
Nonblocking and Orphan-Free
Message Logging Protocols*

Lorenzo Alvisi** c_.4/J,
Bruce Hoppe

Keith Marzullo§

TR 92-1317
December 1992

/'f,/-3 _- ,-; ¢c

t

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This material is based upon work supported by Defense Advanced Research
Projects Agency (DoD) under NASA Ames grant number NAG 2-593, a National
Science Foundation Graduate Research Fellowship and by grants from IBM Glendale
Programming Laboratory, IBM T.J. Watson Research Center, Siemens, and Xerox
Webster Research Center.
**Also supported by research fellowship number 203.12.191 of the Italian National
Research Council (Consiglio Nazionale delle Ricerche).
§Current address: Department of Computer Science and Engineering, University of
California at San Diego, 9500 Gilman Dr. 0114, La Jolla, CA 92093-0114.

IJ

Nonblocking and Orphan-Free
Protocols *

Message Logging

Lorenzo Alvisi t Bruce Hoppe Keith Marzullot

Cornell University Department of Computer Science
Ithaca NY 14853 USA

Abstract
/

/

Currently existing message logging protocols demonstrate a classic pessimistic vs.

optimistic tradeoff. We show that the optimistic-pessimistic tradeoff is not inherent

to the problem of message logging. We construct a message-logging protocol that

has the positive features of both optimistic and pessimistic protocol: our protocol

prevents orphans and allows simple failure recovery; however, it requires no blocking

in failure-free runs. Furthermore, this protocol does not introduce any additional

message overhead as compared to one implemented for a system in which messages

may be lost but processes do not crash.

f

1 Introduction

Message logging protocols are a common method of building a system that can tolerate

process crash failures. These protocols require that each process periodically record its local

state and log the messages it received after that state. When a process crashes, a new process

is created, given the appropriate recorded local state, and then sent the logged messages in

the order they were originally received.

Message logging protocols are not the only techniques for making systems robust against

process crashes. For example, active replication [12] or passive replication [2] are commonly-

used techniques for masking failures more severe than crash failures. However, message

*This material is based upon work supported by Defense Advanced Research Projects Agency (DoD)
under NASA Ames grant number NAG 2-593, a National Science Foundation Graduate Research Fellowship,
and by grants from IBM Glendale Programming LaBoratory, IBM T. J. Watson Research Center, Siemens,
and Xerox Webster Research Center.

?Also supported by research fellowship number 203.12.191 of the Italian National Research Council (Con-
siglio Nazionale delle Ricerche).

tCurrent address: Department of Computer Science and Engineering, University of California at San
Diego, 9500 Gilman Dr. 0114, La Jolla, CA 92093-0114.

logging protocols are attractive in that they are considered an inexpensive technique: they

introduce little or no process replication in failure free runs and the protocols are relatively

simple. Another advantage of message logging protocols is that they are readily applied to

any process communicationstructure, while both active and passive replication are typically

applied in a client-server setting. Of course, one can use either active or passive replication

to implement a message logging system.

The published message logging protocols exhibit a classic tradeoff in performance: there

exist pessimistic protocols that introduce blocking in order to simplify recovery and op-

timistic protocols that introduce no blocking but may require computation to be undone

upon recovery. In this paper, we show that the optimistic-pessimistic tradeoff is not neces-

sary for message logging protocols. We derive a message logging policy that is weaker than

that used by pessimistic protocols yet is strong enough to guarantee that computation need

not be rolled back. This policy is based on the notion of logging a message when the effects

of its delivery are visible to some process other than the process to which it was delivered.

This logging policy can be implemented without introducing additional blocking. We then

give a protocol that can tolerate non-concurrent failures and discuss its performance.

The paper proceeds as follows. Section 2 describes the system model commonly assumed

for message logging protocols. Section 3 discusses message logging protocols and explains

the current optimistic-pessimistic tradeoff. Section 4 defines what it means for a message

to be relevant, derives logging and recovery rules for relevant messages, and presents a

message logging protocol that is nonblocking but creates no orphans. Section 5 discusses the

performance of an implementation our protocol, and Section 6 concludes the paper.

2 System Model

We assume a set of processes that communicate only by exchanging messages. 1 The system

is asynchronous: there exists no bounds on the relative speeds of processes, there exists no

bounds on message transmission delays, and there exists no global time source. Hence, the

order in which a process receives messages is nondeterministic.

The execution of a system of n processes is represented by a run, which is an irreflexive

partial ordering of the send events, receive events and delivery events ordered by potential

causality [9]. Delivery events are local to a process and represent the delivery of a received

message to the application. For any message m from process p to process q, q delivers m

only if it has received m, and q delivers m no more than once.

1For simplicity, we also assume that a process never sends a message to itself.

2

We assumeafail-stop failure modelfor the processes[11]andan intermittent messageloss

failure model for the channels.Channelsare FIFO, in that if processp sends two messages

to process q and process q receives both of them, then it will receive them in the order that

p sent them. Furthermore, we assume a transport protocol that provides a stronger FIFO

property: if process p sends ml and then m2 to process q, then q will not receive m2 before

receiving ml.

At any point in an execution, the state of a process is determined by its initial state and

the sequence of messages that it has delivered. For any message m delivered by process p,

its receive sequence number, denoted m.rsn, represents the order in which m was delivered:

m.rsn = e if m is the ith message delivered by p [14]. 2 We denote with ap[e] the state of

process p after having delivered e messages.

3 Issues in Message Logging

In message logging protocols, each process must record both the contents and receive se-

quence numbers of all the messages it has delivered in a location that will survive the failure

of the process. This action is called logging. The process may also periodically record its local

state (called checkpointing), thereby ali0_ng its message log to be trimmed. For example,

once process p knows that state ap[e] is logged, then all messages m such that m.rsn <_

can be removed from its message log. Note that the periodic checkpointing of a process's

state is only needed to bound the length of its message log (and hence the recovery time).

