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Abstract 
Event logs provide an effective means of improving 

system availability. However, the majority of faults 
produce many errors because faults propagate in the 
time and error detection domains. Thus, the ability to 
coalesce related events is critical. 

The tupling heuristics develo d at Carnegie-Mellon 
University provide one suc methodology. These 
heuristics were applied to a new and larger set of data 
in order to evaluate the generality of the scheme and to 
extend the previous work. The extensions included de- 
riving a semantic understanding of why the rules work, 
expanded statistical analysis, and a corn rehensive sen- 
sitivity study to determine the effects oAhanges in the 
rules. 

The results prove that tupling is a useful and general 
study enabled the iden- 

to the rules, while the high de- 
p e e  of skew in the tuple variables enables UT to pro 

~ ~ ~ e s h o l ~  for proactive fault management. 
that the extreme percentiles be used as an aarm pose 

'Fhe availabihty and reliability of computer systems 
c m  be improved by the use of event logs and System 
Directed Diagnosis (SDD) techni ues [l]. However, 
the "system usually detects the e#ects of the faults as 
many isolated errors" [2]. This is because faults 
propagate in both the time and hardware domains. 
Thus, a key step in event log analysis is the coalescing, 
or grouping, of related events. 

There are two basic approaches to this classification 
problem. One uses 'bottom up' methods, such as those 
developed by Tsao [31, and Iyer, Young and Sridhar 
[ 2 ]  to try and combine the individual events together 
mto clusters. This is analogous to region growing in 
machme vision. The altemative is 'to down' decom- 
position of the event log into proflems, which is 
equivalent to region splitting. 

The objectives of this research were two fold. The 
first was to determine if the tupling heuristics would 
generalize to another data set. If they were deemed 
useful further work would be done to extend the pre- 

vious research, so that a more comprehensive body of 
knowledge could be built up on tupling. The authors 
would note that this notion of building upon previous 
research is not pursued frequently enough in our field. 

The generality was investigated by applying the 
tupling algorithms to a new, more diverse and si&- 
icantly larger set of data. The event logs were collected 
from 193 VAX/VMS machines over a four year pe- 
riod. There were 335 machine years of data in total. 
The data came from three different types of VAX 

rocessor and spanned a range of sites, from manu- 
Lcturing, through banks and universities, to intemd 
Digital sites. A number of the analyses that were 
conducted previously by Tsao [3] and Hansen [4] 
were repeated for comparison purposes. The similmty 
of the results across all three studies proves that tupling 
is a general and useful scheme. 

The extensions were in two directions, namely sta- 
tistical and semantic. The statistical analyses included 
additional univariate statistics and lots and analyses 
of the extreme values of each varia6e. The semantic 
research included an assessment of the plausibility of 
the tuples and a com rehensive sensitivity study to 
determine the effect o F each tupling rule and clause. 
The effect of filtering events from the logs was also 
considered. 

These additional analyses enable us to recommend 
rule enhancements for the VAX/VMS lo s, and to 
propose the idea that the extreme values of the tuple 
variables be used as an alarm threshold. The skewed 
nature of the tuple entry count and tuple span distrib- 
utions, and the extremes analysis, su est that the ex- 
treme percentiles can be used as an ef P ective and robust 
proactive fault management alarm threshold. For ex- 
ample, the 95th or larger percentiles could be used and 
they would generate approximately the same number 
of alarms. 

The previous work on event clustering is summa- 
rized in Section 2 and the methodology used in this 
research is described in Section 3. The results are 
presented in section 4 and the key contributions are 
summarized in Section 5 .  

2. Related Research 
There is a signrficant bod of literature on computer 

The studies show that the majority of failures are due 
to temporary faults [ l l ,  14, 191. This has led to the 

system availability and re K iability, including [ 1- 181. 

1 Formerly with Digital Equipment Corporation. This work was supported by Digital Equipment Corporation 
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use of error handling and recovery methods [9 ,  101 
and Symptom Directed Diagnosis (SDD) techniques, 
as mechanisms to improve reliability and availability. 
The key to these techniques is the creation and inter- 
pretation of event logs. The event monitoring process 
is discussed in [6j and the foundations for Symptom 
Directed Diagnosis are presented in [ 11. 

The time-space relationship between events has 
been investigated by Tsao [ 3 ] ,  Iyer, Young and 
Sridhar [2 , and Hansen [4]. The Tupling conce t 

information in the log into a hierarchical structure. A 
Tuple or cluster is a group of closely related events. 
Two rules were developed to coalesce the events into 
tuples. The grou ing of events into tuples reduced the 
number of logicapentities by a factor of twenty. 

The work on tu les was extended by Hansen [4]. 
He compared the kerences between and among U- 
rocessor and multi-processor systems. He used data 

Bom thirteen VAX 11/780s and five Tandem TNS 11s. 
He found that individual processors of the same type 
behaved the same, whereas multiple processors in fault 
tolerant systems generally exhibited different behavior. 
He found that the tupling algorithms were not sensitive 
to moderate variations in the clustering time. This, 
supported Tsao’s sensitivity experiment. Hansen alscl 
found that at least 15% of the tuples contained events 
from more than one problem. Sanders [20] reports ai 
similar percentage for groups contained a collection of 
unrelated error records. The overlapping in Hansen 
[4Lmay be due to a deficiency in the tupling algo- 
nt , or to the fact that multiple problems may bt: 
present in a system simultaneously. 

Iyer, Young and Sridhar [2] developed a methodol- 
ogy for automatically detecting symptoms of fre- 
quently occurring errors. Events are combined into 
clusters, which are combined to form error groups, and 
eventually super events which correspond to individual 
problems. The methodolo is based on probabilistic 
techniques and used data g m  two CYBER systems. 
The analyses were later extended to an IBM system 
3081 [21]. The strength of the relationshi between 
events is given by the ratio of the joint progability to 
the independent probability. 

developed B y Tsao [ 3 ]  is a method of organking t K e 

3. Methodology 
The results and conclusions presented here are based 

on the examination of a large set of VAX event logs 
that were collected over a four year period. This is the 
same set of data that is discussed in [6]. The objec- 
tives of that research were to develop a thorough 
understanding of the data set and the event monitoririg 
process, and to identify and correct any deficiencit:s 
that were discovered, before proceeding with other 
analyses. That exercise proved to be invaluable and 
provided key insights into the data set and the moni- 
toring process. This research builds upon that fowl- 
dation by using the knowledge that was gained to 
avoid incorrect assumptions and wrong conclusions. 
The authors would encourage all analysts to be as rig- 
orous and cautious in their analysis of event logs. 

