

Strong Partitioning Protocol for a Multiprocessor VME System

 Mohamed F. Younis, Jeffrey X. Zhou
AlliedSignal Inc.

 Advanced System Technology Group
9140 Old Annapolis Road/MD 108

 Columbia, MD 21045, USA
younis | zhou@batc.allied.com

Mohamed Aboutabl
University of Maryland, College Park

Department of Computer Science
College Park, MD 20742, USA

aboutabl@cs.umd.edu

Abstract
The trend in implementing today’s embedded applications
is toward the use of commercial-off-the-shelf open
architecture. Reducing costs and facilitating systems
integration are among the motives for that trend. The use
of the VME bus becomes very common in many industrial
applications. The VME bus attracts developers with its
rigorous specifications, multiprocessing support and
boards availability through multiple vendors. However,
VME bus standard supports multiprocessing through
shared memory, which does not impose strong function
partitioning and allows fault propagation from one board
to another. Such weakness limits the use of the VME bus
in highly critical applications such as avionics. This
paper presents techniques for strong partitioning of
multiprocessor applications that maintains fault
containment on the VME bus. The suggested techniques
do not require any modification in the standard and the
existing boards, and consequently maintains the plug-
and-play advantage of the VME bus hardware products.
The techniques are equally applicable to other tightly
coupled multiprocessor systems. In addition, the paper
describes the implementation of these techniques and
reports performance results. Finally, the benefits of this
technology for a space vehicle and commercial avionics
are discussed.

1. Introduction

Nowadays, the use of digital computer systems
becomes very common in mission critical applications
such as flight control and vehicle management systems.
In such applications, it is essential not only to ensure
correct semantics but also to provide fault tolerance
capabilities. Often proprietary design is used in
implementing such applications. Recently both the
vendors and consumers have realized that the proprietary
approach is very expensive and substantially increases
time-to-market. In addition, proprietary design does not

provide flexibility to upgrade the system and to adopt
new technology. Consequently, the use of open
architecture and commercial-of-the-shelf (COTS)
components is the trend in developing embedded mission
critical applications. COTS-based approach maintains
cost advantages and facilitates system upgrade. However,
COTS components are usually developed without
considering fault-tolerance. The challenge is to develop
fault resilient COTS-based design without the need to
redesign the components, thus keeping the cost
advantage. This paper presents techniques that we used
to tackle some of these challenges to build a VME-based
fault tolerant architecture for avionics.

This section presents the motivation of our work and
why the VME bus has been considered. In addition, an
overview of the VME bus operation is provided,
highlighting potential fault containment issues.

1.1 Motivation

Advancements in technology have enabled the
avionics industry to develop new design concepts, which
results in highly integrated software-controlled digital
avionics. The new approach, referred to as Integrated
Modular Avionics (IMA), introduces methods which can
achieve high levels of reusability and cost effectiveness
compared to earlier implementations of avionics [1]. The
IMA approach encourages partitioning and using
standardized modules in building environmental and
functional components of avionics. While integration
enables resource sharing, some boundaries need to be
imposed to maintain system predictability and to prevent
bringing down the whole system because of a failure of a
single function. An IMA system is called strongly
partitioned if the boundaries between the integrated
functions are clearly defined so that a faulty function
cannot cause a failure in any other function. Strong
functional partitioning facilitates integration, validation
and FAA certification. Following the IMA guidelines,
the cost of both development and maintenance is

expected to decrease because of mass production of the
building blocks, lower levels of spares, and reduced
certification costs.

The backplane bus is one of the most important
components in integrated modular avionics. While many
backplane buses have been proposed, only a few are
actually used. Selecting a backplane bus is influenced by
many design and engineering factors, such as
performance, reliability, and fault tolerance. Although
such issues are very important to ensure certain level of
safety of commercial jet aircraft and high availability of
military aircraft, the cost of the bus and associated line
replaceable modules is a major concern.