For simplicity we ignore checkpointing in this paper.

Logging a message may take time, and so there is a natural design decision of whether

or not a process should wait for the logging to complete before delivering the message to

the application. For example, suppose that having delivered message m, process p sends

message m' to process q. If message m were not logged by the time p sent m', then the crash

of p may cause information about m to be lost. Then, when a new process p is initialized

and replayed old logged messages, p may follow an execution in which m' is not sent to q.

Hence, process q would no longer be consistent with p once it delivers m'. Such a message m

is called a lost message, message m' an orphan message and the state of process q an orphan

state [14]. Protocols that can create orphans are called optimistic because the likelihood of

creating an orphan is (hopefully) small.

A pessimistic protocol is one in which each process p never sends a message m' until it

knows that all messages delivered before sending m' are logged. Pessimistic protocols will

2We avoid the term "delivery sequence number" simply to avoid new terminology for an old concept.

3

never create orphans, and so the reconstruction of the state of a crashedprocessis very

straightforward ascomparedto optimistic protocols,in which orphansmust bedetectedand

rolled back. On the other hand, pessimistic protocols potentially block a process for each

message it receives. Doing so can slow down the throughput of the process, and this price

must be paid even in an execution in which no process crashes.

Another design decision in message logging protocols is where each message is to be

logged. An obvious choice is to log at the receiving process, since it is the receiving process

that assigns the receive sequence number to an incoming message [14, 8]. Unfortunately,

such a receiver-based protocol requires an implementation of stable storage that will survive

the crash of the receiving process. Another choice, called sender-based logging, is to log each

message m in the sender's volatile storage [7]. Doing so requires the receiver to tell the

sender what receive sequence number was assigned to m. Furthermore, the receiver does not

know that m is logged until it receives an extra acknowledgement from the sender indicating

that the receive sequence number has been recorded. The receive sequence number can be

piggybacked on the acknowledgement of message m, but the extra acknowledgement from

the sender may require an additional message; and in pessimistic sender-based logging, the

receiver still must block until it receives the final acknowledgement [5]. A further problem

with sender-based logging is that multiple concurrent failures may make a process unable to

recover its previous state even when a pessimistic protocol is used. However, sender-based

logging is, in some sense, optimal in the number of resources it uses: it requires no stable

storage and an additional process is needed only when recovery of a crashed process begins.

These two design decisions--pessimistic vs. optimistic and receiver-based logging vs.

sender-based logging--are independent. In particular, there exist pessimistic receiver-based

logging protocols [1, 10], optimistic receiver-based logging protocols [14, 13], pessimistic

sender-based logging protocols [7, 5] and optimistic sender-based logging protocols [7, 6].

All message protocols must address the problem of communication with the environment.

For input, the data must be stored in a location that is always accessible for the purpose of

replay. For output, the process must be in a recoverable state before sending any message

to the environment. This means that, in general, even optimistic message logging protocols

may block before sending a message to the environment. Such issues are outside of the scope

of this paper.

4

4 Nonblocking, Orphan-Free Protocols

In this section, we first review how recovery can be done when there are no orphans. We then

develop a nonblocldng protocol in which orphans cannot occur by more carefully considering

the design decision: by what point must a message be logged?

4.1 Recovery with no Orphans

Suppose that process q delivers a message m from process p. We define another message m'

to depend on m if the delivery of m causally precedes the sending of m'.

Consider the execution of distributed system and a set of local states al[gl],..., a,[g_],

one for each process 1,..., n. We say that two states ap[gp] and aq[gq] are pairwise consistent

if all messages from p that have been delivered to q by aq[gq] have been sent by ap[gp],

and all messages from q that have been delivered to p by ap[gp] have been sent by aq[gq].

The collection of local states is a consistent global state if all pairs of states are pairwise

consistent [3]. 3 With message logging protocols, an inconsistent global state arises when a

lost message occurs due to optimistic recovery.

A pessimistic message logging protocol is one in which a message m is always logged by

the time any message m' that depends on m is sent. Recovery in pessimistic protocols is

straightforward: the crashed process is reinitialized and replayed the old logged messages in

increasing receive sequence number order. Since the process is deterministic with respect

to message receipt order, it will follow the same path of execution as before. Thus, in the

process of recovering, it will send the same sequence of messages as before. Any duplicate

message m sent during recovery is acknowledged and discarded if the destination has already

received m. 4

The following simple theorem shows that this recovery protocol is correct:

Theorem 1 Consider an execution of a pessimistic message logging protocol in which process

p crashes. If process p restarts from its initial state and delivers all logged messages in receive

sequence number order, then the resulting global state is consistent.

Proof. We will show that the global state is consistent by showing that the recovered local

state of p is pairwise consistent with the local states of the other processes.

3This definition is different from that of [3] in that it is defined in terms of deliver events rather than
receive events. Our usage is consistent with the literature on message-logging protocols.

4Another possibility is for acknowledgements to be logged in the same way as other me_sages. In this case,
a process receiving a repeat message m would discard m without sending an acknowledgement because the
message acknowledgement will be replayed. As is discussed in Section 4.2, the choice of implementation is not
just a matter of efficiency--which implementation is correct depends on whether or not acknowledgements
are visible to the application.

5

Since a processis deterministic given a sequenceof messagedeliveries,the state that

processp recovers to is ap[l] where e is the highest logged receive sequence number. Since

the protocol is pessimistic, then by definition p has not sent any messages in a state ap[e']

for g_ > g. Hence, no process q _ p has received a message that follows ap[g]. In addition,

process p has not received any messages that were not sent, and so ap[t_ is pairwise consistent

with each other local state. []

4.2 Abstract Message Logging Protocol

A pessimistic protocol guarantees that a message m is logged before any message that de-

pends on m is sent. This fact makes the proof of Theorem 1 straightforward. However, it is

not necessary that m be logged until a message that depends on m is delivered, because it is

at this point that the effects of m will become visible to another process. Hence, we define

a message m to be relevant when a process has delivered a message that depends on m.

