
Comparative Analysis of Event Tupling Schemes

Michael F. Buckley' and Daniel P. Siewiorek?

IBM Thomas J. Watson Research Center Yorktown Heights, NY 10598
tCarnegie-Mellon University, Pittsburgh, PA 15213

Abstract
Event logs provide an effective means of improving

system availability. However, the majority of faults
produce many errors because faults propagate in the
time and error detection domains. Thus, the ability to
coalesce related events is critical.

The tupling heuristics develo d at Carnegie-Mellon
University provide one suc methodology. These
heuristics were applied to a new and larger set of data
in order to evaluate the generality of the scheme and to
extend the previous work. The extensions included de-
riving a semantic understanding of why the rules work,
expanded statistical analysis, and a corn rehensive sen-
sitivity study to determine the effects oAhanges in the
rules.

The results prove that tupling is a useful and general
study enabled the iden-

to the rules, while the high de-
p e e of skew in the tuple variables enables UT to pro

~ ~ ~ e s h o l ~ for proactive fault management.
that the extreme percentiles be used as an aarm pose

'Fhe availabihty and reliability of computer systems
c m be improved by the use of event logs and System
Directed Diagnosis (SDD) techni ues [l]. However,
the "system usually detects the e#ects of the faults as
many isolated errors" [2]. This is because faults
propagate in both the time and hardware domains.
Thus, a key step in event log analysis is the coalescing,
or grouping, of related events.

There are two basic approaches to this classification
problem. One uses 'bottom up' methods, such as those
developed by Tsao [31, and Iyer, Young and Sridhar
[2] to try and combine the individual events together
mto clusters. This is analogous to region growing in
machme vision. The altemative is 'to down' decom-
position of the event log into proflems, which is
equivalent to region splitting.

The objectives of this research were two fold. The
first was to determine if the tupling heuristics would
generalize to another data set. If they were deemed
useful further work would be done to extend the pre-

vious research, so that a more comprehensive body of
knowledge could be built up on tupling. The authors
would note that this notion of building upon previous
research is not pursued frequently enough in our field.

The generality was investigated by applying the
tupling algorithms to a new, more diverse and si&-
icantly larger set of data. The event logs were collected
from 193 VAX/VMS machines over a four year pe-
riod. There were 335 machine years of data in total.
The data came from three different types of VAX

rocessor and spanned a range of sites, from manu-
Lcturing, through banks and universities, to intemd
Digital sites. A number of the analyses that were
conducted previously by Tsao [3] and Hansen [4]
were repeated for comparison purposes. The similmty
of the results across all three studies proves that tupling
is a general and useful scheme.

The extensions were in two directions, namely sta-
tistical and semantic. The statistical analyses included
additional univariate statistics and lots and analyses
of the extreme values of each varia6e. The semantic
research included an assessment of the plausibility of
the tuples and a com rehensive sensitivity study to
determine the effect o F each tupling rule and clause.
The effect of filtering events from the logs was also
considered.

These additional analyses enable us to recommend
rule enhancements for the VAX/VMS lo s, and to
propose the idea that the extreme values of the tuple
variables be used as an alarm threshold. The skewed
nature of the tuple entry count and tuple span distrib-
utions, and the extremes analysis, su est that the ex-
treme percentiles can be used as an ef P ective and robust
proactive fault management alarm threshold. For ex-
ample, the 95th or larger percentiles could be used and
they would generate approximately the same number
of alarms.

The previous work on event clustering is summa-
rized in Section 2 and the methodology used in this
research is described in Section 3. The results are
presented in section 4 and the key contributions are
summarized in Section 5 .

2. Related Research
There is a signrficant bod of literature on computer

The studies show that the majority of failures are due
to temporary faults [l l , 14, 191. This has led to the

system availability and re K iability, including [1- 181.

1 Formerly with Digital Equipment Corporation. This work was supported by Digital Equipment Corporation
and by the Office of Naval Research under contract number NOOO14-91-5-1289.

0731-3071/96 $5.00 0 1996 IEEE
Proceedings of FTCS-26

294

use of error handling and recovery methods [9 , 101
and Symptom Directed Diagnosis (SDD) techniques,
as mechanisms to improve reliability and availability.
The key to these techniques is the creation and inter-
pretation of event logs. The event monitoring process
is discussed in [6j and the foundations for Symptom
Directed Diagnosis are presented in [11.

The time-space relationship between events has
been investigated by Tsao [3] , Iyer, Young and
Sridhar [2 , and Hansen [4]. The Tupling conce t

information in the log into a hierarchical structure. A
Tuple or cluster is a group of closely related events.
Two rules were developed to coalesce the events into
tuples. The grou ing of events into tuples reduced the
number of logicapentities by a factor of twenty.

The work on tu les was extended by Hansen [4].
He compared the kerences between and among U-
rocessor and multi-processor systems. He used data

Bom thirteen VAX 11/780s and five Tandem TNS 11s.
He found that individual processors of the same type
behaved the same, whereas multiple processors in fault
tolerant systems generally exhibited different behavior.
He found that the tupling algorithms were not sensitive
to moderate variations in the clustering time. This,
supported Tsao’s sensitivity experiment. Hansen alscl
found that at least 15% of the tuples contained events
from more than one problem. Sanders [20] reports ai
similar percentage for groups contained a collection of
unrelated error records. The overlapping in Hansen
[4Lmay be due to a deficiency in the tupling algo-
nt , or to the fact that multiple problems may bt:
present in a system simultaneously.

Iyer, Young and Sridhar [2] developed a methodol-
ogy for automatically detecting symptoms of fre-
quently occurring errors. Events are combined into
clusters, which are combined to form error groups, and
eventually super events which correspond to individual
problems. The methodolo is based on probabilistic
techniques and used data g m two CYBER systems.
The analyses were later extended to an IBM system
3081 [21]. The strength of the relationshi between
events is given by the ratio of the joint progability to
the independent probability.

developed B y Tsao [3] is a method of organking t K e

3. Methodology
The results and conclusions presented here are based

on the examination of a large set of VAX event logs
that were collected over a four year period. This is the
same set of data that is discussed in [6]. The objec-
tives of that research were to develop a thorough
understanding of the data set and the event monitoririg
process, and to identify and correct any deficiencit:s
that were discovered, before proceeding with other
analyses. That exercise proved to be invaluable and
provided key insights into the data set and the moni-
toring process. This research builds upon that fowl-
dation by using the knowledge that was gained to
avoid incorrect assumptions and wrong conclusions.
The authors would encourage all analysts to be as rig-
orous and cautious in their analysis of event logs.