Most of the currently available dependable
backplane bus systems, such as ARINC 659 [2], are
expensive and supplied by very few vendors. It is clear
that there is a need for an affordable bus system that
provides the required levels of dependability and
complies with the IMA design methodology. The goal of
this study is to show how to enhance functionality and
overcome inefficiencies in commonly used and widely
manufactured low-cost buses to make them suitable for
avionics. The VME bus system [3] is a prime candidate
because it is both rigorously defined and widely
supported. In addition, there is an expanding selection of
VME bus boards and vendors that guarantee competitive
prices and continuous support. Moreover, the VME bus
offers an open architecture that facilitates the integration
of multiple vendors’ boards. Such a feature makes the
VME bus an attractive choice for integrated avionics on
high visibility projects such as the Venture Star space
launch vehicle, supported by NASA for its 21st century
space missions [18].

However, the VME bus architecture does not
impose strong functional partitioning and allows fault
propagation from one board to another, as we discuss in
Section 1.4. For example, a faulty board can perform a
wild-write, which corrupts the shared memory area and
disturbs the computation on other boards [10]. Fault
containment is very crucial for the integrated
environment to guarantee that a faulty component may
not cause other components to fail and risk generating a
total system failure. Considering avionics, a failure in the
entertainment system must not negatively influence flight
critical control systems such as the flight manager.
Lacking the capability of fault containment limits the use
of the VME bus in mission-critical integrated system.
This paper presents techniques for strong partitioning of
multiprocessor applications that maintain fault

containment on the VME bus. The suggested techniques
do not require any modification in the standard and
utilize the existing features1 of the VME boards, and
consequently maintain the plug-and-play advantage of
the VME bus hardware products. It should be noted that,
although the VME bus lacks other capabilities to be fault
tolerant [8], this paper focuses on preventing fault
propagation over the bus. The next section presents our
fault model.

1.2 Fault Model

Strong partitioning implies that any erroneous
behavior of a faulty component will not affect other
healthy components without detecting the error. This
erroneous behavior can be the result of a hardware or
software fault regardless the nature (generic, accidental
or intentional) and the duration (permanent, transient or
intermittent) of that fault. A healthy system component
needs to become aware of the faulty component only if
they communicate to perform certain function. An
attempt by the faulty component to corrupt other system
components should not succeed. Other system
components, that communicate with the faulty
component, need to be aware of the error and perform
recovery according to the nature of the application. We
assume that there are application-specific semantic
checks that verify the validity of the communicated data.

We assume that the system is not liable to Byzantine
faults, i.e. all faults manifest themselves into errors,
which are detectable in the same way by all the other
healthy modules. In this paper, bus failure due to either
bus damage, stuck control lines or the failure of bus
arbiter are not addressed. Only faults in modules and the
data transmission are considered. In addition, this paper
focuses only on fault containment, in the sense of [11],
without addressing system-level recovery of the faulty
component. Fault containment implies that the damage
caused to an application by a fault is proportional to the
amount of resources needed by the application, not to the
total amount of system resources [10].

Before illustrating the fault-tolerance deficiencies of
the VME bus, with respect to the fault model presented
above, the next section provides an overview of the bus
operation.

1 Assuming that the VME board is equipped with a memory
management unit to control read and write access to local memory

1.3 An Overview of The VME bus

The VME bus allows multiprocessing,
expandability, adaptability for many different designs
and processors. It handles data transfer rates in excess of
40 Mbytes/sec using parallel data transfer. The VME bus
is asynchronous and non-multiplexed. Because it is
asynchronous no clocks are used to coordinate data
transfer. Data is passed between modules (boards) using
interlocked handshaking signals where the slowest
module participating in the cycle sets cycle speed. Using
asynchronous protocol in the VME bus provides
reasonable capabilities to integrate products from various
vendors.

The VME bus provides support for multiprocessing
using shared memory. To avoid inconsistency while
updating shared memory, read-modify-write bus cycles
are used. The read-modify-write cycle allows updating
shared memory as an atomic transaction and prevents
race conditions. Master-slave architecture is used in the
VME bus. Modules can be designed to act as masters,
slaves or both. Before a master can transfer data it must
first acquire the bus using a central arbiter.

Although the VME bus does provide reasonable
compatibility to integrate products from various vendors,
fast parallel data transfer, and a wide support by many
manufactures, fault tolerance in VME bus based systems
is very limited. The next section discusses error detection
mechanisms in the VME bus and elaborates on
weaknesses in fault containment.