In the following protocol, we assume that message acknowledgements are never delivered

to the application: that is, they are only seen by the underlying transport protocol. Thus,

an application-level send is nonblocking in that the application does not block waiting for

an acknowledgement from the recipient. This assumption allows us to not log acknowledge-

ments, since they carry no information as far as the application is concerned. Note that this

assumption is not fundamental, in that if it does not hold, then acknowledgements can be

logged and replayed in the same way the other messages are.

A message is logged by including attributes about the message in a set £:. A message

m has the following five attributes: m.source is the sender of m; m.dest is the destination

of m; m.data is the data that the application re.source sends to m.dest; m.ssn is the send

sequence number, m.ssn = e denotes that m is the _h message sent by m.source; m.rsn

is the receive sequence number. Following [7], a message m is partially logged if the four

attributes m.source, m.dest, m.data, m.ssn are defined in/:, and m is fully logged if all five

attributes are defined in Z:. Finally, £:_, is a subset of messages m E/: such that m.dest = p.

Abstract message logging protocol: The protocol consists of a logging policy and a

recovery procedure:

Logging policy: A message m is partially logged by the time it is sent and fully logged by

the time it is relevant.

Recovery procedure: To recover a crashed process p: after any messages that p sent before

crashing are either received or dropped due to transient channel faults, p is restarted

from its initial state. It is then sequentially sent the messages in /::p in an order that

6

is consistentwith the receive sequence numbers of the fully logged messages and that

is consistent with FIFO channels for the partially logged messages.

Theorem 2 Consider an execution of the abstract message logging protocol given above in

which a process crashes and then recovers. The resulting global state is consistent.

Proof We will show that the global state is consistent by showing that the recovered local

state of the crashed process p is pairwise consistent with the local states of the other processes.

Let RM be the sequence of messages in Z:p in the order that p received them before

crashing. Consider a message m E RM that is fully logged. Any message m _ before m in

RM is also fully logged by the logging strategy: if m is relevant then so are all messages m _

that were received before m. Hence, RM consists of a (possibly empty) sequence of fully

logged messages ordered by receive sequence number followed by a (possibly empty) sequence

of partially-logged messages ordered by the constraint that the channels are FIFO. Let the

subsequence RM[1..ef] be the fully-logged messages and the subsequence RM[ef + 1..2] be

the partially-logged messages.

Consider a message m that was originally sent by p before crashing but is not sent

by p during recovery. Since p is deterministic with respect to message delivery order, the

recovering process will follow the same execution as before through state o'p[e/] and so m

must have been sent in a state after ap[ef]; say, ap[_f + _] where 1 _< _ _< e - el. However,

m could not have been delivered by m.dest since otherwise the messages RM[ef + 1..if + _]

would be relevant and hence fully logged. Hence, there are no messages that were originally

sent by p and delivered to m.dest yet not resent during the recovery of p.

Finally, p has not received any messages that were not sent. Thus, p's recovered local

state is pairwise consistent with each other local state. []

Theorem 2 is concerned with the crash and recovery of a single process and argues that

the state of the application is reconstructed to a consistent global state. However, it does not

say anything about the state of the logged messages. In particular, if the information about

a logged message m can be lost due to a process crash and recovery, then the protocol may

only be able to tolerate a single failure in any run. If the following property holds, however,

then any sequence of (process crash; process recovery) pairs can be tolerated:

Stable log: If a message m is partially logged and will eventually be received, then m will

be partially logged after any process p crashes and recovers. And, if m is fully logged

and a process p crashes, then m will be fully logged after p recovers.

.

Note that we allow partially logged messages that will never be received to become

unlogged. Such a message, however, is never received by any process and so can be lost

without any effect.

4.3 Family-Based Logging

According to the abstract message logging protocol described in Section 4.2, a message m

must be fully logged when it becomes relevant. What process determines when a message

becomes relevant? In order to answer this question, we introduce the following definitions:

We say a process p is a parent of a process q, and q is a child of p, if q delivers a message

sent by p. Note that p can simultaneously be a parent and a child of q.

Consider a message m from process p to process q. The relevance of m is not determined

by q, nor in general by q's parent, p. Rather, m becomes relevant when some child of q delivers

a message that depends on m. Thus, the children of q determine the moment when any

message delivered by q must be fully logged, and so it is natural to assign the responsibility

of logging m's receive sequence number to the children. To do so, after delivering m, q can

piggyback m.rsn on every subsequent message and q's children can log these piggybacked

receive sequence numbers. If m become relevant, then some child r must have delivered a

message that depends on m, and so m.rsn is logged at r. Of course, q need not piggyback

m.rsn on every subsequent message: once q receives an acknowledgement from r for any

message that depends on m, then q knows that m.rsn is logged at r. Finally, the other

attributes of m are already located at its sender p that is a parent of q, and so we assign

to p the responsibility of partially logging m before m is sent. We call this logging strategy

family-based logging.

Suppose that process q fails. The messages logged at q's parents and the receive sequence

numbers logged at q's children must be recombined to recover q. Thus, q's children must log

more than receive sequence numbers; there must be some means of matching receive sequence

numbers to the corresponding messages. To do so, q can piggyback triplets of the form

(re.source, m.ssn, m.rsn) where m is the message delivered by q. Each triplet (p, ssn, rsn)

corresponds to a unique message partially logged at process p with send sequence number

ssn; and so when q fails, the receive sequence numbers logged at q's children can be matched

with the corresponding messages logged at q's parents.

t_ t2 t3

(d2, 1, 0) - (ds, 2, q))

P2

P3 _-._= (dl, 1, 0) '4'4 _

m4 = (d4,2, {_zm1, _m2}) \. /,--_i
ack(2)

P5
= (,n,.source, ,.ssn, m .rsn)

Figure 1: Family-Based Logging

4.3.1 Data Structures

The protocol requires each process p to maintain the following data structures: s

Send sequence number: SSNp is an integer, initially 0, used to uniquely identify and

order each message sent by p.