The VAX event log is described next and this is
followed by a description of the data set, the analysis
software, and the tupling rules used in this research.
The event logs, data sets and anal sis procedures used
by Tsao and Hansen are describelin [3] and [4].

3.1 Event Logs
The event log contains records of events as they oc-

cur on the system. The events are collected concur-
rently with normal system operation, and as such
reflect actual workload and usage. Some of the events
are informational, such as disk mounts and
timestamps, while others are related to errors or to
system shutdown and start-up.

Each event record has a header section which in-
cludes the event type, the event date and time, the
system identifier (SID), and the error sequence number
(ESN). The information recorded in the rest of the
event record varies by event type. The usefulness of
specific fields within an event type depends upon the
objective of the enquiry.

The steps in the VAX/VMS event log generation
and collection process are described in C22, 23). The
main point to remember is that the majority of faults

roduce many errors and often more than one system F ailure, because the effects may be detected by multiple
error checkers and they may repeat over time.

3.2 Data sets
The main set of data that was used consisted of

event logs collected as part of the Mean Time Between
Interruption project within Digital, and will be referred
to as the MTBI data set. The event logs were collected
by logging into each machine once a month and ex-
tracting the events for the previous month. The logs
were usually filtered, i.e. specific event types were re-
moved from the logs, before they were retrieved, to
reduce their size.

The data came from 193 machines, that spanned
three VAX processor types, and included customer
sites as well as sites internal to Digital. There were 335
machine years of data, which is an order of magnitude
more data than previous investigations [2-41, with the
exception of [IS] who used a similar amount of data.
There were 2.35 million events in total spread over 46
different event types. The machines in the sample were
running VMS versions from V4.7 to V5.2.

Tsao [3] employed ten machine years of DEC
TOPS 20 system data collected from eight machines,
while Hansen [4] used five machine years of data col-
lected from 13 VAX 11/780 systems and five Tandem
TNS I1 systems.

The MTBI event logs were supplemented by three
other sets of data. The supplementary data included
two sets of event logs, and a set of field service data,
called LARS (Labor Activity Reporting System).

3.3 Analysis Software
The Error Log Analysis Software (EoLAS) system

was developed to analyze the event logs. EoLAS is a
collection of software tools that includes commercially

295

available packages such as SAS, routines written by the
authors, and code developed by other groups within
Digital. The two main functions of the EoLAS soft-
ware were extraction and manipulation of event lo
entries, and statistical analysis. The code developef
by Hansen [4] was used to form the tuples.
template fde and the tf clusterin rules description de
that were used in this research d&er slightly from those
in Hansen [4], and are described in [23]. SAS was
used for the bulk of the statistical analyses. The ele-
ments of the EoLAS system are described in [23] and
the details of the tupling code are presented in [4].

3.4 Tupling Procedure
The intent of the tupling rules is to coalesce related

events into the same group or tuple. Tsao [3] used two
rules, whch were:

R u l e 1: I F next event within minutes (2.8)
i ncl ude t he event 1 n the tup1 e

Rule 2: I F the event does n o t s a t i s f y r u l e 1
AND It does,not con ta in physical l oca t ion information
AND i t i s within cp minutes (22.5) of t he tup le
AH0 i t s event type i s a l r eady i n the t u p l e
THEN i nc lude the event i n the t u p l e

Hansen [4] extended this methodology and added
the following rules, which were ap lied before rule 1
and rule 2. Hansen also sortet! the event logs
chronologically before applying these rules.

ABORT X0: I F Error Sequence Number not se uen t i a l
THEM ABORT the cu r ren t t u p l e an! i n o r e the

subsequent events within c1 07 the gap

IGNORE I O : Ignore time stamp e n t r i e s .

IGNORE 11: Ignore events with bogus da t e s

There is an example of three tuples in Figure 1. The
tu le header starts with the string ’TUPLE’, which is
foiowed by the tuple number (391 for the first tuple
in this example), the start date of the tuple in seconds
since 1-Jan-1960 (826534717), the number of entries
in the tuple (2 and the time span of the tuple in sec-

of text for each event in the tuple. The line contains
the error sequence number (864 for the first event in
the frst tuple), the event date (1 l-mar-1986), the event
time (08:58:37.46), the number of seconds since the
start of the tuple (0), the device location information
(not shown in Figure 1 since there was none for this
event t e), the event type (Machine Check), and the

none in t h s case).

onds (105). T h e tuple header is followed by one line

event su Yg type (not shown in Figure 1 since there was

TUPLE 391 826534717 2 105
864 ll-mar-1986 08:58:37.46 a MACHINE CHECK
865 ll-mar-1986 09:00:22.76 105 MACHINE CHECK

TUPLE 392 826538803 44 9529
872 ll-mar-1986 10:06:43.57 a MACHINE CHECK
873 ll-mar-1986 10:06:54.53 11 MACHINE CHECK

. I
g ja 11-m;;:1986 12 :4 i i i 7 .11 93bi M A C H I N ~ ’ ~ H E C K
931 ll-mar-1986 12:45:32.77 9529 MACHINE CHECK

TUPLE 393 826549795 3 558

936 ll-mar-1986 13:12:51.83 176 MACHINE CHECK
935 ll-mar-1986 13:09:55.28 a MACHINE CHECK

938 ll-mar-1986 13:19:13.01 558 MACHINE CHECK

Ideally each tuple should include all of the events
related to one instance of a particular problem. For
example, if there is a scratch on a disk surface and a
write attempt produces four disk errors, two disk con-
troller errors, and a bus error, within 2 minutes, all of
these events should be ouped together into the same
tuple. However, a SIX$ problem may have its signa-
ture spread over many tuples, because the same rob-
lem may be encountered many times, and each is Yikely
to generate a new tuple.

The three different implementations of the tupling
concept, namely Tsao [3], Hansen [4] and the present
research are similar but not identical. The differences
occur because the data set imposes some restrictions
and hence the methodology must be changed slightly,
or, more often, because of incomplete knowledge of
the previous researcher’s methodology. The main
characteristics of the three implementations are s u m -
marized in Figure 2.

The use of Hansens 41 code helped ensure con-

search. The authors did not have access to data from
Hansen [4] or Tsao [3] and thus their data could not
be compared to the MTBI data. The tuple matching
(tuple t y r formation) work that was conducted by
Tsao an by Hansen was not done in this study.

The main analyses that were conducted are as fol-
lows:

sistency between his a J ysis procedures and this re-

Tsao’s [3] and Hansen’s [4] implementations
were compared (see Figure 2).
The tuples that were formed were examined to
determine if they were plausible, that is, were the
majority of the events in the tuples related or were
the groupings random. This was done for all logs
for all three processor types.
An extensive sensitivity study was conducted to
determine the effect and contribution of the vari-
ous rules and clauses to the tupling process. This
would show if modifications were needed for the
MTBI logs. The effects of filtering were also con-
sidered because the majority of the MTBI logs
were filtered.

