in [14] has been studied in [3], [4], [lo], 

*Current address: Department of Com u t u  Science, Uni- 
versity of Twente, P.O. Box 217, 7500 XE Enschede, The 
Netherlands. 

Peter W. Glynn 

Department of Operations Research 
Stanford University, CA 94305 

~ 5 1 ,  ~171, ~ 1 ,  POI, ~211, t231, ~ 5 1 ,  ~ 4 1 ,  1291 and POI. 
A number of these references prove that when the im- 
portance sampling distribution is chosen according to a 
certain heuristic, then the resulting estimator satisfies the 
“bounded relative error” property. For example, if U is an 
estimator of U, then U has bounded relative error if Stan- 
dard Deviation U /U remains bounded even as U + 0. In 

number of samples are required to accurately estimate U, 
no matter how small U is, i.e., no matter how rare system 
failure events become. The above papers have considered 
two distinct situations: 
1. Estimation of steady-state quantities such as the long 

run unavailability U. 
2. Estimation of transient quantities such as the reliabil- 

ity R(t) which is defined as the probability that the 
system does not fail before some fixed time t. 

Results on steady-state estimation have basically been re- 
stricted to cases in which the component failure time dis- 
tributions are exponentially distributed. This restriction 
is required because the steady-state estimators exploit the 
regenerative structure of such models (see, e.g., [SI). In 
this case, because of the exponential assumption, regener- 
ations occur whenever the model enters the state in which 
all components are operational. This permits a ratio repre- 
sentation of steady-state quantities, e.g., U = E[D;]/E[Ci] 
where D; is the total amount of downtime during the a-th 
regenerative cycle and C; is the length of the i - th  regen- 
erative cycle. (The time between regenerations is called a 
cycle.) In addition, different regenerative cycles are i.i.d. 
(independent and identically distributed) thereby permit- 
ting straightforward variance estimation and formation of 
confidence intervals. 

While efficient simulation techniques for estimating 
transient quantities in models with generally distributed 
failure and repair times have been considered in [17], [18], 
[25] and 241, until now, these techniques have not been 

due to the fact that an entrance to the “all components 
up” state no longer constitutes a regeneration. In this 
paper, we show how these techniques can be extended to  
estimating steady-state measures in systems without re- 
generative structure. The approach makes use of a ra- 
tio representation for steady-state quantities in terms of 
“ A  - cycles” that is similar to that obtained in a regenera- 
tive setting, but which is more generally applicable. Here, 
a new A - cycle is defined to start whenever the process 
enters some set of states A. (In our setting, A 5 all compo- 
nents operational.) However, the A - cycles are no longer 
i.i.d., which somewhat complicates the use of importance 
sampling, variance estimation, and the formation of con- 

practice, boun d‘d e relative error implies that only a fixed 

successf uh y applied to estimating steady-state quantities 
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fidence intervals. Approaches for effectively dealing with 
these problems will be described in the parper. In particu- 
lar, we employ a “splitting” technique which uses impor- 
tance sampling to estimate the expected downtime during 
an A -cycle and uses standard simulation to estimate the 
expected length of an A - cycle. 

While we have not (yet) proven that this approach gives 
rise to estimates with bounded relative error, the method is 
shown to be highly effective in practice. In addition, if the 
failure and repair distributions are exponential, then the 
approach is closely related to using “balanced failure bias- 
ing” ([29], [15]) and “measure specific dynatmic importance 
sampling” (MSDIS) [15] which, for Markovian models, was 
shown to have bounded relative error for estimating the 
steady-state unavailability in [29 . Also, when the failure 

portance sampling heuristic used is knowin to produce an 
estimate, of the transient reliability R(t), having bounded 
relative error [NI. For these reasons, we conjecture that 
(under appropriate technical conditions) the method does 
produce estimates of the steady-state uniivailability with 
bounded relative error when failure and repair times are 
generally distributed . 

The rest of the paper is organized as follows. In Sec- 
tion 2 the ratio representation is discussed. The issues of 
how to effectively combine importance sampling with this 
ratio representation for general rare event estimation, and 
how to estimate the variance are also described in Sec- 
tion 2. The application of these results to estimating the 
steady-state unavailability and our articular importance 
sampling heuristic are described in fection 3. Experimen- 
tal results are presented in Section 4, ancl the results are 
summarized in Section 5. 

and repair times are generally d istributed, then the im- 

2 Estimation of Steady-State Mea- 
sures in Non-Regenerative Systems 

Consider systems that can be modelled as (time homo- 
eneous Generalized Semi-Markov Processes (GSMP’s). 

$or a d etaded . exposition on GSMP’s the reader is re- 
ferred to [ll] see also [25] for an alternative description). 

terized by an output state vector, say X( t ) ,  that takes 
value in Z‘, and an internal state vector, say S(t), that 
takes values in R” (Z G set of integers, I is a posi- 
tive integer and m is a non-negative integer). The choice 
of the output state vector depends on the a lication at 
hand and the desired level of detail. The: S t is defined 

the system, so that f (X( .s) ,S(s))  : s > t} depends on 
{ ( X ( s ) , S ( s ) )  : 0 5 s 5 t )  only through ( X ( t ) , S ( t ) ) .  Let 
f ( X ( t ) )  be some bounded real valued function on the out- 
put state space S. For example, consider a system with N 
different components. Each component hips generally dis- 
tributed failure and repair times. The age of an operational 
component is the time since it is last beca.me operational. 
The system has many repairmen (each component is as- 
signed a particular repairman) which repair components 
using the FCFS (first come first served) service discipline, 
and components interact by sharing repairmen. In this 
case we may define X(t to be an N-dimensional vector, 

is up and 0 otherwise. The internal state vector S t) may 
be defined to include the ages of the components t at are 
operational, the repair queue and the elapsed repair time 
(if any) at each repairman. For the purposes of availability 
estimation, the function f ( X ( t ) )  may be given a value 1 if 
in the state X t )  enough components are operational for 
the system to 6 e considered up; otherwi,se, it is given a 
value of 0. 