Receive sequence number: RSNp is an integer, initially 0, used to uniquely identify and

order each message delivered by p.

Send log: SendLogp is a set, initially empty, of elements of the form e = (data, ssn, rsn,

dest), e 6 SendLogp if there exists a message m sent by p in state ap[e.rsn] such that

m.data = e.data, m.ssn = e.ssn, and m.dest = e.dest.

RSN log: RsnLogp is a set, initially empty, of elements of the form e = (parent, ssn, rsn,

child), e 6 RsnLogp if there exists a message m delivered by p such that re.source =

e.parent, m.ssn = e.ssn, and m.rsn = e.rsn. If e.chiZd # 3_ then m.rsn is logged at

e.child.

Receive log: ReceiveLogv is a set, initially empty, of elements of the form e = (parent,

grandparent, sin, rsn). If e 6 ReceiveLogv, then there exists a message m delivered by

5r = (a, b, ..., n) a record r of type a × b × ... × n, and with r.i the value of field i of record r.

process e.parent such that re.source = e.grandparent, m.ssn = e.ssn, m.rsn = e.rsn;

and furthermore, there exists a message m _ with m(source = e.parent delivered by p

such that m' depends on m. 6

SSN table: SsnTablep is a vector of send sequence numbers whose entries are initialized

to 0. SsnTabl%[q] records the highest send sequence number of any message from q

delivered by p.

Piggyback sequence number: PSNp is an integer, initially 0. PSNp keeps the value of

the highest receive sequence number such that the corresponding entry e E RsnLogp

has e.child _ 2.. Entries e E RsnLogp such that e.rsn > PSNp might not be logged,

and will be therefore piggybacked by p on the next outgoing message.

4.3.2 Example

As an illustration of how FBL's message logging protocol works in the absence of link failures,

consider Figure 1._ Each message that carries data is a triple (data, ssn, piggyback) where

data is the data of the message, ssn is the message's send sequence number and piggyback is

the information that is piggybacked on the message.

We consider the execution of the protocol from the perspective of process P3. Notice that

P3 piggybacks on each outgoing message m_ enough information to fully log all the partially

logged messages on which m_ depends. In particular, consider the situation at time tl: even

though process P3 has already piggybacked the information concerning m2 on message m3,

p3 has not yet received an acknowledgment for rn3, and so cannot assume m2 is fully logged.

Hence, m4 contains the information necessary to fully log ml and m2.

By time t2, however, P3 has received the acknowledgments for both m3 and m4, and

therefore knows that ml is logged at p4 and m2 is logged at Ps. It then piggybacks on m6

only the information necessary to fully log ms. Figure 2 presents a snapshot of the system

at time t3.

4.3.3 Protocol

Figures 3 through 7 give the code for the family-based logging protocol. Due to lack of

space, we rely on the example given above instead of giving a detailed explanation of the

code. Briefly, Figures 3 and 4 give the code for the send and deliver operations. The

eWe avoid "Delivery log" just as we avoided "delivery sequence number."

7For the sake of clarity we have included only the acknowledgments for messages m3 and m4. We assume
that the acknowledgments for the remaining messages have not yet been received.

10

Process SSN RSN PSN

Pl 2 0 0

P2 1 0 0

Pa 3 3 2

pa 0 2 0

P5 0 1 0

SendLog RsnLog ReceiveLog SsnTable

(d2, 1, 0,p3) @ @ (0, 0,0,0, 0)

(ds, 2, 0,p3)

(dl, 1,0,p3) @ @ (0,0,0,0, 0)

(d3, 1, 1,p4) (pb 1,1,p4) @ (2,1,0,0,0)

(d4, 2, 2,p5) (p2,1, 2,p5)

(d6, 3, 3,p4) (pl, 2, 3, -L)

0 (p3, 1, 1, 2-) (pa,pl, 1, 1) (0, 0, 3, 0, 0)

(P3,3,2,1) (p3,Pl, 2, 3)

@ (p3,2,1,1) (p3,Pl,l,1) (0,0,2,0,0)

(P3,P2, 1, 2)

Figure 2: Snapshot of Execution of Figure 1 at time t3

Process p sends data to process q

SSNp,- SSNp+
m.8ot_rce *-- p
re.data *-- data
m ssn _ SSN.

m.piggyback _ 0
for all e 6 RsnLogp such that e.rsn > PSNp

re.piggyback _-- rn.pigg_back U { (e.parent, e.ssn, e.rsn) }
SendLogp _ SendLogp U {(re.data, SSNp, RS Np, q)}
send m to q

Figure 3: Logging Protocol: Message Send

message attribute m.piggyback is the set of triples (m'.parent, m'.ssn, m'.rsn) for messages

m' received by p but not yet fully logged. Figure 5 gives the part of the protocol that

advances the piggyback sequence number when an acknowledgement is received. Figure 6

gives the protocol a process runs when recovering, and Figure 7 gives the protocol a process

executes when it is requested to send its logs to a recovering process. When p recovers, it uses

this protocol to collect the send logs from its parents and the receive logs from its children

in order to construct the logged messages in the data structure RepIayLogp, and it uses the

RSN logs of its parents to reconstruct its receive log. In Figure 7, process q sends a sequence

of messages to the recovering process p bracketed by the messages "q begin replay" and "q

exit replay". The receives of these bracketing messages are not explicitly shown in Figure 6,

but instead are denoted implicitly by the predicates "re.source has begun replaying" and

"all processes have exited replay to p". Reconstruction of the logs is discussed further in

Theorem 4 of Section 4.3.4.