The effect of changes in c1 was investigated by
Tsao [3] and by Hansen [4]. The methodology
used in this research for the c1 sensitivity study is
very similar to the one used by Tsao. Each of the
other input variations was evaluated by doing a
pair wise comparison, one with the rule or clause
m use and one without the rule or clause. The
sensitivity study is based on data from one par-
ticular VAX 86xx machine (named VI), with the
exception of the cl analysis where addtional data
was used from two other machines. The proce-
dure is described in detail in Buckley [23].
Univariate statistics, histograms and cross lots
were generated for the per file variables an CY the
tuple variables. These were generated from all of
the logs and the results were compared across the
three processor types.

Fieure 1: ExamDle of Droblem being aread over multhle h r ~ l e ~ I

296

Characteristic ~ Tsao (1983)
WO* Done

Tuple formation I yes
Tuple t y p formaton I Yes
Univariale statlstlcs
Dstributon type
Correlatlon analysis
i SensnNny study
Elfed of rule changes ~ No

I 10

i No Yes, On KL

Code Used , Tsao 1983
Machine Years of data
Processor types

Ruk 1
Rule 2

Other Rules
Abon Rule
Ignore OM entries
Ignore Tmestamps
Logs sorted
Extremes eliminated

Jansen 1988

,Yes
Yes
,Yes
No
INo
,Yes on Tandem
IN0
IHansen 1988

IVAX 111780
[Tandem TNS II

15

Bucklev 1992

Yes
No
Yes
Yes
Yes
Yes onVAX
Yes

'Hansen 1988
1336
I VAX 8€m
IVAX 6m

I VAX 8XxX

1 and &;<22 5 min /and no location info 1 and intuple(VAX)
I and inluple(KL) land imuple(subheld) I

'Yes Yes
'Yes before 1960

No
No
Not applicable 'Yes Yes
Unknuun Yes Yes

Yes before 1980

droptuple I droptuple ~ droptuple
I ,TTT, TBT >99999

I I dropped

Figure 2: Comparison of tupling implementations

4. Results and Discussion
The work that was done can be split into two majc

sections. The objective of the first portion of the
tup- research was to develo a semantic under-
standing of the tupling rules. &s included a review
of the previous implementations, an evaluation of the
plausibility of the tu les that were formed and an in-

d e s . These items are discussed next and &e second
sub-section provides statistical information about the
tuples. This is followed by general comments and
concluding remarks.

vestigation of the e # ects of various chan es in the

4.1 Semantics
The bulk of the semantic work focused upon the

usefulness and a propriateness of the different rules,

are presented here. These are preceded by an expla-
nation of how the tuples were evaluated for correct-
ness.

ssible to objectively measure

and a number o P the key findings from Buckley [23]

the effectiveness of t r e tupling algorithms because
Plausibility: It is not

there are few absolutely right or
events in the log can be looked
ious ways depending upon the
sis. Human diagnosticlans try different associations
based upon their current FRU (Field Replaceable
Unit) theory [24].

Nevertheless, it was possible to examine the tuples
which were formed and deem them reasonable or not.
Hundreds of tuples were exammed for the various an-
alyses that were conducted over the course of the re-
search and the tuples which were formed were
reasonable in all cases. That is the tuples contained
groups of related events. It was also clear that the
tupling algorithms were not able to associate all of the
events that belong to a given problem into one tuple
in all instances. Streams of associated events were
sometimes spread over many tuples, as shown in Fig-

ure 1 where events from the same problem are spread
over three tuples. In fact, the tuples in Figure 1 only
cover a portion of the problem whch actually spanned
a three month period. Thus, the problem was spread
over more tuples than shown in Figure 1.

The example in Figure 1 su ests that rules are re-

take events with exactly the same syndrome or whch
are very close in time and group them together. The
next level would look for associations between these
groups and pull all the events which belong to the
same instance of a problem into the same group. T h s
would continue through higher levels until all the
events which were due to the same problem were

ouped together. The probabilistic scheme developed 6 Iyer, Young and Sndhar [2] is a good example of
such a rule hierarchy. The assumption that is made
here when evaluating the correctness of the tupling is
that the rules are intended to be lower-level ones. It is
assumed that rule 1 is at the lowest level and that rule
2 is at the next level. Hence, the concept of trun-
cations, as defined by Hansen [4 would not be useful

may be spread over many tuples.
There are some examples of typical tuples in Figure

3. The last tuple in the figure, tuple number 34, is a
good example of correct association of events. The
tuple starts with a reboot message, which is followed
b 13 disk mounts and the tuple ends with a
SLDERR message. This tuple could be referred to
as the "power up" tuple type because this is the stand-
ard sequence of events after a reboot on this machine.
This can be seen from the cross plot in Figure 4. The
majority of the tuple entry counts are 15 and these are
mainly due to the "power up" tuple.

quired at a number of levels. T % e lowest level would

in this case because we expect t 1 at a single problem

TUPLE 28 893145424 1 0
206 20-a r 1988 07:57:04.43
TUPLE 29 - 893203552 1 0
304 21-apr-1988 00:05:52.91
TUPLE 30 893285337 1 0
441 21-a r-1988 22.48'57.05
TUPLE 3P 8 9 3 3 6 4 3 6 '1 Q
544 22-apr-1988 15:47:16.59
TUPLE 32 893363526 i a
573 22-a r-1988 2 0 - 3 2 - 0 6 91
TUPLE 3! 893369322 '10' 51
584 22-apr-1988 22:08:42.86
585 22-apr-1988 22:08:46.97
586 22-apr-1988 22:08:48.84
587 22-apr-1988 22:08:50.61
588 22-anr-1988 22:08:55.06 .~~
589
590
591
592
593
TUPl
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

ZZ-apr- is88
22-apr-1988
22-apr-1988
22-apr-1988
22-apr-1988

.E 34 893
23-apr-1988
23-apr-1988
23-apr-1988
23-apr-1988
23-apr-1988
23-apr-1988
23-apr-1988
23-apr-1988
23-apr-1988
23-apr-1988
23-apr-1988
23-apr-1988
23-apr-1988
23-apr-1988
23-apr-1988