1.4 Fault Propagation Over the VME bus

The VME bus relies on all connected modules for
detecting and reporting faults on a specific failure control
line. VME bus modules are expected to have on-board
firmware diagnostics to detect faults. The VME bus
master (sender) monitors the time for data transfer. If the
slave (receiver) does not acknowledge the message, the
master times out data transfer and retransmits. The bus
provides neither error detection nor correction for the
transferred data. There is no redundancy in either the
transmission lines or the transferred data on the bus.

Generally, the built-in-test and transmission timing-
out provide limited fault coverage. In the absence of
message verification, faults can manifest errors that
affect healthy modules which is a problem called fault
propagation from one module to others. Faults cannot be
contained within the faulty module and can jeopardize
the behavior of the complete system. In addition, the
shared model does not prevent a wild-write by a faulty
module, which can corrupt the memory of other healthy
module [10].

From the former discussion we can conclude that the
VME bus needs enhancements to strengthen its fault
tolerance capabilities, specifically in containing faults
and recovery from failure. In this paper we focus on fault
containment. The following issues need to be addressed
in order to improve the fault containment in a VME bus
system:

1. Validating the inter-module data transfer to detect
transmission errors over the VME bus.

2. Preventing fault propagation from one module to
others through the use of shared memory.

The next section provides a discussion of our

approach to address these issues.

2. Fault Containment Techniques

Because low cost is an important feature of the
VME bus, enhancing the fault containment capabilities
should avoid changing the design and the layout of the
currently available boards. Changing the design of a
VME board will not only require reengineering and
revalidation which increases the manufacturing cost, but
also will again limit the number of vendors who agree to
do the modifications. Thus, the suggested approach
should be constrained by preserving the current hardware
design of the boards as much as possible.

As illustrated in the previous section, fault
containment on the VME bus needs to be added. In the
following subsections, our approach is discussed.

2.1 Inter-module Data Transfer

The VME bus features parallel data transfer between
modules. There are no error detection or correction bits
associated with the transmitted data. Adding such bits
will significantly affect the VME board’s design and,
therefore, is not an option. As an alternate approach, an
error detection code, e.g. cyclic redundancy check, can
be appended to the end of the data. A data transmission
module within the operating system kernel can generate
this error detection code. Although the software-
generated error detection code is less efficient than the
hardware-based implementation, no board redesign is
necessary using the software approach. For higher
dependability, an error correction code can be appended.
Because that error detection/correction code will reduce
the efficiency of the data transfer on the bus and
consequently the performance, it may be possible
through the kernel to dynamically select either to append
error detection or error correction code according to the
length of the transmitted data. The receiver module

should validate the data using the error
detection/correction code before committing that
received data.

Using such information redundancy within the
transferred data fits the multiprocessing scheme
proposed in the next subsection.

2.2 Strongly Partitioned Multiprocessing

Strong partitioning of modules is one of the most
important IMA requirements, which the VME bus lacks.
Multiprocessing in the VME bus uses a shared memory
mechanism that allows faults in one module to cause
errors in other non-faulty modules by writing to their
memories. We suggest the use of a message passing
mechanism instead. The challenge is to support message-
based inter-module communications using the available
features provided by the VME boards and still detect
errors and prevent fault propagation. Although the shared
memory model is convenient for programmers, grouping
data is a very common practice to enhance the system
throughput. Thus, the use of massage passing will not
introduce difficulties that affect the system
implementation. In addition, techniques such as [13],
[14] and [17] can be used to support the shared memory
paradigm if necessary.

To support messages, a buffer is to be declared and
dedicated to messages. A message buffer is the only
globally accessible memory by other modules. In
addition, access to a message buffer is restricted to read-
only for modules that do not own that buffer. No board is
supposed to write to the memory of other boards. If a
master wants to send data to a slave, it writes a message
into the master’s message buffer. The slave then reads
that message from the master memory and reacts to it.
Defining a read-only VME global address window is a
very common feature on VME boards.

A fault-tolerant message format can be imposed that
contains the sender ID, receiver ID, error detection or
correction code, and a message unique ID (if necessary).
The sender should perform error detection and correction
encoding. The receiver will check the contents of the
message before reacting to it. The receiver can detect
addressing errors in the message by verifying the sender
ID and receiver ID. In addition, transmission errors can
be detected or recovered using the information
redundancy in the form of the error detection or
correction code in the message.