11

Process q delivers message m

repeat
receive message m from transport protocol

until (m.ssn > SsnTable_[m.source])
RS Nq _ RS N_ + 1.
SsnTable_ [m.source] _ m.ssn
RsnLog_ 0- RsnLogq U {(re.source, m.ssn, RS Nq , 2-))
for all e E re.piggyback

ReceiveLogq *---ReceiveLog_ U ((re.source, e)}
deliver m.datd

Figure 4: Logging Protocol: Message Deliver

Transport protocol informs process p of ack(ssn)

Let I E SendLogp such that l.ssn = ssn
if (l.rsn > PSNp)

PSNp _-- l.rsn
for all e E RsnLog_, such that ((e.child = 2.) A (e.rsn < PSNp))

e.child 0-- l.dest

Figure 5: Logging Protocol: Acknowledgement Receive

4.3.4 Proofs

Theorem 3 Family-based logging is an implementation of the abstract message logging pro-

tocol.

Proof:. We will show this by giving a refinement mapping from the data structures of the

family-based logging protocol to Z:. For each process p and each entry e = (data, ssn, rsn, dest)

E SendLogp there exists a message m E Z:: m.orig = p, m.dest = e.dest, m.ssn = e.ssn, and

m.data = e.data. If there exists a process q with an entry d = (grandparent, parent, ssn, rsn) E

ReceiveLog_ where m.orig = er.grandparent and m.ssn = g.ssn, then m.rsn = d.rsn; other-

wise, m.rsn = .1..

From Figure 3, by the time m is sent by p, the corresponding entry for m is in SendLogp.

Message m delivered by p first becomes relevant when some process q is the first to deliver

a message m' that depends on m. Since it is the first such delivered message, m' must have

been sent by p and so from Figure 4 the receive sequence number of m is in ReceiveLogq by

the time m r is delivered. Thus, family-based logging implements the logging policy.

Note that the value of £p does not reference any of the data structures local to process p,

and so Z:p is defined when p has crashed and is recovering. Furthermore, Figure 6 references

12

Failure recovery ,for the faulty process p

Reinitialize all message logging data structures
ReplayLogp _-- $
send ' 'p crashed/recovering' ' to all other processes
while -_ (all processes have exited replay to p)

receive m

if (re.source has begun replaying)
if (m = (source, data, ssn))

if 3e 6 ReplayLogp such that ((e.orig = re.source) A (e.ssn = m.ssn))
e.data _-- re.data

else ReplayLogp *-- ReplayLogp U {/} where
e.omg = re.source
e.data = re.data
e.ssn -_ ?'rLssn

e.rsn = _[.

else if (m = (source, parent, ssn, r sn))
if Se 6 ReplayLogp such that ((e.orig = re.parent) A (e.ssn = m.ssn))

e.rsn _ m.rsn
e.child _ m.source

else Re playLogp *-- ReplayLogp U {l} where
e.omg - m.parent
e.ssn = m.ssn
e.rsn = m.rsn
e.child = re.source

else if (m = (source, grandparent, ssn, rsn))
ReceiveLogp _ ReceiveLogp U {(re'source, re.grandparent, m.ssn, m.rsn) }

else
discard m

for all e 6 ReplayLogp such that (e.rsn # _l_), in ascending e.rsn order
RSY + 1

Ssnl ablep[e.orig] _-- e.ssn
RsnLogp _-- RsnLogp U { (e.orig, e.ssn, e.rsn, e.child) }
deliver e.data

for all remainin_ e 6 1ReplayLogp, in ascending e.ssn order
RSN_ _-- RSIvp +
Ssn_ablep [e.orig] _-- e.ssn

RsnLogp *-- RsnLogp U {(e.orig, e.ssn, RSN_, ±)}
deliver e.data

Figure 6: Recovery Protocol: Recovering Process

13

Recovery of process p from the perspective of non-faulty process q

q receives ''p crashed/recovering' '

send "q begin replay" to p
for all e E SendLogq such that e.dest = p

rf_.so_rce _-- _
m.data ,--- e.aata
m.ssn _ e.ssn

send m to p
for all e E ReceiveLogq such that e.parent = p

rn.source _ q
re.parent _-- e.grandparent
m.ssn _ e.ssn
rn.rsn _-- e.rsn
send m to p

for all e E RsnLogq such that ((e.child = p) V (e.child = .£))
m.source ,--- q
m.grandparent _-- e.parent
m.ssn _ e.ssn
m.rsn _ e.rsn
send m to p

send ''q exit replay' ' top

Figure 7: Recovery Protocol: Non-Faulty Process

the same data structures and fields as the definition of L:p does when recovering p and resends

the messages in an order consistent with the recovery procedure. Thus, family-based logging

implements the recovery procedure. D

Theorem 4 Family-based logging satisfies the stable log property.

Proo_ Consider three processes s, p that is a child of s, and q that is a child of p. If p

crashes, then the values of L:, that are fully logged may no longer be fully logged, and the

value of £q becomes undefined.

From Theorem 2, if p sent a message m that was delivered by some process, then p will

send the same m (that is, with the same data and send sequence number) when recovering,

since otherwise the recovered global state would not be consistent. By doing so, p will re-

enter m into SendLogp with the same values as were in the log before p's crash. The data

structure ReceiveLogp is rebuilt from the entries in RsnLog, for all parents s of p that have

the child value set to either p or ±. Sending the latter entries--those with (child = _L)--is

necessary because s may not know whether a message delivered by s was fully logged or not,

and so it ensures that all messages s has delivered are fully logged.