The VAX event log is described next and this is 
followed by a description of the data set, the analysis 
software, and the tupling rules used in this research. 
The event logs, data sets and anal sis procedures used 
by Tsao and Hansen are describelin [3] and [4]. 

3.1 Event Logs 
The event log contains records of events as they oc- 

cur on the system. The events are collected concur- 
rently with normal system operation, and as such 
reflect actual workload and usage. Some of the events 
are informational, such as disk mounts and 
timestamps, while others are related to errors or to 
system shutdown and start-up. 

Each event record has a header section which in- 
cludes the event type, the event date and time, the 
system identifier (SID), and the error sequence number 
(ESN). The information recorded in the rest of the 
event record varies by event type. The usefulness of 
specific fields within an event type depends upon the 
objective of the enquiry. 

The steps in the VAX/VMS event log generation 
and collection process are described in C22, 23). The 
main point to remember is that the majority of faults 

roduce many errors and often more than one system F ailure, because the effects may be detected by multiple 
error checkers and they may repeat over time. 

3.2 Data sets 
The main set of data that was used consisted of 

event logs collected as part of the Mean Time Between 
Interruption project within Digital, and will be referred 
to as the MTBI data set. The event logs were collected 
by logging into each machine once a month and ex- 
tracting the events for the previous month. The logs 
were usually filtered, i.e. specific event types were re- 
moved from the logs, before they were retrieved, to 
reduce their size. 

The data came from 193 machines, that spanned 
three VAX processor types, and included customer 
sites as well as sites internal to Digital. There were 335 
machine years of data, which is an order of magnitude 
more data than previous investigations [2-41, with the 
exception of [IS] who used a similar amount of data. 
There were 2.35 million events in total spread over 46 
different event types. The machines in the sample were 
running VMS versions from V4.7 to V5.2. 

Tsao [3] employed ten machine years of DEC 
TOPS 20 system data collected from eight machines, 
while Hansen [4] used five machine years of data col- 
lected from 13 VAX 11/780 systems and five Tandem 
TNS I1 systems. 

The MTBI event logs were supplemented by three 
other sets of data. The supplementary data included 
two sets of event logs, and a set of field service data, 
called LARS (Labor Activity Reporting System). 

3.3 Analysis Software 
The Error Log Analysis Software (EoLAS) system 

was developed to analyze the event logs. EoLAS is a 
collection of software tools that includes commercially 
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available packages such as SAS, routines written by the 
authors, and code developed by other groups within 
Digital. The two main functions of the EoLAS soft- 
ware were extraction and manipulation of event lo 
entries, and statistical analysis. The code developef 
by Hansen [4] was used to form the tuples. 
template fde and the tf clusterin rules description de 
that were used in this research d&er slightly from those 
in Hansen [4], and are described in [23]. SAS was 
used for the bulk of the statistical analyses. The ele- 
ments of the EoLAS system are described in [23] and 
the details of the tupling code are presented in [4]. 

3.4 Tupling Procedure 
The intent of the tupling rules is to coalesce related 

events into the same group or tuple. Tsao [3] used two 
rules, whch were: 

R u l e  1: I F  next  event  within minutes (2.8) 
i ncl ude  t he  event  1 n the  tup1 e 

Rule 2: I F  the  event  does n o t  s a t i s f y  r u l e  1 
AND It  does,not con ta in  physical  l oca t ion  information 
AND i t  i s  within cp minutes (22.5) of t he  tup le  
AH0 i t s  event  type i s  a l r eady  i n  the  t u p l e  
THEN i nc lude  the event  i n  the  t u p l e  

Hansen [4] extended this methodology and added 
the following rules, which were ap lied before rule 1 
and rule 2. Hansen also sortet! the event logs 
chronologically before applying these rules. 

ABORT X0: I F  Error Sequence Number not  se uen t i a l  
THEM ABORT the  cu r ren t  t u p l e  an! i n o r e  the  

subsequent events  within c1 07 the  gap 

IGNORE I O :  Ignore time stamp e n t r i e s .  

IGNORE 11: Ignore events  with bogus da t e s  

There is an example of three tuples in Figure 1. The 
tu le header starts with the string ’TUPLE’, which is 
foiowed by the tuple number (391 for the first tuple 
in this example), the start date of the tuple in seconds 
since 1-Jan-1960 (826534717), the number of entries 
in the tuple (2 and the time span of the tuple in sec- 

of text for each event in the tuple. The line contains 
the error sequence number (864 for the first event in 
the frst tuple), the event date (1 l-mar-1986), the event 
time (08:58:37.46), the number of seconds since the 
start of the tuple (0), the device location information 
(not shown in Figure 1 since there was none for this 
event t e), the event type (Machine Check), and the 

none in t h s  case). 

onds (105). T h e tuple header is followed by one line 

event su Yg type (not shown in Figure 1 since there was 

TUPLE 391 826534717 2 105 
864 ll-mar-1986 08:58:37.46 a MACHINE CHECK 
865 ll-mar-1986 09:00:22.76 105 MACHINE CHECK 

TUPLE 392 826538803 44 9529 
872 ll-mar-1986 10:06:43.57 a MACHINE CHECK 
873 ll-mar-1986 10:06:54.53 11 MACHINE CHECK 

. I .  ... .. 
g ja  11-m;;:1986 12 :4 i i i 7 .11  93bi M A C H I N ~ ’ ~ H E C K  
931 ll-mar-1986 12:45:32.77 9529 MACHINE CHECK 

TUPLE 393 826549795 3 558 

936 ll-mar-1986 13:12:51.83 176 MACHINE CHECK 
935 ll-mar-1986 13:09:55.28 a MACHINE CHECK 

938 ll-mar-1986 13:19:13.01 558 MACHINE CHECK 

Ideally each tuple should include all of the events 
related to one instance of a particular problem. For 
example, if there is a scratch on a disk surface and a 
write attempt produces four disk errors, two disk con- 
troller errors, and a bus error, within 2 minutes, all of 
these events should be ouped together into the same 
tuple. However, a SIX$ problem may have its signa- 
ture spread over many tuples, because the same rob- 
lem may be encountered many times, and each is Yikely 
to generate a new tuple. 