Roughly spea L ‘ng, these are systems which are charac- 

such that it has enou h information about t Kp e history of 

e the i - th element of w h ich is 1 if the i .- th  com onent 

Under fairly general conditions that ensure ergodic- 
ity (which are analogous to recurrence type properties in 
Markov chains with countable state space), as t + 00, the 
quantity s,“=, f ( X ( s ) ) d s / t  converges to a constant with 
probability 1. Let us denote this constant by U. Our goal 
is to estimate this steady-state measure U. 
2.1 Standard Estimation Procedures for 

Let A denote a length of time. Define Di = 
~ s i ~ ~ i - l l A  f ( X ( s ) ) d s / A  and form the estimate U = 

cy=, Diln. Then by definition, as n -+ 00, U -+ U 
with probability 1. Also, under some more regularity 
conditions, we have the central limit theorem (CLT): 
f i ( U  - U) + N ( 0 , a 2 ) ,  as n -+ 00, where a’ is a vari- 
ance constant. In that case, if we knew a’, we could con- 
struct a (1 - 6)% confidence interval (CI) for U. The half 
width (HW) of this CI will be given by 2 6 / 2 ( T / f i ,  where 
2 6 / 2  is the l O O ( 1  - 612) percentile point of the standard 
normal distribution (see [l]). If the Di’s were i.i.d., then 
u2 = Var(D;) which would be easy to estimate. If we 
discard some of the initial Di’s (i.e., allow the system to 
reach steady-state), then the Di’s from then on are (ap- 
proximately) identically distributed but still not indepen- 
dent. Hence the method of batch means (see [l] ) can be 
used to estimate U’. We now briefly review this procedure. 

In the method of batch means we group the Di’s into 
batches, each batch having k successive Di’s, i.e., if b 
is the number of batches, then kb = n. Let 6 j  = c?(j-l)k+l Di/k  for 1 5 j 5 b. Then we form the es- 

timate 6 = Cj,, 6 j / b  = cy=, D ; / n  which is the same 
estimator as before. The method of batch means make use 
of the assumption that for sufficiently large k: the 6j’s are 
(approximately normally distributed and uncorrelated. If 

steady-state, then the 6 j ’ s  are also identically distributed. 
In that case we again have the CLT, where now k + 00. 
If, in addition, b is large, then a’ = Va7(6j )  can easily be 
estimated. 

Consider f ( X ( s ) )  of the form l{x(s)EF) (the indicator 
function), where F c S is a rare set of states (but with 
non-zero probability). In this case, most of the D;’s and 
thus the 6 j ’ s  will be zero, and therefore, as mentioned in 
the introduction, it is hard to get accurate estimates. So 
techniques like importance sampling have to be used. In 
the following sections we develop a method based on a rep- 
resentation of steady-state measures as a ratio of expecta- 
tions. The method uses the techniques of batch means, 
splitting and importance sampling to efficiently estimate 
the ratio. 

St eady-S tat e Measures 

b 

we discard the B rst few 6 j ’ s  to allow for the system to reach 

2.2 A Ratio Representation of Steady- 

Let A c S. As in the introduction, an A - cycle 
is defined to start whenever the { X ( t )  : t 1 0) enters 
A. Let Q de- 
note the probability dynamics governing the realizations 
of { ( X ( t ) , S ( t ) )  : t 2 0). Let ‘lr be the steady-state dis- 
tribution of ( X ( t ) , S ( t ) )  at the times when { X ( t )  : t 1 0) 
enters A. Then under fairly general recurrence type con- 
ditions (which also ensure that the system returns to state 
A infinitely often) we have that (see [5] and Section 6.9 of 
[2] for details; see also [7]) 

State Measures 

Let C be the length of an A - cycle. 
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C where now D = Js=, l ~ q ~ ) ~ & s  and the subscripts in the 
expectation denote the initial distribution and the proba- 
bility dynamics governing the realizations of { ( X ( t ) ,  S ( t ) )  : 

To make use of this ratio, we can first run the process 
for some time so that it reaches steady-state and then run 
n A - cycles to get n samples of D and C. However, as in 
the standard estimation procedure described above, there 
are two problems. First, because the set F is rare, most 
of the samples of D will be zero, leading to an inaccurate 
estimate of E(D) .  To overcome this we use importance 
sampling. Second, the samples of D and C) are identi- 

using the method of batch me!ns. 
2.3 Efficient Simulation of Rare Events 

Using Importance Sampling 
Let 4’ denote a new probabilit dynamics that now gov- 

erns the realizations of { ( X ( t ) ,  S6)) : t 2 0}, such that the 
probability on the sample paths of ( ( X ( t ) , S ( t ) )  : t 2 0) 
using 4 is absolutely continuous with respect to the prob- 
ability on the sample paths using 4’ (absolutely continu- 
ous essentially means that any event that had a positive 
probability of occurrence under the original dynamics also 
has a positive probability of occurrence under the new 
dynamics). When importance sampling is used, we can 
write E,,+(D) = E,,+i(DL) (the second subscript in the 
second expectation indicates that we are using the new 
probability dynamics 4’ to  generate D and L ) ,  where L 
is the likelihood ratio. The main problem in importance 
samplin is to choose an easily implementable 4’ so that 
VUT,,+~FDL) << V w T 2 + ( D ) .  Then for estimating the ra- 
tio we can write Equation 1 as 

t 2 0). 