Finally, RsnLogp is rebuilt from the information collected from the receive logs of p's

children (contributing the child and rsn fields for the messages that were fully logged) and

the send logs of p's parents (contributing the parent and ssn fields). []

14

4.4 Optimizations

In this section we discussa number of techniquesfor reducing the cost of family-based

logging. Our goal is to reducethe quantity of information piggybackedon each message,

without adding too muchcomplexity to the failure recoveryprotocol.

For example,considerthe grandparent and ssn fields of the receive log. Together, these

fields uniquely determine a single message recorded in the appropriate send log; but, since

channels are FIFO, the grandparent and rsn fields can be used to uniquely determine a

message. Suppose that process p delivers message m and then later fails. Note that if m.rsn

has been logged, then m is relevant, and so every message delivered by p before m must

also be relevant, hence fully logged. Thus, by using the grandparent and rsn fields from

the receive logs of its children, the recovering p can compute the order in which its parents

sent it relevant messages. If p also constructs the replayed messages from each of its parents

in separate sequences, each ordered by send sequence number, then the ordered sequence of

parents can be merged with the ordered sequences of messages so that all relevant messages

are matched with their original receive sequence numbers. Once the ssn field is eliminated

from the receive log, the RSN log no longer needs an ssn field, and so ssn values need not

be piggybacked (except for the single m.ssn associated with a message m itself).

Not only can we eliminate send sequence numbers from piggybacks, we can also eliminate

most of the receive sequence numbers. Consider a single message m from p to q; m carries

a sequence of entries from RsnLogp. If we constrain p to piggyback in receive sequence

number order, then only the lowest rsn value attached to m need be piggybacked, and q can

compute the other receive sequence numbers itself. Thus, p need piggyback only a sequence

of parents, together with a single receive sequence number.

4.4.1 Sender-Based Optimization

Suppose there is some process p with only a single child, q. In this special case, we can

easily optimize the usual message logging protocol. Because of FIFO channels, p need never

piggyback the same entry in RsnLogp to q more than once. The message logging protocol

for such a process p can thus be modified as follows: Whenever p sends a message m to q

in state ap[RSNp], then p's piggyback sequence number, PSNp, can immediately be set to

RSNp (without waiting for q to acknowledge m).

This optimization can be generalized to an arbitrary process. For any process p, no entry

in RsnLogp need be piggybacked to any single destination more than once. To implement

this, p must keep track of a different piggyback sequence number for each child of p. We

store these in a new data structure: the PSN table. For any pair of processes p and q,

15

let Qp be the set of entries of RsnLogp that have been piggybacked from p to q. Then

define PsnTabtep[q] = max{e.rsn : e 6 Qp}. If PSNp is maintained as before (based on

acknowledgements), then whenever p sends a message m to q, p need only piggyback all

e E RsnLogp such that e.rsn > max{PSNp, PsnTabl%[q]}. After m has been sent, p must

update PsnTablep[q] to reflect the information piggybacked on m.

4.4.2 Receiver-Based Optimization

Using the above optimizations, we have transformed the piggyback data structure from

a sequence of the form {(Pl, ssnl,rsnt),..., (Pk, ssnk, rsnk)} to a sequence of the form

{rsnl,pl,p2,... ,Pk}, such that no information is piggybacked to a single child more than

once. We now consider one method of further compressing the piggybacked sequence of

parent id's.

Suppose there is some process p with only a single parent, q. In this case, we can again

easily optimize the usual message logging protocol. Note that the send sequence numbers

assigned by q define a total ordering of the messages delivered by p. Thus, p need not keep

any RSN log at all. Should p fail, q's send log contains sufficient information to recover p.

(Likewise, p does not need RSNp, PSNp, and PsnTablep; however, p does need SsnTablep

and ReceiveLogp in case q fails.)

Process p logs receive sequence numbers in order to record the nondeterministic char-

acteristics of a run. Since channels are FIFO, however, p need only log the order in which

p interleaves messages from different parents. If a message logging protocol records the in-

terleaving of messages from different parents for a process p, then this information together

with the send logs of p's parents is sufficient to recover p from failure.

Family-based logging can easily accommodate this general optimization. Each process

p can maintain an interleave sequence number, or ISN r ISNp is initially zero, and is

incremented in state crp[g] if / = 1 or if the source of the _nh message is different from the

source of the (2- 1) th message.

The RSN log can then be modified to record interleave sequence numbers. An entry

e E RsnLogp contains two new fields: Field e.isn equals the value of ISNp in state ap[e.rsn].

Field e.runlength equals the number of consecutive messages delivered by p from e.parent

since state ap[e.rsn]. The message logging protocol can then be modified so that p adds a

new entry to its RSN log only when p increments its interleave sequence number. Thus, e.isn

serves to count RSN log entries just as e.rsn does in the unoptimized protocol. If p delivers

a message but does not increment its interleave sequence number, then p has delivered a run

of messages from the same parent, and p must increment the runlength field in the last entry

16

of its RSN log. Togetherwith e.rsn, e.runlength encodes all the receive sequence numbers

corresponding to entry e E RsnLogp.

Given these modifications, consider a message logging protocol in which PSNp and

PsnTabl% contain interleave sequence numbers rather than receive sequence numbers, but

otherwise function as before. Whenever p delivers consecutive messages from a single par-

ent, RsnLogp will stop growing, and p will piggyback nothing on its outgoing messages.

Whenever p interleaves messages from different parents, p will record the interleaving in new

entries of RsnLogp, and then piggyback the information in these new entries on outgoing

messages as before. (Note that the sequence of parent id's actually piggybacked by p can

also be compressed with run length encoding, but this optimization is independent of the

changes to the message logging data structures described here.)