22: 08: 56.31
22: 08: 58. 06
22:08:59.50
22: 09: 80.17
22:09:33.01

397754 15 182
06: 0 2 3 4 . 3 9
06:02:41.11
06: Q3:ZE. 09
06:03:27.59
06: 03:40.56
06:03:48.00
06:03:56.38
06: 04: 84.99
06: 04: 14.11
06:04:22.29
06:04:37.74
06:04:45.75
06: 05: 00.31
U6:05:13.20
06:05:36.54

0

a
0

0

0

0
4
6
8

13
14
16
I 7
18
51

0
7

46
53
66
74
82
90

100
108
123
131
146
159
182

HSCOlSOUAl:

HStQlSOUA13:

HSCQlSOUA7:

HSCQlSOUA7:

HSCQlfDUA7:

OUAQ:
OUA1:
OUAZ:
OUA3:
DUA5:
OUA6:
OUA7:
DUA8:
OUA10:
OUA12:
DUA13:
OUA14:
OUA15:

ERLSLOGMESSAGE

ERLSLOGMESSAGE

ERLSLOGMESSAGE

ERLSLOGMESSAGE

ERLSLOGMESSAGE

OISMOUHT VOLUM
DISMOUNT VOLUM
OISMOUNT VOLUM
OISMOUWT VOLUM
DISMOUNT VOLUM
OISMOUWT VOLUM
OISMOUWT VOLUM
OISMOUNT VOLUM
DISMOUNT VOLUM
FATAL EUGCHECK

SYSTEM STARTUP
MOUHT VOLUME
MOUNT VOLUME
MOUNT VOLUME
MOUNT VOLUME
MOUNT VOLUME
MOUIIT VOLUME
MOUNT VOLUME
MOUNT VOLUME
MOUNT VOLUME
MOUNT VOLUME
MOUIT VOLUME
MOUNT VOLUME
MOUNT VOLUME
SNOERR MESSAGE

Figure 3: Example of typical tuples.

There is a corresponding "power down" tuple type
that is less well defined. The "power down" tuple con-

297

400 i I

0 100 2 0 0 100 400 500 600 7 0 0 800 900 1000 1100 12001300

Tuple Number

Figure 4: Cross plot of tuple entry count for fde Vf

sists of a variable number of disk dismounts and is of-
ten terminated by a crash message. The second to last
tuple (number 33) in Figure 3 is an example of the
"power down" tuple. The number of &sk dismounts
and the presence of the crash message are variable be-
cause the shutdown se uence may be terminated by

crash. There were many tuples for file Vf with between
eight and twelve entries and the majority of these were
due to the "power down" tuple. The "power up" and
"power down" tuples were discovered because the ap-
arent "horizontal line" at the 15 entry count mark in

Figure 4 aroused our interest, The patterns exlubited
in this plot are typical of those obtained for other var-
iables and other machines.

Although, no formal attempt was made to quantify
the number of collisions they were rare and our esti-
mate would be that they occurred in less than 1% of
cases. This estimate is based upon the hundreds of
tuples that were reviewed over the course of the re-
search. The term collisions is being used here in the
sense defied by Hansen which is "a collision occurs
when the reports generated by two different faults
overlap and are identified as a single tuple" [4]. How-
ever, one would occasionally encounter a tuple which
included one or a few housekeeping events along with
the errors from a single fault.
Effkct of changes in Rule 1 clustering time: The rule

1 clustering time, c1, was varied to determine if it had
a major impact on the results. This is similar to the c1
sensitivity studies that were done by Tsao and Hansen.
Two evaluated the chan es in the number of tuples,

t, between 11 and 5400 seconds. l k s research used a
broader range of rl values and the changes in the
number of tuples, tuple entry count, tuple span, Time
Between Tuples (TBT), Time To Tu le (TTT), and
number of rule 1 firings, were observek:

The procedure was applied to three different event
lo s. The logs were selected so that the total number
ofevents in each was similar to the total number of
events in the two files that were used by Tsao [3] .
Rule 2 was not used in the sensitivity study because it
was not used in the sensitivity study in Tsao. Thus, the
procedure used here is very similar to Tsao's.

the operator, or the pro % lem may cause an immediate

the tuple entry count an d the tuple span for values of

The effects of the changes in c 1 were evaluated using
univariate statistics, box plots and log-log plots for
each variable. The results show that the tuple param-
eters, with the exception of the tuple span, are insen-
sitive to changes in cl over a wide range of values. The
tuple span changes hearly with c1. The other vari-
ables change an order of magnitude slower than c l .
These results agree with the conclusions in Tsao [3]
and Hansen [4].

There is an example of one of the log-log plots in
Figure 5. n s plot shows how the the tuple entry
count varies with c1, and the plots for the other vari-
ables and files are very similar.

There is a pronounced 'knee' in the tuple count,
TTT and entry count log-log plots at the 180 minute
mark. A less severe change can be seen in the TBT and
tuple span plots at the same oint. The change at the
180 mmute mark is due to c&€erent groups of events
being pulled into the one tuple. Thus, it can be con-
jectured that a value of el less than 180 minutes co-
alesces events from the same instance of a fault into
one tuple, while leaving the different instances in sep-
arate tuples. However, the different groups of events,
or instances of a fault, are pulled into the Same tuple
once cl exceeds 180 minutes.

There is a less obvious change in the slope of all of
the variables at the .35 minute point. These two fea-
tures su est that the performance of rule 1 is not af-
fected aTong as c1 is kept within the .35 to 180 minute
range, and thus a value m this range should be used for
rule 1. The results in Hansen for the tuple count also
suggest that there is a major change in the sensitivity
at a proximately the 1 minute mark, which is similar
to tEe .35 minutes found here.

The reason for the lack of sensitivity to changes in
el is that the tu le span is small relative to TTT and
TBT. That is tge case because events tend to occur
close together in bursts or not at all. Thus, a relatively
short t u p h g time wdl be sufficient to coalesce the
events wthin a burst. A much longer tu ling time is
required before the bursts are pulled togetker.
Effectiveness of Rule 2 The intent of rule 2, as stated

in Tsao [3], is to pull non hardware events that do not
satisfy rule 1 into the current tuple, if they are within
22.5 minutes (cZ) of the current tuple and are of the
sane type as an event that is already in the tu le. This
rule is conceptually a pealing and proved to !e effec-
tive for the MTBI Lgs because there were related
events in the log that were often missed by rule 1. The
Single Bit Memory Errors (SBEs) are a good example
of such events.

The SBE entries in the VAX logs are usually more
than 2.8 minutes (cl) apart. In fact it was found that
75% of SBEs occurred within three to twenty three
minutes of each other. These would be coalesced by
rule 2 but not by rule 1. There is an example of rule 2
pulling SBEs into a tuple, which are missed by rule 1,
m Figure 6. The top portion of the figure shows part
of a tuple that is formed when rule 2 is used. The lower
part of the figure shows that many tuples are formed
when rule 2 is not used.