Execution synchronization of the application tasks
can be achieved either; by polling the message buffer of
the sender for the required message, or by notifying the
receiver by generating an interrupt2 as soon as a message
is being written by the sender in the designated address.
The message ID can be useful to overcome race
conditions if the receiver tried to read the message before
it is ready which may be possible if the VME bus has a
higher priority than the local bus. The message buffer
can be partitioned for various boards and receivers can
expect a unique location for their messages. The adopted
application execution-synchronization mechanism is a
designer decision.

Using this technique, errors in the sender can be
isolated and prevented from propagating to the receiver
because no write permission will be granted for a board
to the memory of others. Errors in the message can be
either in data, sender ID, receiver ID, Message ID, or
message format. The receiver should be able to detect
errors in the message body by validating the message
format, error detection code, sender ID and the receiver
ID. The message ID can be checked to guarantee the
right message sequence (It may require knowledge of the
application semantics). Any error in the message
detected by the receiver will invalidate the entire
message and a recovery action will be taken. An
addressing fault in the receiver that may get it to read
from the wrong board or the wrong address within the
right board will invalidate the message format and/or the
sender ID. Furthermore, the mapping of message buffers
on the boards within the global address space of the
VME system can be orchestrated so that an addressing
error can not change a valid global address into another
valid address. Maintaining a suitable hamming distance
can guard the system against permanent or transient
stuck failure of one or more address bits. Thus, the
system will be functionally partitioned. Faults can be
within the faulty module and will not affect other
modules.

The following section addresses the implementation
issues of such techniques in the currently available VME
boards without imposing hardware changes.

2.3 Applicability of the Approach

As we discussed earlier, enhancing the fault
containment capabilities and the support for strong
functional partitioning on the VME bus should not

2 Can be implemented by using the address-monitoring feature
provided by the VME bus.

impose significant modifications to both the hardware
manufacture and the application developer. Imposing
significant changes may diminish the cost-effectiveness
of the VME bus and may limit the number of vendors
who adapt the modifications. This section presents the
feasibility of the techniques illustrated in the previous
section. After conducting a market survey, we found that
the VMEchip2 [4], from Motorola, and the SVC64 [5],
from Tundra, are the most commonly used VME bus
interface chips on VME boards. We studied the
applicability of these techniques in VME boards that use
these interface chips.

Considering both interface chips, the strong
partitioning protocol can be totally implemented in
software. In fact, it is possible to use commercial-off-the-
shelf (COTS) operating systems by extending the kernel
service to include message handling. In addition, the
generation and validation of the error detection code
within the message can be included in the message
handler. Thus, the applicability of the fault containment
techniques depends on the feasibility of partitioning local
memory and mapping the message buffer within the
VME global address space.

Both the VMEchip2 and SVC64 provide capabilities
for software configurable global addressing of the on-
board memory of a module. There are software
configurable map decoders that can be used to control
the global addressing of the VME boards’ local memory.
Such a feature allows restricting addresses used by the
other boards and any wrong addressing will return an
error. Furthermore, both chips allow the programmer to
restrict access, by other boards in the system, to this local
memory to read-only. Thus, a faulty board cannot
corrupt the memory of other healthy boards.

To prevent the possibility of other boards reading by
mistake from the wrong board, one may use different
combinations for the most significant bits for the VME
address of each board so that the hamming distance will
be more than 1 bit. Thus, we can guarantee that boards
cannot read from the wrong board unless there is more
than one transmission error. Given that the number of
boards is limited (maximum 22 according to the IEEE
standard [3]), it is possible to achieve a distance of at
least 8 bits among board addresses and to isolate up to 8
simultaneous error. Reading from a non-existing board
will be timed out by the VME bus and can be detected.
Errors in the least significant 16 bits of the address can
be detected by validating the messages. Reading from a
different location within the sender message buffer will
contain neither the right format nor the correct message
semantic.

The strong partitioning protocol has been
implemented and tested on boards that use the SVC64

chip. The next section provides details about the
implementation and test environment.

3. Implementation and Test Environment

A proof-of-concept prototype has been built using
COTS components, Figure 1. The prototype includes a
VME backplane that hosts six VME-171 PowerPC 80
MHz processor boards from DY4 Systems. VxWorks, a
real-time operating system from WindRiver Systems, is
installed and integrated with the hardware. The strong
partitioning inter-processor communication protocol has
been implemented and integrated within VxWorks.
Testing and fault injection experiments have been
performed. In addition, the performance of
multiprocessing communication using the protocol is
measured. This section illustrates the implementation of
the strong partitioning protocol in this test environment
and describes the results of the experiments of fault
injection and performance measurements.