The three different implementations of the tupling 
concept, namely Tsao [3], Hansen [4] and the present 
research are similar but not identical. The differences 
occur because the data set imposes some restrictions 
and hence the methodology must be changed slightly, 
or, more often, because of incomplete knowledge of 
the previous researcher’s methodology. The main 
characteristics of the three implementations are s u m -  
marized in Figure 2. 

The use of Hansens 41 code helped ensure con- 

search. The authors did not have access to data from 
Hansen [4] or Tsao [3] and thus their data could not 
be compared to the MTBI data. The tuple matching 
(tuple t y r  formation) work that was conducted by 
Tsao an by Hansen was not done in this study. 

The main analyses that were conducted are as fol- 
lows: 

sistency between his a J  ysis procedures and this re- 

Tsao’s [3] and Hansen’s [4] implementations 
were compared (see Figure 2). 
The tuples that were formed were examined to 
determine if they were plausible, that is, were the 
majority of the events in the tuples related or were 
the groupings random. This was done for all logs 
for all three processor types. 
An extensive sensitivity study was conducted to 
determine the effect and contribution of the vari- 
ous rules and clauses to the tupling process. This 
would show if modifications were needed for the 
MTBI logs. The effects of filtering were also con- 
sidered because the majority of the MTBI logs 
were filtered. 

The effect of changes in c1 was investigated by 
Tsao [3] and by Hansen [4]. The methodology 
used in this research for the c1 sensitivity study is 
very similar to the one used by Tsao. Each of the 
other input variations was evaluated by doing a 
pair wise comparison, one with the rule or clause 
m use and one without the rule or clause. The 
sensitivity study is based on data from one par- 
ticular VAX 86xx machine (named VI), with the 
exception of the cl analysis where addtional data 
was used from two other machines. The proce- 
dure is described in detail in Buckley [23]. 
Univariate statistics, histograms and cross lots 
were generated for the per file variables an CY the 
tuple variables. These were generated from all of 
the logs and the results were compared across the 
three processor types. 

Fieure 1: ExamDle of Droblem being aread over multhle h r ~ l e ~  I 
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Characteristic ~ Tsao (1983) 
WO* Done 

Tuple formation I yes 
Tuple t y p  formaton I Yes 
Univariale statlstlcs 
Dstributon type 
Correlatlon analysis 
i SensnNny study 
Elfed of rule changes ~ No 

I 10 

i No Yes, On KL 

Code Used , Tsao 1983 
Machine Years of data 
Processor types 

Ruk 1 
Rule 2 

Other Rules 
Abon Rule 
Ignore OM entries 
Ignore Tmestamps 
Logs sorted 
Extremes eliminated 

Jansen 1988 

,Yes 
Yes 
,Yes 
No 
INo 
,Yes on Tandem 
IN0 
IHansen 1988 

IVAX 111780 
[Tandem TNS II 

15 

Bucklev 1992 

Yes 
No 
Yes 
Yes 
Yes 
Yes onVAX 
Yes 

'Hansen 1988 
1336 
I VAX 8€m 
IVAX 6m 

I VAX 8XxX 

1 and &;<22 5 min /and no location info 1 and intuple(VAX) 
I and inluple(KL) land imuple(subheld) I 

'Yes Yes 
'Yes before 1960 

No 
No 
Not applicable 'Yes Yes 
Unknuun Yes Yes 

Yes before 1980 

droptuple I droptuple ~ droptuple 
I ,TTT, TBT >99999 

I I dropped 

Figure 2: Comparison of tupling implementations 

4. Results and Discussion 
The work that was done can be split into two majc 

sections. The objective of the first portion of the 
tup- research was to develo a semantic under- 
standing of the tupling rules. &s included a review 
of the previous implementations, an evaluation of the 
plausibility of the tu les that were formed and an in- 

d e s .  These items are discussed next and &e second 
sub-section provides statistical information about the 
tuples. This is followed by general comments and 
concluding remarks. 

vestigation of the e # ects of various chan es in the 

4.1 Semantics 
The bulk of the semantic work focused upon the 

usefulness and a propriateness of the different rules, 

are presented here. These are preceded by an expla- 
nation of how the tuples were evaluated for correct- 
ness. 

ssible to objectively measure 

and a number o P the key findings from Buckley [23] 

the effectiveness of t r e tupling algorithms because 
Plausibility: It is not 

there are few absolutely right or 
events in the log can be looked 
ious ways depending upon the 
sis. Human diagnosticlans try different associations 
based upon their current FRU (Field Replaceable 
Unit) theory [24]. 

Nevertheless, it was possible to examine the tuples 
which were formed and deem them reasonable or not. 
Hundreds of tuples were exammed for the various an- 
alyses that were conducted over the course of the re- 
search and the tuples which were formed were 
reasonable in all cases. That is the tuples contained 
groups of related events. It was also clear that the 
tupling algorithms were not able to associate all of the 
events that belong to a given problem into one tuple 
in all instances. Streams of associated events were 
sometimes spread over many tuples, as shown in Fig- 

ure 1 where events from the same problem are spread 
over three tuples. In fact, the tuples in Figure 1 only 
cover a portion of the problem whch actually spanned 
a three month period. Thus, the problem was spread 
over more tuples than shown in Figure 1. 