cally distributed but not independent. .Ir his can be handled 

and use the following simulation scheme. We first run a 
few A - cycles using 4 so that the s stem enters steady- 
state and we are assured of ( X ( t ) ,  S t )  being distributed 
sufficiently close to a at the start of - cycles. Then we 
do a splitting technique (see [16]) in each of the A-cycles, 
where we do one run using the dynamics 4‘ to get samples 
of D and L and a second run with the original dynamics 
4 to get a sample of C. The second run also ensures that 
we again get the distribution a when the system re-enters 
state A,  so that we can start another A - cycle at that 
point in time. We repeat this procedure to get the sam- 
ples Di,  Li and C;, 1 5 i 5 n, of D ,  L and C, respectively. 
This approach is very analogous to  “measure specific dy- 
namic importance sampling” (MSDIS [15] for estimating 

portance sampling is used to estimate the expected down- 
time in a cycle and standard simulation is used to estimate 
the expected cycle time. 
2.4 Variance Estimation Using the 

Since the A - cycles are not independent, we use the 
method of batch means to  estimate the variance. As be- 
fore let b be the number of batches and let k be the 
batch size. Let 6 j  = x$j-l)ktl DiLi /k  and yj  = 
~~i( j - - l )k t l  Ci /k .  Then we form the estimate 

the steady-state unavailability in Mar L ovian systems; im- 

Method of Batch Means 

A 8  U = ^ ,  
7 (3) 

In the steady-state, for sufficiently large k ,  the 6j’s 
and yj’s) are uncorrelated. We introduce the generic ran- 6 om variables 6 and y having the same distributions as 6j 

and y j ,  respectively. It follows that E($) = ET,+i(6) and 
E(+) = Er,+(r). Also, V U T ( ~ )  = VUTr,+r(6)/b, VU.(?) = 
Vu~ , ,~+(y ) /b  and Cov(b, 9) = Cov,,+t,+(S, y)/b. The sub- 
scripts in the covariance term indicate that for each i, 
( D i , L i )  (used in the 6j’s) and Ci (used in the yj’s) are 
sampled using the same starting state (i.e., distributed ac- 
cording to a), and using 4’ and 4, respectively. Finally, 
from the CLT we have A(@ - U) M N ( 0 , a 2 )  for large k 
and b, where (analogous to the regenerative method) 

2 V U T * , + ’ ( 6 )  + U2VaGT,+(7) - 2uco%,,~,,(6,r) 
E:&) 

U =  

(4) 
3 Estimation of Unavailability in 

Highly Dependable Systems 
The class of highly dependable systems considered in 

this paper is that composed of highly reliable components, 
i.e., the mean time between failures MTBF) of its compo- 
nents is orders of magnitude larger t 6 an their repair time. 
High dependability can also be achieved by increasing the 
redundancy level of less reliable components; however, here 
we are not concerned with this type of systems. 

Without loss of generality, we consider models of highly 
dependable systems in which a component may be in one 
of only two states: operational and failed. When a com- 
ponent fails in a given mode, it may cause other compo- 
nents to fail with some probability (failure propagation). 
Different sets of components may be affected at different 
failure modes. Failed components are repaired by one or 
more repair facilities according to some arbitrary service 
discipline. Basically, these models are similar to those 
that can be handled using the SAVE package [14]. How- 
ever, unlike SAVE, we allow general distributions for fail- 
ure and repair times, and repairs are assumed not to be 
instantaneous. Let G i ( z )  denote the failure distribution 
of component i. Then its hazard rate function is given by 
h i ( z )  = g, (z ) /Gi (z ) ,  where gt(z) is the probability density 
function corresponding to Gi(z  and G i ( z )  = l-Gi(z). We 

small (but positive) parameter E and assume it is bounded, 
such that h,(z) 5 Xieba,z 1 0 ,  where 0 < X i  < 03 
and b; 2 1. As will be further discussed in Section 3.1, 
the assumption of bounded failure hazard rate functions 
(which holds for many, including phase-type, distributions) 
is necessary in order to use the uniformization approach. 
Weibd  is not included in the class of bounded hazard rate 
distributions, however, it can be arbitrarily well approxi- 
mated by appropriately bounding its hazard rate function; 
this will enable us to experiment with an increasing failure 
rate Weibull distribution, as will be described in Section 
4.3. 
3.1 A Uniformization-Based Importance 

The uniformization technique (also known as random- 
ization [19]) can be used to sample from general distri- 
butions t .g. ,  nonhomogeneous Poisson processes) with 
bounded azard rate functions. Such distributions include 
Markovian phase-type, but exclude discrete, uniform and 
Weibull distributions. To illustrate, consider simulating 
the nonhomogeneous Poisson process with a bounded haz- 
ard rate h(t) 5 p, where p is a constant rate. We generate 
the event times { T k } ,  k = 1,2, ..., of a homogeneous Pois- 
son process at rate p (p is called the uniformization rate.) 

further parameterize the hazar d rate function in terms of a 

Sampling Approach 
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Tk is accepted as an actual event of the simulated pro- 
cess with probability h(T’)/P (real event), otherwise, it 
is rejected pseudo event). The acceptance/rejection test 

event is accepted, in which case the same ,procedure is re- 
peated to generate the next (real) event oC the simulated 
nonhomogeneous Poisson process. 

In the context of reliability estimation, uniformization 
can be used to implement importance saimpling in Non- 
Markovian models as described in [24]. In a similar way, 
it can also be used for unavailability estim4ation as we will 
describe in this section. 

Consider a system with N components. At any time t ,  
let O(t) be the set of operational components, and denote 
by u; ( t ) , i  E O(t), the age of component ii (i.e., the time 
since it last became operational). Define the failure rate 
of component i at time t to be A; ( t ) ,  then 

is performe 6 at consecutive uniformization events until an 

The total failure rate at time t is given by h ( t )  = . .  