3.1 Protocol Implementation

In a single processor system, tasks may establish
communication among each other through the use of
message queues. A message queue is an abstraction of a
unidirectional channel (The choice of this abstraction is
due to the fact that VxWorks applies the same
technique), and is typically identified by a “queue ID” or
QID. Two communicating tasks use the same QID to
exchange messages, Figure 2. The delivery of the
messages is handled by the Inter-Task Communication
(ITC) Service (typically part of the operating system
library functions) which may maintain several message

Figure 1: A proof-of-concept demonstration prototype

queues depending on how many communication channels
are open. The ITC Service takes care of synchronization
issues such as the mutually exclusive access to the
message queue.

In order to achieve fault containment within a faulty

board, the inter-processor communication (IPC) over a
VME backplane is to follow the protocol presented in
Section 2. Across board communication is to be
accomplished through message queues that need to be
allocated in a globally addressable read-only memory
buffer where the sender will leave outgoing messages for
other processor boards, or simply processors, to read.
Although a separate queue for every pair of
communicating tasks can be allocated, managing the
message buffer becomes complicated if tasks are created
dynamically. The message buffer usually cannot grow
dynamically and there will be a potential that the system
runs out of free memory space within the message buffer.
Instead, queues are allocated to communicating boards.
For each (sender, receiver) permutation of processor
boards, there is a processor queue which is created
within the global portion of the sender’s main memory to
hold any messages sent to that specific receiver by any
task running on the sender board. Receivers have read-
only privilege on the message queues owned by other
processors. Figure 3 illustrates the implementation of the
protocol.

An IPC daemon is in charge of maintaining these
queues. The IPC daemon is an independent task created
by the system at initialization to handle inter-processor
communication. When, say, task A on processor 1 needs
to send a message to task B on processor 2, it contacts
the local ITC service on processor 1, which recognizes
that the target queue belongs to an external processor.
Therefore, the message is inserted in the IPC daemon
queue. The IPC daemon on processor 1 processes the
buffered message by appending it to the processor queue
associated with processor 2. Processor 2’s IPC daemon
is then notified that it has a message waiting inside
processor 1. This kind of notification takes the form of
generating a location monitor interrupt on the recipient

board. The location monitor interrupt routine sends a
message to the IPC daemon announcing that there is a
message ready for delivery at processor board 1. The
IPC daemon on processor 2 fetches the message from
board 1 and notifies the IPC of processor 1 after
successful completion. At that time, the IPC daemon of
processor 1 deletes the message from its processor
queue. Meanwhile, the IPC on processor 2 delivers the
message to the ITC, which finally stores the message in
the message queue, connected to Task B (This is a
regular message queue maintained by the operating
system, VxWorks in our implementation). The
notification of successful message delivery takes the
form of writing the message ID in a pre-defined location
on the receiver VME-mapped memory to acknowledge
the receipt of the message. The sender daemon polls for
the message acknowledgement until the receiver writes
the message ID.

T a sk A T a sk B

IT C S e rv ice

M e ssag e q ue ue

Figure 2: Inter-task communication Service

IPC daemon

Task A Task C

Processor
queue(1,2)

send
to B

Processor 1

IPC daemon

Msg queue

Processor
queue(2,1)

send
to D

VMEbus

Task D Task B

ITC Service ITC Service

Processor 2Daemon queue

Processor
queue(1,3)

To processor 3

Location Monitor

Hit

Figure 3: Implementation of the Strong Partitioning
Protocol

It is worth noting that the ITC on each processor still
handles local inter-task communication. It only contacts
the IPC if the target receiver is on a different processor.
Consequently, the inter-processor communication service
is transparent to the system developer. However, a
system configuration needs to be read by each board
before starting the IPC daemon to resolve queue
addresses and the VME global memory map. We should
also note that even though there may be multiple
communication sessions established between any two
processors, there are only two processor queues carrying
the communication; one queue for each direction. The
sizes of the daemon queue and the processor queues
depend on the amount of available memory and the
expected communication traffic density. Moreover the
IPC service, in the current implementation, has been

added as a library service and the IPC daemon was
defined as a high priority user-task since the source code
of VxWorks was not available. However, the protocol
can be completely integrated within the operating system
by defining the IPC daemon as a system-task and
augmenting the library of system calls with the IPC
library functions.