Finally, we must strengthen our failure recovery protocol in order to guarantee correct-

ness. Suppose process p fails. Note that p may have delivered many consecutive relevant

messages from one parent before crashing. Only the first receive sequence number of this

sequence has necessarily been piggybacked and recorded in a child's receive log. However,

if we require that p deliver replayed messages such that runs of consecutive messages from

the same parent are maximized (subject to the :receive sequence number ordering imposed

by p's replay log) then failure recovery will return the system to a consistent state.

5 Performance

We have described in Section 4 an optimal message logging protocol, in the sense that it

requires no extra messages and no extra processes in a failure-free run. However, this measure

of optimality ignores the most interesting cost of family-based logging: the extra information

that must be piggybacked on application messages. In this section we discuss theoretical

bounds and empirical measurements of this cost. We also briefly discuss failure recovery

performance. Our discussion concerns family-based logging as described in Section 4.3 with

the additional optimization provided by the PSN table of Section 4.4.1.

5.1 Predicted Performance

For a message m from p to q, we will measure the quantity of piggybacked information by

the number of RSN log entries contained in m. Unfortunately, for arbitrary m, we can only

bound this number by the total number of messages delivered by p. However, let # denote

the average piggyback size on all messages sent during a run 7_ of a set of processes P,

IPI = n in which no process crashes. That is, # equals the total number of piggybacked RSN

17

log entries divided by the total numberof sendevents.We can bound # asfollows:
If _ contains s send events, r receive events, d delivery events, and f transient channel

failures, then f = s - r. Note that the total number of RSN log entries recorded by all

p E P is at most d. Using the PSN table optimization, each entry can be piggybacked no

more than n - 1 + f times; thus, the total number of piggybacked RSN log entries is at most

d.(n- 1 +/). Dividing by the total number of send events, we obtain #<_d.(n- 1 + f)/(r + f).

Since d_<r and f>_0, this bound simplifies to # _< n - 1 + f.

This bound is achieved if each pEP runs the following application:

do forever

for all qEP such that q:#p

send message to q

fori _ 1 ton-1

receive message

The second time the do-loop iterates, each process must piggyback n - 1 RSN log entries

on every outgoing message. Assuming no channel failures, the average piggyback size will

quickly approach n - 1 as the loop repeats.

This example illustrates the worst possible environment for family-based logging. We

expect that many applications will not approach the n - 1 + f worst case. The practi-

cal behavior of family-based logging depends largely on two factors. First, the frequency

of acknowledgements has an obvious effect. Piggyback size will decrease if acknowledge-

ments arrive promptly. Thus, a positive acknowledgement protocol is an ideal setting for

family-based logging. Negative acknowledgement protocols may delay acknowledgements

and increase piggyback size compared to positive acknowledgement schemes; however, the

n - 1 + f bound applies regardless of the underlying transport protocol.

Second, the application communication pattern strongly affects the performance of family-

based logging. As our example shows, family-based logging suffers when each process has a

large family of active parents and children. Note that in this case the set of parents and chil-

dren will tend to intersect: each process will tend to send messages to and receive messages

from some common set of processes. In such an environment, a negative acknowledgement

protocol should be very effective, since extra acknowledgement packets will rarely be sent.

Thus, in worst-case applications, family-based logging should actually perform better using

a negative acknowledgement protocol.

18

5.2 Observed Performance

We have completedan initial implementation of the messagelogging and failure recovery

protocols describedin Section 4.3, with the addition of the PSN table described in Sec-

tion 4.4.1. In addition, we havedevelopeda special application to measure the performance

of family-based logging under a wide variety of conditions. This section describes our current

implementation and presents some empirical results.

5.2.1 Experimental Setup

We implemented family-based logging and have used it on a set of four Sun workstations--

two SPARC2s and two IPXs--running Sun OS 4.1.1. Communications were implemented

using UDP datagram sockets, layered over IP on a 10 Mbit/sec Ethernet; we used Sun

LWP to manage program concurrency. Because the family-based logging protocol needs to

receive the acknowledgements from the underlying data link layer protocol, we implemented

a simple data link layer using a positive acknowledgement sliding window protocol; the data

link layer can send 1024-byte messages between any pair of processes at the sustained rate

of 2.5 milliseconds per message.

5.2.2 Application

We designed a unique application in order to test our implementation of family-based logging.

The application is controlled by a master process. Based on user input, the master determines

the number of additional processes to create and the characteristics of the communication

among these processes. The master then writes a script for each process and sends each

script to the appropriate process. Once each process has received its script, it executes the

instructions contained in the script (e.g., "send to p", "receive") while monitoring message

logging statistics.

There are two important properties of this application. First, it reduces application

computational overhead to near zero. Writing, sending, and receiving scripts is completed

before any performance data is collected. Each application event requires only a single

array access and a test of the resulting value; the rest of the measured time is devoted to

interprocess communication. Thus, we measure the message logging overhead as compared

to virtually pure communication cost.

Second, our single application can model a wide range of application communication

patterns in a controlled and repeatable manner. In addition to specifying the number of

processes and the number and size of application messages, the user can control two pa-

19

rameters: the blast factor and the branch factor. The blast factor determines the relative

frequency of sends and receives for each process: A process in a "blasty" run typically sends

many messages before receiving any, and then receives many before sending again; in a

non-blasty run it usually alternates between a single send and a single receive. The branch

factor determines the relative number of parents and children for each process. A process

in a "branchy" run typically sends messages to and receives messages from many different

processes; in a non-branchy run it communicates with a small subset of processes.

5.2.3 Results

We measured message logging overhead for two distinct application scenarios. The worst-case

example of Section 5.1 can be tested with a script that is maximally blasty and branchy. We

call this scenario blast. To test family-based logging in a different setting, we set the blast

factor to its minimum value, and kept the branch factor at its maximum value; a process in

such a run typically alternates between sending one message and receiving one message, and

communicates with all other processes equally often. We call this scenario spray.