Ai ( t ) .  
Let {T,,}, n = 1 , 2 ,  ..., corresponds to the real event 

times in the system (i.e., failure and repair events). At 
real event T,,, let Ap(t) ,  t 2 T,,, be bounded by a constant 
rate, say, Pn (i.e.,.A~(t) 5 Pn, t 2 T,,). Then the time to 
next f d u r e  event in the system can be sampled by succes- 
sively generating the Poisson (uniformization) event times 
{Tnk},  k = 1 , 2 ,  ..., at rate Pn, and performing the accep- 
tance/rejection test until an event is accepted. Event T n k  
is rejected with probability 1 - AF(Tnk) /&r ,  in which case 
the next uniformization event is generated. Otherwise, 
T n k  is accepted as the next failure event time. This pro- 
cedure is repeated at every real event (failure or repair 

system, the expected time to next failure event (P.R1) is 
much larger than the expected time to next repair event, 
if any. Therefore, a system failure is very unlikely to occur. 

As we simulate the system, repairs are sampled from 
their original distributions, which, therefobre, are not re- 
stricted to the class of bounded hazard rate functions. In 
particular, this allows arbitrary repair time distributions, 
including general discrete and uniform distributions. It 
is assumed that failure propagation probabilities are not 
changed in the simulated system. It follows that uni- 
formization (with importance sampling) is used only to 
simulate the time of failure events. 

To implement importance sampling using uniformiza- 
tion we do the following. At real event T,% (during a re- 
pair), we can simply increase the uniforminration rate, &,, 
and fix the acceptance probability at some level, say, p n ,  
such that an - Pnpn (this is the effective: rate at which 
the next failure event is generated; we call it the “bias- 
ing level”) is of the same order as the repair “rate”. This 
will increase the probability of subsequeni failure events 
leading to a system failure. 

Upon the occurrence of a failure event in the original 
system, say, at r,,, component i is selected as the failed 
component with probability p,,; = X;(T,,)/AF(T,,). How- 
ever, with importance sampling, this probalbhty could be 
changed. For example, in “balanced failure biasing” we 
equalize the failure probability for all operational compo- 
nents. (We are using the term “balanced failure biasing” in 
a generic sense. “Balanced failure biasing” was originally 
defined for the case of Markovian systems and consisted 
of making all failure transitions from a state occur with 
equal probabilities [29]. This is different from making all 
operational components fail with the same probability, as 

to generate the time to next failure event. In the origin a 

dzf 

in systems with failure propagation, the number of failure 
transitions possible from a state may be different from the 
number of operational components in that state. How- 
ever, it can easily be shown using techniques in [29], that 
for Markovian systems in which the failure propagation 
probabilities are considerably higher than the failure tran- 
sition probabilities, the version of balanced failure biasing 
based on the number of operational components is as ef- 
fective. We are generalizing this version to non-Markovian 
systems, assuming that the failure propagation probabili- 
ties are not very small.) In this case, component i E O(T?) 
is selected to fail with probability p,,; = l/IO(T,,)l. In addi- 
tion to being simple and robust, “balanced fadure biasing” 
is known to be provably effective in the context of unreli- 
ability estimation [MI, [29], [30]. 

The likelihood ratio is computed recursively, by updat- 
ing it only at pseudo and failure event times as follows. 
Let L k ,  k = 0,1,2, ..., be the likelihood ratio at the le - th  
(pseudo or failure) event, at time t k .  Then Lo = 1, 

if the k - th event is a type i failure event and 

if the k - th event is a pseudo event. In other words, the 
likelihood ratio is updated by a factor equal to the ratio 
of the probability of the k - th  event in the original and 
simulated systems, respectively. Notice in the above equa- 
tion that P k , p k  and p k ;  can be changed at pseudo events; 
however, in our implementation (as described above) they 
are changed only at real (failure or repair) events. Heuris- 
tics for choosing P k , P , +  and P k ; ,  as well as other practical 
considerations, are discussed in Section 3.2. For unreli- 
ability estimation [la], it is shown that under reasonable 
assumptions and appropriate heuristics, the above method 
is provably effective, i.e., it yields estimates with bounded 
relative error. In Section 4 we experimentally demonstrate 
the effectiveness of our method for unavailability estima- 
tion. However, theoretical results to establish the property 
of “bounded relative error” are not yet available. 
3.2 Implementation Issues 

In this section we consider specific implementation is- 
sues in the estimation of steady-state unavailability using 
uniformization and importance sampling as discussed in 
the previous sections. In our implementation we use CSIM 
g81, a process-oriented simulation language based on the 

programming language. 
Following our discussion in Section 2.3 as applied to 

highly dependable systems, we define an A - cycle to be a 
sample path between two successive entries into the fully 
operational state (in which all system components are op- 
erational). Specifically, in our context, the set A consti- 
tutes all possible components’ ages upon entering the fully 
operational state. (Notice that upon entering A at least 
one component has an age identical to zero). 

The ratio representation of the steady-state system un- 
availability U is given by Equation 2, where, C i s  the length 
of an A-cycle in the original system, D is the total down- 
time in an A - cycle in the simulated system (with impor- 
tance sampling) and L is the corresponding likelihood ra- 
tio. An estimate of the steady-state unavailability is given 
by Equation 3, where I$ and i. are estimates of E,,+t(DL) 
and E,,+(C), respectively. Recall that the subscripts ?r and 
4 (4’) indicate that the expectation is taken over A-cyles 
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in general, successive A - cycles are not independent, we 
use the method of batch means to get an estimate V a r ( 7 )  
of the variance Var,$+(y) .  Following the same notation as 
in Section 2.4, let b be the number of batches, each having 
k(= n/b) A - cycles. Let Ci be the length of the i - th  

h 

A - cycle, and for batch j, let yj = ~ ~ ~ ( j - l l k t l  C;/k. 
Then we have 

b n 

j=1 i=l 

and 
b 

G ( 7 )  = ( y j  - +)2 / ( b  - 1). 
j=1 

k should be sufficiently large, so as to eliminate dependence 
between successive batches. Our experimental results in 
Section 4.1 indicate that k need not be large. 