3.2 Fault injection Experiment

Several fault injection experiments were conducted
to demonstrate the resiliency of the strong partitioning
protocol. A test application was developed for a client-
server application. The server continuously accepts
messages with requests to perform arithmetic and logic
operations. The client sends requests with two operands
and an operation. The server handles the request and
sends a message back with the result. All communication
between the server and the client follow the strong
partitioning protocol. A third board has been designated
as a faulty board whose erroneous behavior interferes
with the server and the client. The following three fault
injection experiments were run:

Experiment 1 – Disruption

While the client and the server are communicating, the
faulty board sends bogus messages to both boards
attempting to disrupt the communication. Both the
client and the server acknowledge receipt of the bogus
data by displaying the warning message “Invalid
sender and/or receiver ID in msg.”, as shown in Figure
4. This experiment demonstrates the protocol ability to
detect erroneous messages and to protect healthy
boards from bogus traffic on the VME bus. Using

shared memory; the faulty board would have easily
corrupted the shared memory area without
demonstrating odd behavior that other boards can
detect as an error.

Figure 4: Resiliency to disruption

Figure 5: Detection of corrupted messages

Experiment 2 – Corruption

While the client and server are communicating, the
faulty board sends a formatted (but corrupted) message
to the server. The server detects the receipt of a
corrupted message by validating the error detection
code (CRC) and displays the error message “Invalid
CRC in message”, as shown in Figure 5.

E

Figure 6: Protected memory experiment
xperiment 3 – Protection

While the client and server are communicating, the
faulty board attempts to access protected memory on

both server and client boards. The attempted access of
protected memory generates a VME bus error on the
offending board, as shown in Figure 6. The client and
the server continue their operation without
interruption.

In addition to the above experiments a VME

extender board has been used to allow the emulation of
stuck faults in the data and address lines of the VME bus.
A series of experiments were performed to test the
resiliency of the protocol against stuck faults. The results
of the experiments clearly showed the robustness of the
protocol and its capabilities in preventing fault
propagation.

3.3 Performance Analysis

To measure the performance of the protocol, we
used a tool for monitoring embedded application, called
“WindView”, from WindRiver Systems. Using
WindView a set of events can be defined. Programs are
instrumented during compilation to time-stamp these
events by inserting calls to some library functions.
During the execution the marked event as well the time-
stamps are stored as a RAM-file. WindView can be
executed afterward to visualize the sequence of events
and display the time stamps. Using WindView, one can
achieve a time resolution of a microsecond with a
maximum of 4% intrusion (due to the overhead needed
for time stamping). To measure the performance of the
protocol, we instrumented the client-server application
discussed above. Since the application programs are
running on separate boards without clock
synchronization, we time-stamped events on each board
independently and measured the elapsed time between
events. Since both the server and client programs are
running on exactly similar boards, we did not need to
perform any calibration for the speed of the processors.
The end-to-end delivery time for messages of length of
256 bytes has been measured. An information
redundancy (sender ID, receiver ID, etc.) of 32 bytes is
included in the massage. Table 1 shows the time needed
to perform each step. It should be noted that the values
reported in Table 1 are the average of 50 independent
readings. The end-to-end message delivery time is 302.3
µ sec (209.9 + 92.4).

We performed two additional experiments to
compare the performance of the protocol with other
mechanisms. In the first experiment we performed a
memory write of 256 bytes from one board to the other
using assembly instruction. The time for writing 256
bytes was measure using a logic analyzer and found to be
144 µ sec. This value is consistent with the message

transfer time measured by WindView in Table 1, noting
that the actual size of data transfer is larger by 32 bytes.
This experiment provided an upper bound for the bus
transfer rate and validated the accuracy of the
measurements obtained using WindView. It should be
noted that this upper bound could be only achieved using
assembly code. Today’s embedded applications are so
complex that assembly programming can no longer be
used in developing these applications. Support for
multiprocessing and inter-process communication is
always needed from an operating system.