298

I ''I

180 Minutes t

I Fimre 5: Loe-Lop: d o t of mean tuple entry count vs e1 I

R U L E 2 U S E D : SBEs coalesced in to one tuple.

TUPLE
15523
15524
15526
15527
15529

1 agr1067276 51 20296
1-may-1988 00:01:16.47 0
1-may-1988 00:06:38.85 322
1-may-1988 aa:11:41.36 625
i-my-iga8 oa:i6:41.41 925
I-may-1988 88:21:41.28 1225

CORRECTABLE
CORRECTABLE
CORRECTABLE
CORRECTABLE
CORRECTABLE

MEMORY
MEMORY
MEMORY
MEMORY
MEMORY

ERROR
ERROR
ERROR
ERROR
ERROR

RULE 2 NOT USED: SBEs are spread over w n y tuples.

TUPLE
15523
TUPLE
15524
TUPLE
15526
TUPLE
15527
TUPLE
15529
TUPLE

CORRECTABLE MEMORY ERROR

CORRECTABLE MEMORY ERROR

CORRECTABLE MEMORY ERROR

CORRECTABLE MEMORY ERROR

CORRECTABLE MEMORY ERROR

.
Figure 6: Example of Rule 2 coalacing SBEs into one tuple.

The summary statistics show that rule 2 was used
84,731 times over all the lo s. This is 18% of the rule:
1 firing rate and sign;fi.ant?y hi er than the rate r e

were classified using rule 1. Thus, it can be concludecl
that rule 2 is useful and should be retained.

Effect of filtered event logs: The majority of the
MTBI logs had the device and volume entries filtered
out. Therefore, the Vf log was filtered and the results
compared to the unfiltered log to determine if there
was a sigdicant difference between the two, and to sele
if the tuples that were formed were plausible.

Althoup the results will depend on the event types
that are dtered out, one would expect that filtering
will produce fewer and smaller (shorter span and lower
tuple entry count) tuples, because there are less events
to start with. The tuples would be. further apart (longer
TTT and TBT) because the elapsed time is a constant.
The expectations were borne out by the univariate
statistics. There are major differences in the statistics
for filtered and unfiitered logs.

The tuples in the filtered logs were examined and
found to be correct. There were a few instances where
a pair of crash/reboot messages that had been in the
same tuple in the unfidtered log were in different tuplr:s
in the filtered logs. This occurred because intervening
entries that were filtered out had acted as 'binding'
events in the unfiltered case. That is, the elapsed time

ported by Tsao [3] who found t !i? at 95% of the event:;

between the crash and the reboot was greater than cI ,
but there were intervening entries in the unfiltered logs
such that no gap was greater than c1.

Thus, the tupling methodology can be applied di-
rectly to filtered logs. The flexibility of the Hansen
[4] implementation allows one to implement new fil-
tering rules easily and quickly.
Tupling Algorithm Modifications The results thus far

have shown that the tupling rules proposed by Tsao
[3] are effective on another set of data and that the
tuples that are formed are reasonable. This is not to
say that the rules cannot be improved or tailored to a
particular data set. This sub-section provides one ex-
ample of how the rules can be improved, via the addi-
tion of the IGNORE rule proposed by Hansen, and
one example where modification of the rules improves
effectiveness. There are additional recommendations
for improving the rules for VAX/VMS logs in [23].

The tupling implementation in Hansen [4] ignored
events that occurred before 1-Jan-1960. The idea is to
screen out what are probably bo dates. The MTBI
logs have bogus dates that must r d e a l t with and this
is a reasonable approach. The 1-Jan-1980 was used
as the cutoff because the bogus date entries in the
MTBI logs have 1978 dates. Although, using
1-Jan-1980 instead of 1-Jan-1960 is a minor change it
had a major impact on some of the per tuple univariate
statistics. The statistics showed that the TTT and TBT
mean and range changed si&icantly by using a cutoff
of 1980 instead of 1960. For example, the mean TTT
changed by one order of magnitude and the TTT range
changed by more than two orders of magnitude.

Thus, the ability to ignore specific events is a useful
adhtion. However, this exam le also shows that the
rules may need to be modified for the data set at hand.
The use of location information to keep events in
separate tuples provides another example of where the
rules should be modified to improve their effectiveness.

There is a clause in rule 2 in Tsao [3] and Hansen
[4] which forces the formation of a new tuple if the
event under consideration contains any location infor-
mation. The ori ' al motivation for the clause
stemmed from a be% that most logged errors would
be detected by hardware (hence location infonnation
would be present) and be ropagated to be detected
by software (no location inpormation). Thus, the oc-
currence of a roblem would tend to produce a hard-
ware error witg location information which would be
close1 followed by a series of software errors that
wouldlnot have any location information. The intent
of tupling was that it was to be a level 1 (lowest level)
grouping technique. Thus, different problems or in-
stances of a problem should be kept separate and this
could be done by forcing a new tuple if there was lo-
cation information present.

Although, this may have been a valid hypothesis for
the KL processor logs, it is not suitable for the VAX
architecture, because events that are related will be
forced into separate tuples just because. they contain
location mformation. Thus for example, SBEs would
be forced into separate tuples, even if they had the
same syndrome. This suggests that the clause should

299

not be used, or at least that it should be modiiied such
that a new tuple is formed only if the location infor-
mation is different.

The effects of this clause were examined by con-
ducting a tupling analysis with and without the clause.
The expectation is that forcing a new tuple because of
the presence of location information will cause the
TTT, TBT, tuple span and entry count to decrease,
since more tuples should be formed from the same
number of events and elapsed time.

The univariate statistics show that the results are as
expected. The mean and median TTT, TBT and tuple
span decrease and the mean ent count decreases. The
median entry count is unchanger There are 33% more
tuples formed when the location clause is used and rule
2 is satisfied and order of magnitude less often.

The tuples for both cases were examined to deter-
mine whch were the most reasonable. There were
many instances where related events were forced into
separate tu les because they contained location infor-
mation. TEere is an example in Figure 7. This shows
a sequence of related ERL$LOGMESSAGE entries,
some of which are more than c1 minutes apart, being
split into two tuples because they contain location in-
formation. The events in tuple number 43 in the lower
part of Figure 7 (no location clause) are split into two
tuples, namely tuple numbers 70 and 71 in the upper
half of the figure when the location clause is used.