The example in Figure 1 su ests that rules are re- 

take events with exactly the same syndrome or whch 
are very close in time and group them together. The 
next level would look for associations between these 
groups and pull all the events which belong to the 
same instance of a problem into the same group. T h s  
would continue through higher levels until all the 
events which were due to the same problem were 

ouped together. The probabilistic scheme developed 6 Iyer, Young and Sndhar [2] is a good example of 
such a rule hierarchy. The assumption that is made 
here when evaluating the correctness of the tupling is 
that the rules are intended to be lower-level ones. It is 
assumed that rule 1 is at the lowest level and that rule 
2 is at the next level. Hence, the concept of trun- 
cations, as defined by Hansen [4 would not be useful 

may be spread over many tuples. 
There are some examples of typical tuples in Figure 

3. The last tuple in the figure, tuple number 34, is a 
good example of correct association of events. The 
tuple starts with a reboot message, which is followed 
b 13 disk mounts and the tuple ends with a 
SLDERR message. This tuple could be referred to 
as the "power up" tuple type because this is the stand- 
ard sequence of events after a reboot on this machine. 
This can be seen from the cross plot in Figure 4. The 
majority of the tuple entry counts are 15 and these are 
mainly due to the "power up" tuple. 

quired at a number of levels. T % e lowest level would 

in this case because we expect t 1 at a single problem 

TUPLE 28 893145424 1 0 
206 20-a r 1988 07:57:04.43 
TUPLE 29 - 893203552 1 0 
304 21-apr-1988 00:05:52.91 
TUPLE 30 893285337 1 0 
441 21-a r-1988 22.48'57.05 
TUPLE 3P 8 9 3 3 6 4 3 6  '1 Q 
544 22-apr-1988 15:47:16.59 
TUPLE 32 893363526 i a 
573 22-a r-1988 2 0 - 3 2 - 0 6  91 
TUPLE 3! 893369322 '10' 51 
584 22-apr-1988 22:08:42.86 
585 22-apr-1988 22:08:46.97 
586 22-apr-1988 22:08:48.84 
587 22-apr-1988 22:08:50.61 
588 22-anr-1988 22:08:55.06 .~~ 
589 
590 
591 
592 
593 
TUPl 
594 
595 
596 
597 
598 
599 
600 
601 
602 
603 
604 
605 
606 
607 
608 

ZZ-apr- is88 
22-apr-1988 
22-apr-1988 
22-apr-1988 
22-apr-1988 

.E 34 893 
23-apr-1988 
23-apr-1988 
23-apr-1988 
23-apr-1988 
23-apr-1988 
23-apr-1988 
23-apr-1988 
23-apr-1988 
23-apr-1988 
23-apr-1988 
23-apr-1988 
23-apr-1988 
23-apr-1988 
23-apr-1988 
23-apr-1988 

22: 08: 56.31 
22: 08: 58. 06 
22:08:59.50 
22:  09: 80.17 
22:09:33.01 

397754 15 182 
06: 0 2 3 4 . 3 9  
06:02:41.11 
06: Q3:ZE. 09 
06:03:27.59 
06: 03:40.56 
06:03:48.00 
06:03:56.38 
06: 04: 84.99 
06: 04: 14.11 
06:04:22.29 
06:04:37.74 
06:04:45.75 
06: 05: 00.31 
U6:05:13.20 
06:05:36.54 

0 

a 
0 

0 

0 

0 
4 
6 
8 

13 
14 
16 
I 7  
18 
51  

0 
7 

46 
53 
66 
74 
82 
90 

100 
108 
123 
131 
146 
159 
182 

HSCOlSOUAl: 

HStQlSOUA13: 

HSCQlSOUA7: 

HSCQlSOUA7: 

HSCQlfDUA7: 

OUAQ: 
OUA1: 
OUAZ: 
OUA3: 
DUA5: 
OUA6: 
OUA7: 
DUA8: 
OUA10: 
OUA12: 
DUA13: 
OUA14: 
OUA15: 

ERLSLOGMESSAGE 

ERLSLOGMESSAGE 

ERLSLOGMESSAGE 

ERLSLOGMESSAGE 

ERLSLOGMESSAGE 

OISMOUHT VOLUM 
DISMOUNT VOLUM 
OISMOUNT VOLUM 
OISMOUWT VOLUM 
DISMOUNT VOLUM 
OISMOUWT VOLUM 
OISMOUWT VOLUM 
OISMOUNT VOLUM 
DISMOUNT VOLUM 
FATAL EUGCHECK 

SYSTEM STARTUP 
MOUHT VOLUME 
MOUNT VOLUME 
MOUNT VOLUME 
MOUNT VOLUME 
MOUNT VOLUME 
MOUIIT VOLUME 
MOUNT VOLUME 
MOUNT VOLUME 
MOUNT VOLUME 
MOUNT VOLUME 
MOUIT VOLUME 
MOUNT VOLUME 
MOUNT VOLUME 
SNOERR MESSAGE 

Figure 3: Example of typical tuples. 

There is a corresponding "power down" tuple type 
that is less well defined. The "power down" tuple con- 
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400 i I 

0 100 2 0 0  100 400 500 600 7 0 0  800 900 1000 1100 12001300 

Tuple Number 

Figure 4: Cross plot of tuple entry count for fde Vf 

sists of a variable number of disk dismounts and is of- 
ten terminated by a crash message. The second to last 
tuple (number 33) in Figure 3 is an example of the 
"power down" tuple. The number of &sk dismounts 
and the presence of the crash message are variable be- 
cause the shutdown se uence may be terminated by 

crash. There were many tuples for file Vf with between 
eight and twelve entries and the majority of these were 
due to the "power down" tuple. The "power up" and 
"power down" tuples were discovered because the ap- 
arent "horizontal line" at the 15 entry count mark in 

Figure 4 aroused our interest, The patterns exlubited 
in this plot are typical of those obtained for other var- 
iables and other machines. 

Although, no formal attempt was made to quantify 
the number of collisions they were rare and our esti- 
mate would be that they occurred in less than 1% of 
cases. This estimate is based upon the hundreds of 
tuples that were reviewed over the course of the re- 
search. The term collisions is being used here in the 
sense defied by Hansen which is "a collision occurs 
when the reports generated by two different faults 
overlap and are identified as a single tuple" [4]. How- 
ever, one would occasionally encounter a tuple which 
included one or a few housekeeping events along with 
the errors from a single fault. 
Effkct of changes in Rule 1 clustering time: The rule 

1 clustering time, c1, was varied to determine if it had 
a major impact on the results. This is similar to the c1 
sensitivity studies that were done by Tsao and Hansen. 
Two evaluated the chan es in the number of tuples, 

t, between 11 and 5400 seconds. l k s  research used a 
broader range of rl values and the changes in the 
number of tuples, tuple entry count, tuple span, Time 
Between Tuples (TBT), Time To Tu le (TTT), and 
number of rule 1 firings, were observek: 

The procedure was applied to three different event 
lo s. The logs were selected so that the total number 
ofevents in each was similar to the total number of 
events in the two files that were used by Tsao [ 3 ] .  
Rule 2 was not used in the sensitivity study because it 
was not used in the sensitivity study in Tsao. Thus, the 
procedure used here is very similar to Tsao's. 

the operator, or the pro % lem may cause an immediate 

the tuple entry count an d the tuple span for values of 

The effects of the changes in c 1  were evaluated using 
univariate statistics, box plots and log-log plots for 
each variable. The results show that the tuple param- 
eters, with the exception of the tuple span, are insen- 
sitive to changes in cl over a wide range of values. The 
tuple span changes hearly with c1. The other vari- 
ables change an order of magnitude slower than c l .  
These results agree with the conclusions in Tsao [3] 
and Hansen [4]. 