The second experiment considered the operating
system overhead to maintain mutual exclusive access to
shared data. The client-server application has been
rewritten using VxMP, which is a multiprocessor
extension of VxWorks. VxMP provides an abstraction of
shared memory so that applications can refer to the
shared object by name. VxMP only resolves the
addresses for the programmer without maintaining
mutual exclusion for accessing the shared memory
relying on hardware support for that. Obviously VxMP
provides only shared memory management without fault
containment. Table 2 shows the performance results for
sharing 256 bytes data. It should be noted that VxMP
requires the shared memory to be physically located on
only one board. Thus transferring data between boards
usually requires two bus transmissions; first the sender
writes to the shared memory, the second transmission
occurs when the receiver reads that data from the shared
memory. The end-to-end time for sending 256 byte using
VxMP is 433 µ sec (217.6 + 215.4). Comparing the two
tables, it is clear that the protocol not only maintains
fault containment with reasonable performance penalty
but it also out-performs other multiprocessor support
tools currently available in the market.

Action Description Duration
in µµµµsec

Receive One Message
 Handle location monitor interrupt 37.6
 Fetch message across the VME bus 170.0
 Validate and acknowledge message 2.3

Total for receive 209.9
Send One Message
 Get message from daemon queue 49.1
 Put message in processor queue 42.1
 Notify receiver 1.2

Total for Send 92.4
Table 1: Performance measurements for the

partitioning protocol

It should be noted that the current implementation of

the protocol is to prove the concept. There are many
opportunities for optimization, which significantly
enhance the performance. In addition, we noticed that
significant performance improvement could be achieved
if multiple messages are sent or received in one cycle of
the IPC daemon. Since most of the advanced processors,
such as the PowerPC, have instructions cache, the
daemon code is usually fetched to this cache upon
activation of the daemon. Thus, the first send or receive
operation always suffers a cache miss. We observed
about 35% improvement in the message handling, not
including the time for data transfer over the VME bus,
after the first sending or receiving activity. Moreover,
the strong partitioning protocol proved to be very useful
in debugging and system integration since it defines clear
boundaries that facilitate detection of programming
errors.

Action Description Duration
in µµµµsec

Receive One Message
 Handle location monitor interrupt 30.4
 Read message across the VME bus 187.2

Total for receive 217.6
Send One Message
 Put message into shared memory 213.4
 Notify receiver 2.0

Total for Send 215.4

Table 2: Performance measurements for VxMP

4. Related Work

This paper proposes a mechanism, which is fully
implementable in software and integrable with the
operating system, to support message passing on shared
memory multiprocessor architecture. On the contrary,
there is plenty of work on supporting shared memory on
a loosely coupled system, which is referred to as
distributed shared virtual memory [7]. Examples of this
include the TreadMarks system [13] and Mirage [17]. A
survey for different approaches can be found in [14]. To
support recovery from a failure on distributed shared
virtual memory system; a checkpointing mechanism is
often introduced [15][16]. During normal fault-free
operation, snapshots of the system state (registers and
memory contents) are stored in a repository to assist the
applications recover from a failure. The reader is

referred [6] to for a survey of various recovery
techniques and strategies.

Achieving fault containment in shared memory
multiprocessor systems has been the subject of intense
study at the Computer System laboratory at Stanford for
the FLASH multiprocessor architecture [9],[10] and
[11]. The approach taken is to partition the
multiprocessors into cells. Every cell controls a portion
of the hardware and shared resources. A cell may include
one or multiple processors. Each cell runs an
independent multiprocessor operating system. A
hardware solution has been suggested to protect a cell
from a wild-write by any faulty cell. The operating
system continuously runs across-cell checks for failure
detection and a distributed recovery routine needs to be
executed upon the detection of a fault. Our approach is
different in that we rely on the memory management unit
to protect boards from wild-write since we cannot
introduce any hardware change. We prevent across-
board writing and consequently restrict inter-processor
communication only to massage passing and do not
support memory sharing. However, we do not see that as
a drawback since virtual memory is usually not
recommended in mission critical real-time applications
due to its negative impact on system predictability [12].
In addition, our fault detection is quite simple. We rely
on timing out messages, a feature, which is built in the
VME bus interface logic. Furthermore, the strong
partitioning protocol, presented above, is easy to
implement and integrate with COTS single processor
operating systems.