To obtain the estimate b we do the following. For each 
A - cycle that we simulate under the original probabil- 
ity dynamics (we call this an “original” A - cycle), we 
simulate the same A - cycle (i.e., starting with the same 
initial components’ ages) under the new probability dy- 
namics, i.e., with importance sampling (we call this a “bi- 
ased” A - cycle). Usually more effort is needed to estimate 
E,,y(DL) than that to estimate E,,+(C) (to the same de- 
gree of relative error). This is because of three reasons: 
1) there are typically more events in a biased cycle, 2) the 
L must be computed in a biased cycle and 3) the ratio of 
the variance to the quantity to be estimated is higher for 
a biased cycle. Therefore, we run several, say, m, biased 
A - cycles for each original A - cycle. In this way, we use 
more cycles, namely, n’ = mn, to obtain the estimate b. If 
we use the same number of batches, b, to get an estimate 
Var(6 )  of the variance Varm,+t(6), then the number of bi- 
ased A - cycles per batch is equal to k’ = mk. Let Di, be 
the total system downtime in the s - th  run of the i - th 
biased A - cycle, and L,, is the corresponding likelihood 

h 

- .  
ratio. For batch j ,  let 6j = $ C::(j-l)ktl CL, DisLia. 
It follows that 

h I L m  

j=1 i=l a = l  

and 
b 

E r ( 6 )  = (6,. - / ( b  - 1). 
j=1 

Furthermore, an estimate of the covariance Cov,,+,,+(b, 7) 
is given by 

h 

h 

An estimate a2 for the variance U’ of the estimator U can 
now be obtained from Equation 4. 

With importance sampling, our goal is to increase the 
frequency of A-cycles that contain typical system failures. 
Our heuristic is similar to that for regenerative models in 
[25]. In a biased A - cycle, upon the occurrence of the first 
component failure, we activate failure biasing to accelerate 
subsequent component failure events relative to subsequent 
repair completion events. Failure biasing is continued until 
either system failure or the end of the current A - cycle. In 
doing so, we increase the probability of system failure in 
biased A - cycles. More specifically, let r, be equal to the 
maximum of the expected repair times (different from the 
expected remaining repair times) of components undergo- 
ing repair at the time of the n - th real (failure or repair) 
event. As discussed in Section 3.1, if failure biasing is ac- 
tivated at the n - th real event, then the uniformization 
rate p, and the acceptance probability pn could be chosen 
such that CY, (recall that an = &pn) is equal to l/rn. (For 
a single repairman and exponential repairs, this choice is 
equivalent to setting the probability of a failure before re- 
pair to  0.5.) This heuristic does not necessarily lead to  the 
most variance reduction, however, it is quite effective and 
robust. In our CSIM implementation, we were not able 
to determine the components currently undergoing repair; 
therefore, we set T,  equal to the maximum of the expected 
repair times of all components that are either undergoing 
or waiting for repair. We did not anticipate the following 
problem, however. When the time to the next scheduled 
repair completion is much larger than r,, the biasing level 
cyn (as determined by 1,”) may become excessively high 
(relative to the time to the next scheduled repair comple- 
tion), causing untypical failure sequences. This tends to 
significantly increase the variability of the likelihood ratio, 
leading to unstable estimates. We overcome this problem 
by setting T ,  equal to the maximum of the actual repair 
times (in our CSIM implementation, as soon as a com- 
ponent fails, its actual repair time is generated; note the 
difference from the actual remaining repair time) of all 
components either undergoing or waiting for repair, when- 
ever the latter exceeds the maximum of the expected repair 
times by several times (say, 5 times). The above heuristics 
have been shown to work well, as will be demonstrated in 
Section 4. 

At every uniformization event, the ages of all o p e w  
tional components are adjusted and their hazard rates are 
determined. This is required to update the likelihood ratio 
depending on whether the event is accepted or rejected (see 
Equation 5 and 6). Since repair times are unchanged in 
the simulated system, no updating of the likelihood ratio 
is necessary at repair events. 

With a given appropriate biasing level (&p,), there is 
freedom in choosing the uniformization rate Pn (and hence 
the acceptance probability p, ) .  Experiments described in 
[24] show that higher P, and lower p ,  result in a less noisy 
estimation of the likelihood ratio, and hence somewhat 
lower variance of the resulting estimate. On the other 
hand, higher p, and lower pn results in an excessive num- 
ber of rejected (pseudo) events, i.e., very inefficient gener- 
ation of failure events. An appropriate uniformization rate 
should be chosen low enough to limit excessive generation 
of pseudo events, yet high enough to preserve accuracy. 
Experiments described in [24] show that P, = 5r, is a 
good choice ( p ,  is then determined by the chosen biasing 
level). 

Once a uniformization event is accepted as a failure, 
then one of the operational components is selected as the 
failing component. In our experiments in Section 4 we use 
“balanced failure biasing” (as described in Section 3.1). 
We also balance the first component failure in a biased 
A - cycle. This is quite important, particularly for “un- 
balanced” systems (e.g., when component reliabilities are 
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of different orders of magnitude). 

4 Experimental Results 
In this section we experiment with our method and 

demonstrate its effectiveness for the estimation of steady- 
state unavailability in highly dependable systems. We use 
small and large examples with general failure and repair 
time distributions. In special cases, some examples con- 
form to the class of models having a “product form” so- 
lution. In these cases the results are invariant with re- 
spect to failure time distributions having the same mean. 
Therefore, we are able to validate with numerical (non- 
simulation results obtained using SAVE. Assuming expo- 

having a product form solution can also be validated using 
SAVE. 