There is an example of one of the log-log plots in 
Figure 5. n s  plot shows how the the tuple entry 
count varies with c1, and the plots for the other vari- 
ables and files are very similar. 

There is a pronounced 'knee' in the tuple count, 
TTT and entry count log-log plots at the 180 minute 
mark. A less severe change can be seen in the TBT and 
tuple span plots at the same oint. The change at the 
180 mmute mark is due to c&€erent groups of events 
being pulled into the one tuple. Thus, it can be con- 
jectured that a value of el less than 180 minutes co- 
alesces events from the same instance of a fault into 
one tuple, while leaving the different instances in sep- 
arate tuples. However, the different groups of events, 
or instances of a fault, are pulled into the Same tuple 
once cl exceeds 180 minutes. 

There is a less obvious change in the slope of all of 
the variables at the .35 minute point. These two fea- 
tures su est that the performance of rule 1 is not af- 
fected aTong as c1 is kept within the .35 to 180 minute 
range, and thus a value m this range should be used for 
rule 1. The results in Hansen for the tuple count also 
suggest that there is a major change in the sensitivity 
at a proximately the 1 minute mark, which is similar 
to tEe .35 minutes found here. 

The reason for the lack of sensitivity to changes in 
el is that the tu le span is small relative to TTT and 
TBT. That is tge case because events tend to occur 
close together in bursts or not at all. Thus, a relatively 
short t u p h g  time wdl be sufficient to coalesce the 
events wthin a burst. A much longer tu ling time is 
required before the bursts are pulled togetker. 
Effectiveness of Rule 2 The intent of rule 2, as stated 

in Tsao [3], is to pull non hardware events that do not 
satisfy rule 1 into the current tuple, if they are within 
22.5 minutes (cZ) of the current tuple and are of the 
sane type as an event that is already in the tu le. This 
rule is conceptually a pealing and proved to !e effec- 
tive for the MTBI Lgs because there were related 
events in the log that were often missed by rule 1. The 
Single Bit Memory Errors (SBEs) are a good example 
of such events. 

The SBE entries in the VAX logs are usually more 
than 2.8 minutes (cl) apart. In fact it was found that 
75% of SBEs occurred within three to twenty three 
minutes of each other. These would be coalesced by 
rule 2 but not by rule 1. There is an example of rule 2 
pulling SBEs into a tuple, which are missed by rule 1, 
m Figure 6. The top portion of the figure shows part 
of a tuple that is formed when rule 2 is used. The lower 
part of the figure shows that many tuples are formed 
when rule 2 is not used. 

298 



I ''I 

180 Minutes t 

I Fimre 5: Loe-Lop: d o t  of mean tuple entry count vs e1 I 

R U L E  2 U S E D :  SBEs coalesced in to  one tuple. 

TUPLE 
15523 
15524 
15526 
15527 
15529 

1 agr1067276 51 20296 
1-may-1988 00:01:16.47 0 
1-may-1988 00:06:38.85 322 
1-may-1988 aa:11:41.36 625 
i-my-iga8 oa:i6:41.41 925 
I-may-1988 88:21:41.28 1225 

CORRECTABLE 
CORRECTABLE 
CORRECTABLE 
CORRECTABLE 
CORRECTABLE 

MEMORY 
MEMORY 
MEMORY 
MEMORY 
MEMORY 

ERROR 
ERROR 
ERROR 
ERROR 
ERROR .. ... ... .. ... 

RULE 2 NOT USED: SBEs are spread over w n y  tuples. 

TUPLE 
15523 
TUPLE 
15524 
TUPLE 
15526 
TUPLE 
15527 
TUPLE 
15529 
TUPLE 

CORRECTABLE MEMORY ERROR 

CORRECTABLE MEMORY ERROR 

CORRECTABLE MEMORY ERROR 

CORRECTABLE MEMORY ERROR 

CORRECTABLE MEMORY ERROR 

. .  ... . . ... 
Figure 6: Example of Rule 2 coalacing SBEs into one tuple. 

The summary statistics show that rule 2 was used 
84,731 times over all the lo s. This is 18% of the rule: 
1 firing rate and sign;fi.ant?y hi er than the rate r e  

were classified using rule 1. Thus, it can be concludecl 
that rule 2 is useful and should be retained. 

Effect of filtered event logs: The majority of the 
MTBI logs had the device and volume entries filtered 
out. Therefore, the Vf log was filtered and the results 
compared to the unfiltered log to determine if there 
was a sigdicant difference between the two, and to sele 
if the tuples that were formed were plausible. 

Althoup the results will depend on the event types 
that are dtered out, one would expect that filtering 
will produce fewer and smaller (shorter span and lower 
tuple entry count) tuples, because there are less events 
to start with. The tuples would be. further apart (longer 
TTT and TBT) because the elapsed time is a constant. 
The expectations were borne out by the univariate 
statistics. There are major differences in the statistics 
for filtered and unfiitered logs. 

The tuples in the filtered logs were examined and 
found to be correct. There were a few instances where 
a pair of crash/reboot messages that had been in the 
same tuple in the unfidtered log were in different tuplr:s 
in the filtered logs. This occurred because intervening 
entries that were filtered out had acted as 'binding' 
events in the unfiltered case. That is, the elapsed time 

ported by Tsao [3] who found t !i? at 95% of the event:; 

between the crash and the reboot was greater than cI ,  
but there were intervening entries in the unfiltered logs 
such that no gap was greater than c1. 