~

LOCATION CLAUSE USED: Four tuples are formed

TUPLE
1274
1275
TUPLE
1278
1279
TUPLE
1280
1281
1282
1283
1284
1285
1286
1287
TUPLE
1289

Q
83

Q
Q

0
0
Q
Q
21
21
21
21

0

MUAO:
MUAQ:

HSCQ MUAQ.
HSCQIMUAO;

MUAQ:

OISMOUMT VOLUM
MOUNT VOLUME

ERL LOGMESSAGE
E R L b i M E S S A G E

DISMOUNT VOLUM
LOCATION CLAUSE NOT USED: Three tuples formed
TUPLE
1274
1275
TUPLE
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
TUPLE
1289

42 893734791 2 83
27-apr-1988 Q3:39:51.66
27-apr-1988 03:41:14.68
43 893735726 10 288
27-apr-1988 Q3:55:26.33
27-apr-1988 03:55:26.35
27-apr-1988 03:59:53.19
27-apr-1988 03:59:53.20
27-apr-1988 03:59:53.48
27-apr-1988 03:59:53.50
27-apr-1988 Q4:00:14.57
27-apr-1988 Q4:QO:14.58
27-apr-1988 Q4:QQ:14.64
27-apr-1988 04:00:14.65
44 893736484 24 1852
27-apr-1988 04:08:04.41

0
83

0
Q

267
267
267
267
288
288
288
288

0

MUAQ:
MUAQ:

MUAQ:

DISMOUNT VOLUM
MOUNT VOLUME

DISMOUNT VOLUM
Figure 7: Example of the location clause in rule 2 forcing

related events into separate tuples

The conclusion is that forcin events into separate

is inap ropriate for the VAX logs. The clause should
be moxfied such that new tu les are only formed if the
location information is d' lff erent, or preferably the
clause should be dropped.

tuples because of the presence o f location information

4.2 Statistics
The research included the computation and evalu-

ation of a large variety of univariate statistics and lots.
These statistics allowed us to compare our res s ts to
previous research and they provided insight into the
usefulness and behavior of the tupling rules. They also
increase our understanding of the physical behawor of
the system which may enable us to discover suitable
alarm mechanism for proactive fault management.

The statistical analysis that we conducted is more
extensive than than in either Tsao [3] or Hansen [4

here. There is a more thorough exposition in [23].
The results will be presented in the following order,
frrst summary statistics for the tupling process, fol-
lowed by per file variable and per tuple variable
univariate statistics and plots. The univariate statistics
and plots were generated from all of the logs for each
processor type unless otherwise noted.
Summary statistics on the tupling process: The data

reduction ratio measures the de ee of information

three processor types. This indicates that tu ling can
be used as a means of reducing the volume o P data that
one has to deal with, as ointed out by Tsao [3]. The
data reduction ratio of .% for the MTBI logs is very
similar to the ratio of .24 given by Hansen [4] for the
Tandem lo s. The MTBI data reduction ratio is less
than that o%tained by Tsao [31 who t ically obtained

KL processor logs.
The rule 2 to rule 1 firing ratio was .18 across all

three processor types and it indicates that rule 1 is used
about five times more frequently than rule 2.
Per File Univariate Statistics and Plots: The tu ling

summary that is output for each log processed inc P udes
a count of the number of events, tuples, rule 1, rule 2,
rule IO (timestamps), and rule I1 (times < 1980),
fuings per event lo . The univariate statistics, cross-
plots and horizont3 bar charts for each of the per file
variables were highly positively skewed. The crossplots
are particularly effective at communicating this and
clearly highllght the outliers in the data. There was an
example of a crossplot in Figure 4.

It is always prudent to examine the outliers in the
data and hence the extreme values of each variable
were examined to determine if they were valid or if
they were due to errors in the data or methodology.
The extremes were valid in each case. There were a
variety of reasons for the extremes. For example:

The VAX 86xx file with the highest number of
errors also had the hi est rule 1 fuing count.
These were due to two Bh arge bursts of errors in the
file. One burst of approximately 3,500 errors was
produced by an EMM (Environmental Monitor-
mg Module) which had detected that the temper-
ature for sensor TI was entering the yellow zone.
The other burst consisted of approximately 4,000
logged MSCP messages which were recorded in a
two hour period. The two items were not related.

and a number of the key findings wlll be presente lil

com ression that is produced by r ookin at tuples in-
stea a of at raw events. It was found to %e .20 over all

an order of magnitude reduction in YR t e data for the

300

The two most extreme VAX 6xxx error counts
and rule 1 fuing counts per file, were tracked to
two consecutive event logs. There were approxi-
mately 3,650 volume mount, 3,650 volume dis-
mount, and 11,500 logged message entries in each
file. These were caused by a tape problem.

The above also demonstrates that examining the
distribution of the data and in particular the extremes
provides a useful insight into the physical behavior of
the system.
Per Tuple Univariate Statistics and Plots: The infor-

mation that is available for each tuple includes the
tuple s an, the number of events in the tuple, the TTT
and TET. The histograms, crossplots and univariate
statistics show that the distribution of each of the var-
iables is positively skewed. This is particularly true of
the tu le span and tuple entry count distributions
which Rave the bulk of their values on the extreme left
and a long sparse tail on the right. The patterns are
similar for all three types of processor.

These results are in agreement with Tsao [3] and
Hansen [4], where it was found that most tuples had
a few entries and a short span. The tuple entry count
histogram for the VAX 11/780 data in Hansen is
nearly an exact match to the same histogram for the
MTBI VAX 86xx data. The mean tuple entry count
for the Tandem data in Hansen was 4.1 which falls
within the range of values for the MTBI data, which
was 3.82 to 5.82 entries per tuple. Tsao found that the
majority of tuples had a single entry. The figure of

ven for one articular fde. This is close to the

55%, 54% and 71 YO of tuples for the VAX 86xx, 6xxx,
and ~XXX, respectively, had only one entry. This con-
tributes to the skew for the tuple entry count and tuple
span variables.

Once again the extreme values of each of the four
variables were examined. The outliers for the tuple
span and tuple entry count were legitimate, but the
TTT and TBT values were wrong, as can be seen from

values 59?40 isi@ or the MTB P data, where it was found that

the

e

following examples:
The VAX 8xxx has the largest tuple entry count
value. This was due to a sequence of 8130 device
errors that occurred over a three hour period.
These events were pulled together by rule 1 and
resulted in a high tuple span, tuple entry count,
and rule 1 firing rate.
The four longest tuple spans for the VAX 8xxx
were enerated by two adjacent files, which in-
cludecf a large number of correctable memory er-
rors. The machine obviously had a Single Bit
Memo Error (SBE) in a location that was being
accessey on a regular basis. This produced a
constant stream of SBEs over two months. The
errors were occurring at a rate of three to four per
hour, virtually eve hour. The errors for long

eriods were pulle7 into one tuple by rule 2.
h e s e two logs produced a number of other long
tuple spans m addition to producing the four
longest spans for the VAX d x x x . This problem
was a good example of the usefulness of rule 2.