In Figure 8 we summarize our results. Both scenarios send and receive 5000 1024-byte

messages system-wide (approximately 1250 at each process). Using the Sun system clock,

we measured the total run-time for three different logging settings: first with no message

logging, then with piggybacking only (that is, the send log is not updated), and finally with

full message logging. The piggybacking figures do not truly isolate the cost of piggybacking,

but do suggest the relative cost of piggybacking for different scenarios. For example, spray

spends more time piggybacking less data than blast: spray almost always has to recompute

a new piggyback for each send, while blast can re-use the same piggyback for each sequence

of sends. Our message logging overhead of 25 percent is comparable to the overhead of

optimized pessimistic sender:b_ed]ogging [5]' s We also tested failure recovery by crashing

a single process half-way through each scenario, and at the end of each scenario. Recovery

in blast is significantly_slower than in spray: blast causes complete redundancy in receive

logs, giving a recovering process extra work to do, whereas spray tends to piggyback each

RSN log entry to only one or two children.

SThis implementation of sender-based logging does not block and sends no extra messages, and so avoids
the theoretical cost Of the protocol entirely.

2O

Application No P'back Full
Scenario Log Only Log

spray 11.8 13.9 14.7
blast 11.0 12.4 13.7

Half-run Full-run P'back P'back

Recovery Recovery Size Ovhd
7.5 15.4 1.6 18%

8.4 16.2 3.0 13%

Figure 8: Family-Based Logging Performance (time in seconds)

Log
Ovhd

25%

25%

6 Conclusions and Further Directions

In this paper, we developed a message logging protocol that introduces no additional blocking

to the application and does not create orphans. Furthermore, the protocol is very efficient

in that it only sends the application messages (possibly resent due to link failures) and their

acknowledgements. Thus, our protocol does not use any more messages in a failure-free run

than a message delivery protocol for a system in which transient link failures can occur but

processes do not crash. The protocol may make application messages arbitrarily larger, but

from our observations the average amount of overhead is small.

The major limitation of this protocol is that it can only withstand a sequence of (process

crash; process recovery) pairs. For example, if process p sends messages to process q and

both p and q simultaneously crash, then orphans may be created and q may find itself

trying to reconstruct a message m E _:_ for which there exists only a receive sequence

number. However, we are designing a protocol that can tolerate f _> 1 simultaneous crashes,

implements the stable log property, and has the same efficiency as the protocol presented

here. We are trying to prove this protocol correct by extending the abstract message logging

protocol described in Section 4.2.

We are also examining how the message logging protocol can be further optimized by

using the semantics of the application. For example, this research was first motivated by

discussions with a group at IBM FSC in the AAS project [4]. In this system, processes are

assumed to be usually functional and can recover by simply receiving new messages. This

idea can be generalized to the existence of messages that a process p can receive in any order

with respect to messages from other processes without changing the sequence of messages

that p subsequently sends. If such optimizations are taken into account, then the amount of

logged information can be further diminished.

Acknowledgements This work originated through discussions with Fred B. Schneider and

with Jon Dehn and Burnie Witt of IBM FSC. We would like to thank Robbert Van Rennesse

for his help in understanding the intricacies of Sun LWP and socket-level communication.

21

References

[1]

[2]

[3]

[4]

[5]

Anita Borg, J. Baumbach, and S. Glazer. A message system supporting fault tolerance. In

Proceedings of the Symposium on Operating Systems Principles, pages 90-99. ACM SIGOPS,

October 1983.

Navin Budhiraja, Keith MarzuUo, Fred B. Schneider, and Sam Toueg. Primary-backup proto-

cols: Lower bounds and optimal implementations. In Proceedings of the Third IFIP Conference

on Dependable Computing for Critical Applications, September 1992.

K. M. Chandy and L. Lamport. Distributed snapshots: determining global states of distributed

systems. ACM Transactions on Computer Systems, 3(1):63-75, February 1985.

F. Cristian, B. Dancey, and J. Dehn. Fault-tolerance in the Advanced Automation System.

In Digest of Papers: 20th IEEE International Conference on Fault- Tolerant Computing. IEEE

Computer Society, June 1990.

D. B. Johnson. Distributed System Fault Tolerance Using Message Logging and Checkpointing.

PhD thesis, Rice University, December 1989. Available as report COMP TR89-101.

[6] D. B. Johnson. Personal communication, November 1992.

[7] D.B. Johnson and W. Zwa_nepoel. Sender-based message logging. In Digest of Papers: 17

Annual International Symposium on Fault-Tolerant Computing, pages 14-19. IEEE Computer

Society, June 1987.

[8] D.B. Johnson and W. Zwaenepoel. Recovery in distributed systems using optimistic message

logging and checkpointing. Journal of Algorithms, 11:462-491, 1990.

[9] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-

cations of the ACM, 21(7):558-565, July 1978.

[10] M.L. Powell and D.L. Presotto. Publishing' A reliable broadcast communication mechanism.

In Proceedings of the Ninth Symposium on Operating System Principles, pages 100-109. ACM

SIGOPS, October 1983.

[11] Fred B. Schneider. Byzntine generals in action: Implementing fail-stop processors. ACM

Transactions on Computer Systems, 2(2):145-154, May 1984.

[12] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A

tutorial. Computing Surveys, 22(3):299-319, September 1990.

[13] A.P. Sistla and J.L. Welch. Efficient distributed recovery using message logging. In Proceed-

ings of the Eighth Symposium on Principles of Distributed Computing, pages 223-238. ACM

SIGACT/SIGOPS, August 1989.

[14] Ray Strom and S. Yemeni. Optimistic recovery in distributed systems. ACM Transactions on

Computer Systems, 3(3):204-226, April 1985.

22