Thus, the tupling methodology can be applied di- 
rectly to filtered logs. The flexibility of the Hansen 
[4] implementation allows one to implement new fil- 
tering rules easily and quickly. 
Tupling Algorithm Modifications The results thus far 

have shown that the tupling rules proposed by Tsao 
[ 3 ]  are effective on another set of data and that the 
tuples that are formed are reasonable. This is not to 
say that the rules cannot be improved or tailored to a 
particular data set. This sub-section provides one ex- 
ample of how the rules can be improved, via the addi- 
tion of the IGNORE rule proposed by Hansen, and 
one example where modification of the rules improves 
effectiveness. There are additional recommendations 
for improving the rules for VAX/VMS logs in [23]. 

The tupling implementation in Hansen [4] ignored 
events that occurred before 1-Jan-1960. The idea is to 
screen out what are probably bo dates. The MTBI 
logs have bogus dates that must r d e a l t  with and this 
is a reasonable approach. The 1-Jan-1980 was used 
as the cutoff because the bogus date entries in the 
MTBI logs have 1978 dates. Although, using 
1-Jan-1980 instead of 1-Jan-1960 is a minor change it 
had a major impact on some of the per tuple univariate 
statistics. The statistics showed that the TTT and TBT 
mean and range changed si&icantly by using a cutoff 
of 1980 instead of 1960. For example, the mean TTT 
changed by one order of magnitude and the TTT range 
changed by more than two orders of magnitude. 

Thus, the ability to ignore specific events is a useful 
adhtion. However, this exam le also shows that the 
rules may need to be modified for the data set at hand. 
The use of location information to keep events in 
separate tuples provides another example of where the 
rules should be modified to improve their effectiveness. 

There is a clause in rule 2 in Tsao [3] and Hansen 
[4] which forces the formation of a new tuple if the 
event under consideration contains any location infor- 
mation. The ori ' al motivation for the clause 
stemmed from a be% that most logged errors would 
be detected by hardware (hence location infonnation 
would be present) and be ropagated to be detected 
by software (no location inpormation). Thus, the oc- 
currence of a roblem would tend to produce a hard- 
ware error witg location information which would be 
close1 followed by a series of software errors that 
wouldlnot have any location information. The intent 
of tupling was that it was to be a level 1 (lowest level) 
grouping technique. Thus, different problems or in- 
stances of a problem should be kept separate and this 
could be done by forcing a new tuple if there was lo- 
cation information present. 

Although, this may have been a valid hypothesis for 
the KL processor logs, it is not suitable for the VAX 
architecture, because events that are related will be 
forced into separate tuples just because. they contain 
location mformation. Thus for example, SBEs would 
be forced into separate tuples, even if they had the 
same syndrome. This suggests that the clause should 
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not be used, or at least that it should be modiiied such 
that a new tuple is formed only if the location infor- 
mation is different. 

The effects of this clause were examined by con- 
ducting a tupling analysis with and without the clause. 
The expectation is that forcing a new tuple because of 
the presence of location information will cause the 
TTT, TBT, tuple span and entry count to decrease, 
since more tuples should be formed from the same 
number of events and elapsed time. 

The univariate statistics show that the results are as 
expected. The mean and median TTT, TBT and tuple 
span decrease and the mean ent count decreases. The 
median entry count is unchanger There are 33% more 
tuples formed when the location clause is used and rule 
2 is satisfied and order of magnitude less often. 

The tuples for both cases were examined to deter- 
mine whch were the most reasonable. There were 
many instances where related events were forced into 
separate tu les because they contained location infor- 
mation. TEere is an example in Figure 7. This shows 
a sequence of related ERL$LOGMESSAGE entries, 
some of which are more than c1 minutes apart, being 
split into two tuples because they contain location in- 
formation. The events in tuple number 43 in the lower 
part of Figure 7 (no location clause) are split into two 
tuples, namely tuple numbers 70 and 71 in the upper 
half of the figure when the location clause is used. 

~ 

LOCATION CLAUSE USED: Four tuples are formed 

TUPLE 
1274 
1275 
TUPLE 
1278 
1279 
TUPLE 
1280 
1281 
1282 
1283 
1284 
1285 
1286 
1287 
TUPLE 
1289 

Q 
83 

Q 
Q 

0 
0 
Q 
Q 
21 
21 
21 
21 

0 

MUAO: 
MUAQ: 

HSCQ MUAQ. 
HSCQIMUAO; 

MUAQ: 

OISMOUMT VOLUM 
MOUNT VOLUME 

ERL LOGMESSAGE 
E R L b i M E S S A G E  

DISMOUNT VOLUM .. ... ... . . . .  ... 
LOCATION CLAUSE NOT USED: Three tuples formed 
TUPLE 
1274 
1275 
TUPLE 
1278 
1279 
1280 
1281 
1282 
1283 
1284 
1285 
1286 
1287 
TUPLE 
1289 

42 893734791 2 83 
27-apr-1988 Q3:39:51.66 
27-apr-1988 03:41:14.68 
43 893735726 10 288 
27-apr-1988 Q3:55:26.33 
27-apr-1988 03:55:26.35 
27-apr-1988 03:59:53.19 
27-apr-1988 03:59:53.20 
27-apr-1988 03:59:53.48 
27-apr-1988 03:59:53.50 
27-apr-1988 Q4:00:14.57 
27-apr-1988 Q4:QO:14.58 
27-apr-1988 Q4:QQ:14.64 
27-apr-1988 04:00:14.65 
44 893736484 24 1852 
27-apr-1988 04:08:04.41 

0 
83 

0 
Q 

267 
267 
267 
267 
288 
288 
288 
288 

0 

MUAQ: 
MUAQ: 

MUAQ: 

DISMOUNT VOLUM 
MOUNT VOLUME 

DISMOUNT VOLUM ... ... . . . .  ... 
Figure 7: Example of the location clause in rule 2 forcing 

related events into separate tuples 

The conclusion is that forcin events into separate 

is inap ropriate for the VAX logs. The clause should 
be moxfied such that new tu les are only formed if the 
location information is d' lff erent, or preferably the 
clause should be dropped. 

tuples because of the presence o f location information 

4.2 Statistics 
The research included the computation and evalu- 

ation of a large variety of univariate statistics and lots. 
These statistics allowed us to compare our res s ts to 
previous research and they provided insight into the 
usefulness and behavior of the tupling rules. They also 
increase our understanding of the physical behawor of 
the system which may enable us to discover suitable 
alarm mechanism for proactive fault management. 