Some of our desi n choices are based on earlier work 
(e.g., in [15], [25] and [24]). F or example, when failure bi- 
asing is activated, we set the biasing level Pnpn equal to 
r,, (as defined in Section 3.2). An appropriate uniformiza- 
tion rate Pn should be chosen low enough i o  limit excessive 
generation of pseudo events, yet high enough to preserve 
accuracy. Experiments in [24] suggests that Pn = 5r,, is a 
good choice (and hence the acceptance pxobability (pn)  is 
set to 0.2). 

In Section 4.1 a small machine repairm,an model is used 
to experiment with the batch size used in the batch means 
method. The results indicate that the accuracy of the 
estimates (at least in this example) is insensitive to the 
batch size. In Section 4.2 another small example is used to 
study the efficiency of the method under a variety of cir- 
cumstances. This is accomplished by varying the order of 
E (used to parameterize the failure hazard rate functions, 
see Section 3 and by experimenting with “balanced” and 
“unbalanced’ systems. In Section 4.3 a llarge example is 
used to demonstrate the effectiveness of our method when 
dealing with large and complex systems. In this exam- 
ple we experiment with different failure time distributions, 
namely, Erlang, Weibull, exponential and hyperexponen- 
tial. With exponential repair times (at the same rate), 
FCFS (first come first served) repair discipline and no fail- 
ure propagation, this example has a product form solution. 
In this case we can validate our simulation results with nu- 
merical solutions obtained using SAVE. 

For each table entry in all experiments of this section, 
we run a total of n = 64000 original A - cycles, which 
are used to estimate the expected cycle length 9 .  For each 
original A-cycle, we run m = 4 biased A-cycles. It follows 
that the total number of biased A-cycles used to estimate 
the expected downtime &,.is n’ = 256000. For all, but the 
experiment in Section 4.1, we fix the number of batches b 
to 1000. Accordingly, the batch size k (Id) is fixed at 64 
(256) original (biased) A - cycles. In each table entry we 
display the estimate (from simulation) of the steady-state 
unavailability, along with its 99% half-width confidence 
interval as a percentage of the point estimate. 

Except for special cases, the models considered in this 
section cannot be evaluated either analytically or numer- 
ically. Because of their high dependabilidy feature, stan- 
dard (naive) simulation is also not practical. As a result, 
effectiveness studies in this section demonstrate the use- 
fulness of our method, as it considerably extends the class 
of models in which importance sampling can be used to 
evaluate various dependability measures. 
4.1 Batch Size 

As described in Sections 2.4 and 3.2, lbefore collecting 
the samples C; (from original A - cycles) and D;Li (from 
biased A - cycles) for the method of batch means, the sim- 
ulation should be run long enough to reach, its steady-state 
dynamics. This can be accomplished by discarding the first 

nential fa’ 1 ure and repair time distributions, models not 

few batches of the simulation. Furthermore, the batch size, 
k, needs to be sufficiently large, so as to approximately) 
eliminate dependence between successive 6 atches. In this 
section we use a small example to experiment with the 
batch size. 

We consider a machine repairman model with two com- 
ponent types and two components of each type. The sys- 
tem is considered operational as long as one component of 
each type is operational. All components have the same 
failure time distribution; namely, Erlang with two stages, 
each having a rate equal to 0.0002 per hour. Thus, the 
MTBF of individual components is 10000 hours. When 
components fail, they get repaired by a single repairman 
according to FCFS discipline. For all components, we 
assume that the repair time distribution is exponential 
with a mean equal to 1.0 hour. With exponential repairs, 
this model has a product form solution, which depends on 
the failure distribution only through its mean. Therefore, 
we can validate our results by solving the same example, 
with exponential failure times (having the same MTBF, 
i.e., 10000 hours). Using SAVE, a numerical estimate of 
the steady-state unavailability for this model is given by 
4.0 x lo-’. 

For the same total number n = 64000 (n’ = 256000) of 
original (biased A - cycles, in Table 1 we successively half 
the number of L atches b from 64000 to 250. Accordingly, 
the batch size is successively doubled from k = 1 ( I C ’  = 4) 
to k = 256 (k‘ = 1024). Note that the estimates in the 
table compare well with the above numerical result from 
SAVE. Observe that the confidence interval widths do not 
depend, in any significant way, on the batch size. (This be- 
ing the case also for the smallest batch size of one original 
A - cycle.) This is an indication that, in the steady-state, 
consecutive A - cycles are almost uncorrelated. While it 
seems to be the case in this particular example, this is 
not generally true for other systems. However, additional 
experiments (not reported here) suggest that “near inde- 
pendence” of consecutive A - cycles (as defined in Section 
3.2) may be a feature of highly dependable systems. In 
all subsequent experiments we set the batch size k (k’) 
to 64 (256); this is large enough to achieve approximate 
independence between successive batches. 
4.2 A Small Example 

In this section we provide empirical results illustrat- 
ing the desirable “bounded relative error” property of our 
method. We show that as system failure becomes rarer, we 
can still estimate the steady-state unavailability with the 
same accuracy; also, when the system is “unbalanced”. In 
Section 3 we parameterized the failure hazard rate func- 
tions in terms of E .  In the following example we param- 
eterize the failure time distributions in terms of their in- 
verse mean (l/MTBF), which we denote by E .  By varying 
E we change component reliabilities (i.e., their MTBF), 
and, hence, the steady-state system unavailability. Also, 
by having different component types with different E ,  we 
create examples of “unbalanced” systems. 

Again, we consider a machine repairman model with 
two types of components; 3 components of Type I and 2 
components of Type 11. The system is considered opera- 
tional as long as one component of each type is operational. 
Failure time distributions are either Erlang or hyperex- 
ponential and may be different for each component type 
(as specified below). Type I1 components have a higher 
(preemptive-resume) priority at the (single) repair facility. 
The repair time distribution is constant (deterministic), at 
1.0 hour, for Type I components and uniform, between 0.0 
and 1.0 hour, for Type I1 components. For the same ex- 
ample, we perform the same set of experiments with and 
without failure propagation. If failure propagation is con- 
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sidered, then with probability 0.25, a failure of Type I1 
component causes two components of Type I to fail (all 
operational Type I components fail if they are equal or 
less than two). 