The correct TBT and TTT range values are of the
order of 31 da s. However, the initial extreme

These were caused by a date from the previous
year being in the current year's log. For example,
a January 1987 date in a January 1988 log. These
dates were obviously incorrect and were probably
due to an operator entering the wrong year at the
console when requested during system reboot.
Thus, these extreme values were excluded from
subsequent analyses. This is a good example of
where an extremes analysis helped identify mcor-
rect data.

The extremes analysis and the high degree of vari-
ability displayed in the aphical lots leads one to
believe that the alarm tgeshold k r proactive fault
management algorithms could be set statistically. For
example, the 99th percentile for the tuple entry count
for the VAX 6xxx is 64, and thus an alarm would be
raised once there were more entries in the tuple. This
would have raised 290 entry count alarms. It should
be noted that such a threshold rule need not be the
only one that is used. It could be one of many rules,
some more sophisticated and some less so. For exam-
ple, there could be another alarm rule for the tuple

The long tail means that the value of the
t "K"' eshold does not have to be set precisely because a
wide variety of values should result in a similar number
of alarms.

values were c s culated to be about one year.

4.3 Discussion
The tupling concept is correct and surprisingly ef-

fective for its simplicity. The tuples that were formed
are plausible groupings because they generally con-
tained related events.

The conce t of groupin events on a time basis, as
is done in 1, is a goof idea. For the VAX logs it
is sensible to group events that occur within a rela-
tively short penod, such as a few minutes, because one
frequently see bursts of events close in time that are
due to the same instance of a problem. The period of
2.8 minutes is reasonable and is similar to that used in
other studies, such as Iyer, Rossetti and Hsueh [25],
where events in a five minute window are coalesced.
The fact that event interarrival time distributions are
often skewed to the left, as was found in previous
studies also supports a rule with a short time period.

Rule 2 which incorporates both time and entry type
information is also a ood idea. For example, rule 1
would not coalesce refated SBEs that occurred at in-
tervals of five minutes. However, the SBEs are in-
cluded into the tuple by rule 2 because they are within
22.5 minutes of each other, they have the same entry
type, and they do not have any physical location in-
formation in the form that was defined by Tsao 131
or Hansen [4].

The two rules were intended to do lower level asso-
ciations and the are effective in that regard. However,
they are not sdcient to pull all of the events related
to the same problem into a single tuple. Therefore
more rules are required to group the tuples together.
These rules could be probabilistic in nature, such as
those developed by Iyer, Young and Sridhar [2], or

301

they could be based upon knowledge of the processor
architecture.

The sensitivity study showed that the rules are rela-
tively robust and it also enabled us to recommend en-
hancements for the VAXlVMS logs. The main
conclusions from the sensitivity study are that:

The ability to ignore events whch was added by
Hansen [4] is useful because it allows the removal
of events which are being generated by parallel or
backmound orocesses. For examole timestamos
and ;vents bifore 1980 should be*ignored for the
MTBI data.
The results are not sensitive to changes in as
long as a value between 1 and 180 minutes is used.
Rule 2 is useful and should be retained, as noted
above. For example, it coalesces the 75 percent
of SBEs that occur within three to twenty three
minutes of each other.
Filtering of the event logs does not invalidate the
tupling algorithms or the results.
Events should not be put into separate tuples just
because they contain location mfonnation, be-
cause that would force many related events into
separate tuples.

The comparison of the results across the three types
of processor demonstrated that the rules were equally
effective for all three processors. The comparison em-
ployed an evaluation of the plausibility of the tuples,
univariate statistics, and graphical plots. The statistics
and plots were similar overall for all three processor
types, but there were variations. For example, the Rule
2 to Rule 1 firing ratio was .14, .34, and .20 for the
VAX 86xx, ~ X X X , and 6xxx processor types, respec-
tively. These statistics demonstrate that Rule 2 is
useful for all three processor types, but that it is most
effective for the VAX 8xxx processor.

Although no formal attempt was made to determine
if other factors influenced the effectiveness of the rules
we can 'speculate' about a number of parameters.
These include software version, problem type, event
type, and to some extent workload. The tuplin rules
would ap ear to be equally effective across all o f these
because tRe MTBI data included multiple versions of
the software, 46 event types, a variety of problem
types, and one would assume a variety of workloads
since the data came from 193 machines from a variety
of sites. Although, we did not explicitly test for vari-
ations over these variables we were not conscious of
any 'groupings' in the results, and thus it is reasonable
to assume that the effectiveness was not influenced by
these factors. By effectiveness we mean that related
events were grouped together, collisions were rare or
non existent, and there was a substantial reduction in
the volume of information.

The factor that is likely to introduce the largest var-
iation in the results is the variations in the error de-
tection routines and event logging algorithms that are
used by the processor. Ths wlll change the univariate
statistics but it will not affect the effectiveness of the
rules, or the overall patterns, such as fact that the tuple
variable distributions are highly positively skewed.

5. Conclusions
The ability to coalesce related events in an event log

is critical for successful fault diagnosis and recovery.
The objective of this research was to take an existing
grouping scheme, evaluate it effectiveness, and provide
extensions to it, if it proved to be effective.

This was done using the tupling scheme developed
at Carnegie-Mellon University by Tsao 31 and ex-
tended by Hansen [4]. This research use 6 one of the
largest and most diverse sets of actual event log data
studied to date. The 335 machine years of data was
collected from 193 VAXlVMS machines over a period
of four years.

The research included the repetition of a number of
anal ses that were done by the previous researchers, to
ver& the generality of the scheme, and new analyses
to extend the results. The additional analyses included
a comprehensive study of the effectiveness of the vari-
ous elements of the rules; a more extensive statistical
analyses on the tupling variables; a comparison of the
results across three different processor ty s; and an
effort to obtain a semantic understand& of the
tupling rules.