The statistical analysis that we conducted is more 
extensive than than in either Tsao [3] or Hansen [4 

here. There is a more thorough exposition in [23]. 
The results will be presented in the following order, 
frrst summary statistics for the tupling process, fol- 
lowed by per file variable and per tuple variable 
univariate statistics and plots. The univariate statistics 
and plots were generated from all of the logs for each 
processor type unless otherwise noted. 
Summary statistics on the tupling process: The data 

reduction ratio measures the de ee of information 

three processor types. This indicates that tu ling can 
be used as a means of reducing the volume o P data that 
one has to deal with, as ointed out by Tsao [3]. The 
data reduction ratio of .% for the MTBI logs is very 
similar to the ratio of .24 given by Hansen [4] for the 
Tandem lo s. The MTBI data reduction ratio is less 
than that o%tained by Tsao [31 who t ically obtained 

KL processor logs. 
The rule 2 to rule 1 firing ratio was .18 across all 

three processor types and it indicates that rule 1 is used 
about five times more frequently than rule 2. 
Per File Univariate Statistics and Plots: The tu ling 

summary that is output for each log processed inc P udes 
a count of the number of events, tuples, rule 1, rule 2, 
rule IO (timestamps), and rule I1 (times < 1980), 
fuings per event lo . The univariate statistics, cross- 
plots and horizont3 bar charts for each of the per file 
variables were highly positively skewed. The crossplots 
are particularly effective at communicating this and 
clearly highllght the outliers in the data. There was an 
example of a crossplot in Figure 4. 

It is always prudent to examine the outliers in the 
data and hence the extreme values of each variable 
were examined to determine if they were valid or if 
they were due to errors in the data or methodology. 
The extremes were valid in each case. There were a 
variety of reasons for the extremes. For example: 

The VAX 86xx file with the highest number of 
errors also had the hi est rule 1 fuing count. 
These were due to two Bh arge bursts of errors in the 
file. One burst of approximately 3,500 errors was 
produced by an EMM (Environmental Monitor- 
mg Module) which had detected that the temper- 
ature for sensor TI  was entering the yellow zone. 
The other burst consisted of approximately 4,000 
logged MSCP messages which were recorded in a 
two hour period. The two items were not related. 

and a number of the key findings wlll be presente lil 

com ression that is produced by r ookin at tuples in- 
stea a of at raw events. It was found to %e .20 over all 

an order of magnitude reduction in YR t e data for the 
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The two most extreme VAX 6xxx error counts 
and rule 1 fuing counts per file, were tracked to 
two consecutive event logs. There were approxi- 
mately 3,650 volume mount, 3,650 volume dis- 
mount, and 11,500 logged message entries in each 
file. These were caused by a tape problem. 

The above also demonstrates that examining the 
distribution of the data and in particular the extremes 
provides a useful insight into the physical behavior of 
the system. 
Per Tuple Univariate Statistics and Plots: The infor- 

mation that is available for each tuple includes the 
tuple s an, the number of events in the tuple, the TTT 
and TET. The histograms, crossplots and univariate 
statistics show that the distribution of each of the var- 
iables is positively skewed. This is particularly true of 
the tu le span and tuple entry count distributions 
which Rave the bulk of their values on the extreme left 
and a long sparse tail on the right. The patterns are 
similar for all three types of processor. 

These results are in agreement with Tsao [3] and 
Hansen [4], where it was found that most tuples had 
a few entries and a short span. The tuple entry count 
histogram for the VAX 11/780 data in Hansen is 
nearly an exact match to the same histogram for the 
MTBI VAX 86xx data. The mean tuple entry count 
for the Tandem data in Hansen was 4.1 which falls 
within the range of values for the MTBI data, which 
was 3.82 to 5.82 entries per tuple. Tsao found that the 
majority of tuples had a single entry. The figure of 

ven for one articular fde. This is close to the 

55%, 54% and 71 YO of tuples for the VAX 86xx, 6xxx, 
and ~XXX, respectively, had only one entry. This con- 
tributes to the skew for the tuple entry count and tuple 
span variables. 

Once again the extreme values of each of the four 
variables were examined. The outliers for the tuple 
span and tuple entry count were legitimate, but the 
TTT and TBT values were wrong, as can be seen from 

values 59?40 isi@ or the MTB P data, where it was found that 

the 

e 

following examples: 
The VAX 8xxx has the largest tuple entry count 
value. This was due to a sequence of 8130 device 
errors that occurred over a three hour period. 
These events were pulled together by rule 1 and 
resulted in a high tuple span, tuple entry count, 
and rule 1 firing rate. 
The four longest tuple spans for the VAX 8xxx 
were enerated by two adjacent files, which in- 
cludecf a large number of correctable memory er- 
rors. The machine obviously had a Single Bit 
Memo Error (SBE) in a location that was being 
accessey on a regular basis. This produced a 
constant stream of SBEs over two months. The 
errors were occurring at a rate of three to four per 
hour, virtually eve hour. The errors for long 

eriods were pulle7 into one tuple by rule 2. 
h e s e  two logs produced a number of other long 
tuple spans m addition to producing the four 
longest spans for the VAX d x x x .  This problem 
was a good example of the usefulness of rule 2. 

The correct TBT and TTT range values are of the 
order of 31 da s. However, the initial extreme 

These were caused by a date from the previous 
year being in the current year's log. For example, 
a January 1987 date in a January 1988 log. These 
dates were obviously incorrect and were probably 
due to an operator entering the wrong year at the 
console when requested during system reboot. 
Thus, these extreme values were excluded from 
subsequent analyses. This is a good example of 
where an extremes analysis helped identify mcor- 
rect data. 

The extremes analysis and the high degree of vari- 
ability displayed in the aphical lots leads one to 
believe that the alarm tgeshold k r  proactive fault 
management algorithms could be set statistically. For 
example, the 99th percentile for the tuple entry count 
for the VAX 6xxx is 64, and thus an alarm would be 
raised once there were more entries in the tuple. This 
would have raised 290 entry count alarms. It should 
be noted that such a threshold rule need not be the 
only one that is used. It could be one of many rules, 
some more sophisticated and some less so. For exam- 
ple, there could be another alarm rule for the tuple 

The long tail means that the value of the 
t "K"' eshold does not have to be set precisely because a 
wide variety of values should result in a similar number 
of alarms. 

values were c s culated to be about one year. 

4.3 Discussion 
The tupling concept is correct and surprisingly ef- 

fective for its simplicity. The tuples that were formed 
are plausible groupings because they generally con- 
tained related events. 