We experiment with non-ex onential failure time distri- 
butions. Specifically, Erlang 5, A) (two stages, each with - , .  , \  

a rate X per hour) and Hyperezponential ( p ,  X I ,  X2)  (two 
stages, with probabilities p and 1 - p at rates XI per hour 
and X2 per hour, respectively). We parameterize these dis- 
tributions in terms of their inverse mean ( E )  as follows: 

0 E ~ ( E )  ef Erlang ( 2 , 2 ~ ) ,  having a CV (coefficient of 

0 Hz(E) %f Hyperexponential (0.2727,0.3342e, 4.01e), 

We simulate the system using our method with the 
batch means parameters given earlier in Section 4. For two 
d u e s  of E ,  namely, and lod4, in Table 2 we give es- 
timates of the steady-state unavailability for the following 
4 combinations of components’ failure time distributions 
(without failure propagation): 

variation) = 0.707, 

having a CV = 2.0. 

0 C1: E ~ ( E )  for Type I and &(E) for Type I1 
o C2: E ~ ( E )  for Type I and for Type I1 

C3: H ~ ( E )  for Type I and & ( E )  for Type I1 
0 C4: H z ( E )  for Type I and &(E’  ’) for Type 11. 

In C1 and C3 the system is “balanced”. In C2 and C4 the 
system is “unbalanced”. Notice that the relative error of 
the estimates is about the same for “balanced” and “un- 
balanced” systems and is independent of the value of E. For 
the experiment in C1, we ran standard simulation with the 
same batch means parameters. For E = it produced 
an estimate having relative error f13.41% (compared with 
3~5.26% using importance sampling). This means that 
standard simulation should be run 6.6 times longer to 
achieve about the same accuracy obtained with impor- 
tance sampling. No failures were observed for E = 
using standard simulation. 

With failure propagation, we ran the same experiments 
using our method. The resulting estimates are given in 
Table 3. Again, the accuracy of the estimates is quite 
consistent throughout the table. 
4.3 A Large Example 

It remains to show that the method described here is 
also feasible and effective when dealing with large and 
complex highly dependable systems. In this section we 
consider a large example with many types of components. 
We experiment with different failure time distributions, 
such as Erlang, Weibull, exponential and hyperexponen- 
tial. Without failure propagation, the example falls within 
the class of product form models and validation with nu- 
merical (non-simulation) results is possible. 

The system we consider is based on a model of a fairly 
complex computing system (also considered in [24]). The 
computing system is composed of two sets of processors 
with 2 processors per set, two sets of controllers with 2 
controllers per set, and 6 clusters of disks, each consisting 
of 4 disk units. In a disk cluster, data is replicated so 
that one disk can fail without affecting the system. The 
“primary” data on a disk is replicated such that one third 
is on each of the other three disks in the same cluster. 
Thus, one disk in each cluster can be down without losing 
access to the data. Components are repaired by a single 
repairman according to a FCFS discipline. The system is 
defined to be operational if all data is accessible to both 
processor types, which means that at least one processor 
of each type, one controller in each set, and 3 out of 4 

disk units in each of the 6 disk clusters are operational. 
Operational components continue to fail at the given rates 
when the system is failed. When failure propagation is 
considered, a failing processor in any of the two sets causes 
one processor in the other set to fail with probability 0.1. 

All repair time distributions are exponential with mean 
1 hour (however, any general distribution could be al- 
lowed). All of the component failure times follow the 
same distribution, with the same coefficient of variation 
(CV), but possibly with different means (for the different 
types of components). The MTBF for processors, con- 
trollers and disks are assumed to be 200000, 200000 and 
600000 hours, respectively. We experiment with four fail- 
ure time distributions; namely, Erlang with 2 stages (CV 
= 0.707), Weibull with a shape parameter equal to 1.25 
(CV = 0.805), exponential (CV = l . O ) ,  and hyperexpo- 
nential with 2 stages (CV = 2.0). For the Weibull dis- 
tribution, the scale parameters corresponding to the over- 
all means 200000 and 600000 are equal to 2.1634 x lo-’ 
and 5.4793 x lo-’, respectively. For the hyperexponential 
distribution, the parameters are as follows: a probability 
equals to 0.2727 of branching to the first stage with a mean 
600000 (1800000) and a probability equals to  0.7273 of 
branching to the second stage with a mean 50000 (150000), 
corresponding to the overall mean 200000 (600000). 

Notice that uniformization cannot be used to sample 
from a Weibull distribution, since its hazard rate func- 
tion is not bounded. However, as we do in this exam- 
ple, random variates from an IFR (increasing failure rate) 
Weibull can be arbitrarily well approximated by sampling 
(using uniformization) from another distribution having a 
bounded hazard rate function. This approximation is ob- 
tained by simply bounding the hazard rate function h(t) 
of the (IFR) Weibull at A, = h(tm) beyond a sufficiently 
large time t,, such that G(t,) is extremely small, say, 
lom2’. If A, is not too high compared to other hazard 
rates in the system, then a reasonably efficient uniformiza- 
tion rate can be used to generate failure events, 

We simulate the described system using our method 
(with the batch means parameters given in Section 4) to  
get estimates of the steady-state unavailability for two sets 
of failure distributions. In the first set (Set I) we use the 
components’ MTBFs given above. In the second set (Set 
11) we reduce all components’ MTBFs by a factor of 10 
(i.e., we use less reliable components). Accordingly, all 
means in the Erlang, exponential and hyperexponential 
stages are also reduced by a factor of 10. For the Weibull 
distribution, the scale parameters corresponding to the 
overall means 20000 and 60000 are equal to 3.847 x 
and 9.744 x lo-’, respectively. 