The major contributions of this research are:
0

e

0

0

302

The results prove that tupling is a useful and
general methodology for performing lower level
associations between events. The usefulness is
demonstrated by the substantial reduction in the
volume of data that had to be analyzed, and by
the fact that the rules coalesced related events.
The similarity of the results to those of Tsao [3]
and Hansen [4 shows the generality of the con-
cept. The fin d mgs are especially convincing be-
cause the MTBI data set was substantially larger
and more diverse than that used previously.
It provides a semantic understanding of why the
tupling rules work. For example, the fact that 25
percent of events occur within one minute of each
other 1231, explains why rule 1 is effective at
forming tuples. The fact that SBEs are often five
minutes apart is the reason for the effectiveness
of rule 2.
The different elements of the rules were evaluated
via a comprehensive sensitivity study and en-
hancements for the VAXJVMS logs were identi-
fied. For example, the location clause in Rule 2
should be dropped, and the Ignore rule should be
used to eliminate events before 1980.
The proposal that the extreme percentiles of the
tuple variable distributions be used as an alarm
threshold for proactive fault management rou-
tines, is a new and valuable idea for tupling. The
high degree of skew in the distributions of the
vanables and the extremes analyses indicate that
statistical thresholds based on the extreme
percentiles, such as the 95th or larger, would be
effective and robust.

Acknowledgments
We are grateful to Digital Equipment Corporation

for funding this research and are indebted to a host of
people at Digital who provided invaluable insight and

idance, along with access to data and facilities.
Rese include: Rick Howe, Tom Weyant, Mike
Robey, Ted Gent, Anne Wein, Pat Moran, Peter Can,
Des Farren and John Arroyo. We are also grateful to
Prof. Roy Maxion and Prof. John Shen for contribut-
mg man valuable ideas to the research, and to Jeff
Hansen &r roviding his tu ling code. We would also
like to t h d the referees g r their comments which
helped clarify and improve this paper.

References
c11

c21

c31

c41

c51

C6l

c71

C81

c91

Cl01

J.P. Shebell, “Symptom Directed Diagnosis Foun-
dations and Practices,” Proc. IEEE Int. Confi on
Computer Design, pp. 290-293, 1985.

R.K. Iyer, L.T. Young and V. Sridhar, “Recogni-
tion of Error Symptoms in Large Systems,” Proc.
of the Fall Joint Computer Conf., Dallas, TX,
November 1986.

M.M. Tsao, “Trend Analysis and Fault
Prediction,” Ph. D. Thesis, Carnegie-MeNon Uni-
versity, Pittsburgh, PA., 1983.

J. Hansen, “Trend Analysis a2d Modeling of
UniiMulti-Processor Event Logs, Masters Thesis,
Carnegie-Mellon University, Pittsburgh, PA, 1988.

D.M. Andrews and E.J. McCluskey, “Final Re-
port, The Measurement and Modeling of Com-
puter Reliability as Affected by System Activity,”
CRC Technical Report, No. 85-18, Stanford Uni-
versity, Stanford, CA, 1985.

M.F. Buckley and D.P. Siewiorek, “VAX/VMS
Event Monitoring and Analysis,” Proc. 25th In{ .
Symp. on Fault-Tolerant Computing (FTCS 25;,
1995.

M. Sullivan and R. Chillarege, “Software Defects
and their Impact on System Availability - a study
of Field Failures in Operating Systems,” Proc. 21st
Int. Symp. on Fault-Tolerant Computing (FTCS
21), pp. 2-9, 1991.

R. Chillarege and D. P. Siewiorek, “Special Issue
on Experimental Evaluation of Computer System
Reliability,” IEEE Trans. Reliability, vol. 39, no.
4, 1990.

N.N. Tendolkar and R.L. Swann, “Automated
Diagnostic Methodology for the IBM 3081
Processor Complex,” IBM Journal of Research
and Development, no. 26, pp. 78-88, January 1982.

D.C. Bossen and M.Y. Hsiao, “Model for Tran-
sient and Permanent Error-Detection and Fault-
Isolation Coverage,” IBM Journal Research and
Development, no. 26, pp. 67-77, January 1982.

R.K. Iyer and D.J. Rossetti, “A Statistical Loa:
Dependency Model for CPU Errors at SLAG,
Proc. 12th Ina. Symp. on Fault-Tolerant Comput-
ing (FTCS 12), 1982.

T.T. Lin, “Design and Eva1uati:n of an On-line
Predictive Diagnostic System, Ph. D. Thesis,
Carnegie-Mellon University, Pittsburgh, PA., 1988.

R.A. Maxion and F.E. Feather, “A Case Study of
Ethernet Anomalies in a Distributed Computing
Environment,” IEEE Trans. Reliability, vol. 39,
no. 4, pp. 433-443, 1990.

S.R. McConnel, D.P. Siewiorek and M.M. Tsao,
“Transient Error Data Analysis,” Technical Re-
port, CS Dept.,Carnegie- Mellon University,
Pittsburgh, PA, 1979.

P. Moran, P. $affney, J. Melody, M. Condon and
M. Hayden, System Availability Monitoring,”
IEEE Trans. Reliability, vol. 39, no. 4, pp.

D. Tang and R.K. Iyer, “Dependability Measure-
ment and Modeling of a Multicomputer System,”
ZEEE Trans. on Computers, vol. 42, no. I , pp.
62-75, January 1993.

M.M. Tsao and D.P. Siewiorek, “Trend Analysis
on System Error Files,” Proc. 13th Znt. Symp. on
Fault-Tolerant Computing (FTCS 13), 1983.

AS. Wein and A. Sathaye, “Validating Complex
Computer System Availability Models,” ZEEE
Trans. Reliability, vol. 39, no. 4, pp. 468-4152,
1990.

Y.K. Malaiya and S.Y.H. Su, “A Survey of
Methods for Intermittent Fault Analysis,” Proc.
of the 1979 National Computer Conference, 1979.

D. Sanders, “Automatic detection of error patterns
in computer systems,” Masters Thesis, University
of Illinois at Urbana Champaign, 1986.

R.K. Iyer, L.T. Young and P.V.K. Iyer, “Auto-
matic Recognition of Intermittent Failures: An
Experimental Study of Field Data,” IEEE Trans.
on Computers, vol. 39, no. 4, pp. 525-537, April
1990.

L. J. Kenah, R. E. Goldenberg and S. F. Bate,
“VAXjlrMS Internals and Data Structures,’”
Digital Press, Bedford, MA. , 1992.

M.F. Buckley, “Computer Event Monitoring and
Analysis,” Ph. D. Thesis, Carnegie-Mellon Univer-
sity, Pittsburgh, PA, 1992.

R.A. Maxion, “Human and Machine Diagnosis
of Computer Hardware Faults,” ZEEE Computer
Society Workshop on Reliability of Local Area
Networks, South Padre Island, TX, February
1992.

R.K. Iyer, D.J. Rossetti and M.C. Hsueh, “Meas-
urement and Modeling of Computer Reliability as
affected by System Activity,” CRC Technical Re-
porr, No. 85-21, Stanford University, Stanford,
CA, 1985.

480-485, 1990.

303