The conce t of groupin events on a time basis, as 
is done in 1, is a goof idea. For the VAX logs it 
is sensible to group events that occur within a rela- 
tively short penod, such as a few minutes, because one 
frequently see bursts of events close in time that are 
due to the same instance of a problem. The period of 
2.8 minutes is reasonable and is similar to that used in 
other studies, such as Iyer, Rossetti and Hsueh [25], 
where events in a five minute window are coalesced. 
The fact that event interarrival time distributions are 
often skewed to the left, as was found in previous 
studies also supports a rule with a short time period. 

Rule 2 which incorporates both time and entry type 
information is also a ood idea. For example, rule 1 
would not coalesce refated SBEs that occurred at in- 
tervals of five minutes. However, the SBEs are in- 
cluded into the tuple by rule 2 because they are within 
22.5 minutes of each other, they have the same entry 
type, and they do not have any physical location in- 
formation in the form that was defined by Tsao 131 
or Hansen [4]. 

The two rules were intended to do lower level asso- 
ciations and the are effective in that regard. However, 
they are not sdcient  to pull all of the events related 
to the same problem into a single tuple. Therefore 
more rules are required to group the tuples together. 
These rules could be probabilistic in nature, such as 
those developed by Iyer, Young and Sridhar [2], or 
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they could be based upon knowledge of the processor 
architecture. 

The sensitivity study showed that the rules are rela- 
tively robust and it also enabled us to recommend en- 
hancements for the VAXlVMS logs. The main 
conclusions from the sensitivity study are that: 

The ability to ignore events whch was added by 
Hansen [4] is useful because it allows the removal 
of events which are being generated by parallel or 
backmound orocesses. For examole timestamos 
and ;vents bifore 1980 should be*ignored for the 
MTBI data. 
The results are not sensitive to changes in as 
long as a value between 1 and 180 minutes is used. 
Rule 2 is useful and should be retained, as noted 
above. For example, it coalesces the 75 percent 
of SBEs that occur within three to twenty three 
minutes of each other. 
Filtering of the event logs does not invalidate the 
tupling algorithms or the results. 
Events should not be put into separate tuples just 
because they contain location mfonnation, be- 
cause that would force many related events into 
separate tuples. 

The comparison of the results across the three types 
of processor demonstrated that the rules were equally 
effective for all three processors. The comparison em- 
ployed an evaluation of the plausibility of the tuples, 
univariate statistics, and graphical plots. The statistics 
and plots were similar overall for all three processor 
types, but there were variations. For example, the Rule 
2 to Rule 1 firing ratio was .14, .34, and .20 for the 
VAX 86xx, ~ X X X ,  and 6xxx processor types, respec- 
tively. These statistics demonstrate that Rule 2 is 
useful for all three processor types, but that it is most 
effective for the VAX 8xxx processor. 

Although no formal attempt was made to determine 
if other factors influenced the effectiveness of the rules 
we can 'speculate' about a number of parameters. 
These include software version, problem type, event 
type, and to some extent workload. The tuplin rules 
would ap ear to be equally effective across all o f  these 
because tRe MTBI data included multiple versions of 
the software, 46 event types, a variety of problem 
types, and one would assume a variety of workloads 
since the data came from 193 machines from a variety 
of sites. Although, we did not explicitly test for vari- 
ations over these variables we were not conscious of 
any 'groupings' in the results, and thus it is reasonable 
to assume that the effectiveness was not influenced by 
these factors. By effectiveness we mean that related 
events were grouped together, collisions were rare or 
non existent, and there was a substantial reduction in 
the volume of information. 

The factor that is likely to introduce the largest var- 
iation in the results is the variations in the error de- 
tection routines and event logging algorithms that are 
used by the processor. Ths  wlll change the univariate 
statistics but it will not affect the effectiveness of the 
rules, or the overall patterns, such as fact that the tuple 
variable distributions are highly positively skewed. 

5. Conclusions 
The ability to coalesce related events in an event log 

is critical for successful fault diagnosis and recovery. 
The objective of this research was to take an existing 
grouping scheme, evaluate it effectiveness, and provide 
extensions to it, if it proved to be effective. 

This was done using the tupling scheme developed 
at Carnegie-Mellon University by Tsao 31 and ex- 
tended by Hansen [4]. This research use 6 one of the 
largest and most diverse sets of actual event log data 
studied to date. The 335 machine years of data was 
collected from 193 VAXlVMS machines over a period 
of four years. 

The research included the repetition of a number of 
anal ses that were done by the previous researchers, to 
ver& the generality of the scheme, and new analyses 
to extend the results. The additional analyses included 
a comprehensive study of the effectiveness of the vari- 
ous elements of the rules; a more extensive statistical 
analyses on the tupling variables; a comparison of the 
results across three different processor ty s; and an 
effort to obtain a semantic understand& of the 
tupling rules. 

The major contributions of this research are: 
0 

e 

0 

0 
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The results prove that tupling is a useful and 
general methodology for performing lower level 
associations between events. The usefulness is 
demonstrated by the substantial reduction in the 
volume of data that had to be analyzed, and by 
the fact that the rules coalesced related events. 
The similarity of the results to those of Tsao [3] 
and Hansen [4 shows the generality of the con- 
cept. The fin d mgs are especially convincing be- 
cause the MTBI data set was substantially larger 
and more diverse than that used previously. 
It provides a semantic understanding of why the 
tupling rules work. For example, the fact that 25 
percent of events occur within one minute of each 
other 1231, explains why rule 1 is effective at 
forming tuples. The fact that SBEs are often five 
minutes apart is the reason for the effectiveness 
of rule 2. 
The different elements of the rules were evaluated 
via a comprehensive sensitivity study and en- 
hancements for the VAXJVMS logs were identi- 
fied. For example, the location clause in Rule 2 
should be dropped, and the Ignore rule should be 
used to eliminate events before 1980. 
The proposal that the extreme percentiles of the 
tuple variable distributions be used as an alarm 
threshold for proactive fault management rou- 
tines, is a new and valuable idea for tupling. The 
high degree of skew in the distributions of the 
vanables and the extremes analyses indicate that 
statistical thresholds based on the extreme 
percentiles, such as the 95th or larger, would be 
effective and robust. 
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