Without failure propagation, the above example has a 
product form solution, which depends on the failure time 
distributions only through their means. It follows that the 
steady-state unavailability is the same for all failure time 
distributions having the same mean. Furthermore, using 
SAVE, we can obtain numerical estimates, which are given 
by 4.0 x lo-’’ and 4.0 x lo-’ for failure data sets, I and 
11, respectively. 

In Table 4 we give estimates of the steady-state un- 
availability for the system without failure propagation, 
for both sets of failure data, I and 11. All relative errors 
in this table are less than &lo%. Notice the agreement 
among the estimates for different failure distributions, on 
one hand, and with the above results from SAVE, on the 
other hand. For the hyperexponential failure distribution, 
the estimates are slightly less accurate than those corre- 
sponding to failure distributions with a lower coefficient 
of variation. For this (hyperexponential) case, standard 
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simulation (with the same total number of cycles) pro- 
duced unstable estimates having relative errors of f260% 
and &111% for failure data Sets I and 11, respectively. In 
fact, these confidence intervals are meaningless, since they 
contain negative values. 

In Table 5 we give estimates of the steady-state unavail- 
ability for the system with failure propagation, for both 
sets of failure data, I and 11. A preemptive-resume disci- 
pline at the repair facility is now assumed, with processors 
having the highest priority and disks having the lowest pri- 
ority. Notice that the steady-state unavailability is affected 
only a little by the failure time distribution. However, as 
expected, the point estimates are consistently higher than 
those in Table 4. Because this is a different system, the 
confidence intervals happen to be slightly wider than those 
in Table 4. 

Again, in each of the Tables 4 and 5, the accuracies of 
the estimates are about the same, regardless of the failure 
distributions or their means. These empjirical results are 
consistent with the conjecture that our method produces 
estimates of steady-state unavailability lhaxing bounded 
relative error. 

5 Conclusions 
This paper has considered the probleim of estimating 

steady-state quantities for models of highly dependable 
computing systems in which the component failure and 
repair times have general distributions. Such models are 
analytically and numerically intractable; simulation is the 
only possible means of analysis. However, standard sim- 
ulation is inefficient when system failure events are rare 
and importance sampling needs to be used to speedup the 
simulation. Earlier importance sampling approaches are 
effective for steady-state estimation only ,when the failure 
time distributions are exponentially distributed, in which 
case the regenerative structure of the msodel can be ex- 
ploited. When failure times are generally distributed, no 
such regenerations exist. However, a ratio representation 
in terms of non-i.i.d. cycles still exists for steady-state 
quantities. Using this representation, a splitting technique 
can be devised in which importance sampling is used to es- 
timate the expected downtime during a cycle and standard 
simulation is used to estimate the expected cycle length. 
The particular method of importance sampling that we 
use is based on uniformization, and is provably effective 
for estimating certain transient quantities within this class 
of models. Experiments showed the metho'd to be effective 
in practice for estimating the steady-state unavailability. 
For the efficient estimation of the steady-state mean time 
between failures, the reader is referred to [12]. 

As a result of this work, the class of highly depend- 
able systems that can be efficiently simulated to estimate 
steady-state measures is greatly broadened. 
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c3 C 4  
H2 ( E )  H2 ( E )  

E2 ( E )  E2(e1 ') 
3.387 xlO-' 1.401 x1OW6 
f 5,56% f 6.07% 

3.282 xlO-' 1.379 ~ 1 0 - l ~  
f 5.95% f 6.42% 

U & 3.20% f 3.17% f 3.16% f 3.15% & 3.10% f 3.06% f 3.09% f 2.96% f 3.05% 

Combination C1 c2  

Type I1 Fail. Dist. E2 ( E )  E ~ ( E '  ") 

f 2.30% f 2.70% 

f 2.45% f 3.57% 

.' Type I Fail. Dist. B(E) E2 ( E )  

E = 2.605 xlO-' 2.195 xlO-' 

e = io-' 2.625 x10-* 2.080 x1O-l' 

Table 1: Estimates of steady-state unavailability (x  lo8) in  a machine repairman model (experiments with batch 
size). 

C3 c 4  
H z ( E )  H z ( E )  
E2 ( E )  ") 

3.570 xlO-' 2.351 xlO-' 
f 2.74% f 3.35% 

3.519 xlO-' 2.153 x10-l' 
f 2.97% f 4.10% 

Table 2: Estimates of steady-state unavailability in  a machine repairman model (without failure propagation). 

Table 3: Estimates of steady-state unavailability in a machine repairman model (with failure propagation). 
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n Fiulure II E rlanp: 2= I w eibull . I Exponential I H vDerexDonentid 2 II 

U Data Set 11 (CV = t.7'07) 

j, 9.87% 

- _  U Data Set 1) (CV = 6.Yj7J I (CV = 0.805) I (CV = 1.0) I (CV'= 2.0) U 
1 Set I 11 4.046 xiozm I 4.012 XIO-~" I 3.953 xio-"' I 3.810 x ~ O - ~ "  

.* 

(CV = 0.805) (C'v = 1.0) (Cd= 2.0) 
6.863 xlO-'" 6.646 xlO-" 7.383 xlO-"' 
f 8.93% f 8.83% f 13.77% 

6.570 x ~ O - ~  6.861 ~ 1 0 ~ ~  7.766 x ~ O - ~  
f 9.53% f 8.17% f 12.53% 

f 6.32% f 5.68% f 8.75% 

f 6.07% f 5.82% f 9.90% 
3.904 x10- 

Table 4: Estimates of steady-state .unavailability in a large example (without failure propagation). 

_- 
n  ail 

- 
ure II J3 rlans! 2 I W eibull I ExDonential I H vDerexDonential 2 II 
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