5. Conclusion

In this paper, it has been shown that the VME bus
can be strongly partitioned with fault isolation
capabilities that prevent fault propagation to healthy
boards. A multiprocessor message passing
communication protocol has been presented. The
message passing protocol provides fault containment
over the bus. Messages can be verified with respect to
sender and receiver IDs as well as the message ID. In
addition, information redundancy in the form of error
detection and correction code can be provided within the
message to verify data transmission over the bus.

The strong partitioning protocol has been
implemented in software without imposing any hardware
modifications. A proof-of-concept prototype has been
built, in which the strong partitioning protocol has been
integrated with COTS real-time operating system. The
protocol has been added as an operating system service,
which is transparent to programmers. The fault injection

experiments demonstrated the efficiency of the approach
in fault containment.

Although the increased data transfer due to message
overhead and information redundancy will affect the
performance of the VME bus, it has been shown that the
burden on the bus bandwidth is limited. Clearly the
longer the data size within the message, the more
efficient the strong partitioning protocol. In the future,
we would like to extend our approach to provide support
for programs that use the shared memory paradigm in
order to facilitate the integration of legacy code.

The technology presented in this paper is crucial for
multiple space and avionics programs within
AlliedSignal, Inc. The vehicle management computer
(VMC) for an unmanned space shuttle is currently under
development. The VMC integrates multiple mission
critical control modules such as mission manager, flight
control and vehicle subsystems manager with other less
critical modules within a VME cabinet. It is extremely
important to contain any fault within the faulty module
and protect other modules in the system. The integration
of utility control system is another project that benefits
from this technology. The goal is to integrate multiple
utility control units, which are currently federated on the
aircraft, into one cabinet. Utility controls such as electric
power system, cabinet pressure and bleed air system are
regarded as medium-criticality control functions on the
aircraft. However, integrating multiple utility control
modules makes the integrated unit highly critical since it
may affect the safety of the flight. The strong partitioning
protocol is to be used for handling inter-module
communication to prevent fault propagation and protect
the system from a complete failure when one module
fails.

Acknowledgement

 Thanks are due to Billy He, Eric Burton, Tim Steele
and Chris Dailey for their help in the implementation.
The authors are also indebted to Dr. Yang-Hang Lee, Dr.
Dar-Tzeng Peng and members of the reliable systems
group at AlliedSignal for their constructive critiques.

References

[1] “Design Guide for Integrated Modular Avionics”, ARINC

report 651, Published by Aeronautical Radio Inc.,
Annapolis, MD, November 1991.

[2] “Backplane Data Bus”, ARINC Specification 659,

Published by Aeronautical Radio Inc., Annapolis, MD,
December 1993.

[3] “IEEE Standard for a Versatile Backplane Bus: VME

bus”, std 1014-1987, Published by The Institute of

Electrical and Electronics Engineers, New York, NY,
March 1988.

[4] “Motorola MVME162LX Embedded Controller

Programmer's Reference Guide”, Motorola, Inc.
Computer Group, Tempe, Arizona.

[5] “Tundra Universe SCV64 Trooper II VME bus Interface

Component Manual”, Tundra, Kanata, Ontario, Canada.

[6] C. Morin and L. Puaut, “A Survey of Recoverable

Distribute Shared Virtual Memory Systems”, IEEE
Transactions on Parallel and Distributed Systems, Vol. 8,
No 9, pp. 959-969, September 1997.

[7] K. Li and P. Hudak, “Memory Coherence in Shared

Virtual Memory Systems”, ACM Transactions on
computer Systems, Vol. 7, pp. 321-357, November 1989.

[8] M. Younis and J. Zhou, “A VME-based Fault Tolerant

Architecture”, Technical Report, AlliedSignal, Inc., 1997.

[9] D. Teodosiu, et al., “Hardware fault Containment in

Scalable Shared-Memory Multiprocessors”, in the
Proceedings of the 24th ACM International Symposium on
Computer Architecture (ISCA-24), pp. 73-84, June 1997.

[10] J. Chapin, et al., “Hive: Fault Containment for Shared-

Memory Multiprocessors”, in the Proceedings of the 15th
ACM Symposium on Operating Systems Principles
(SOSP-15), pp. 15-25, December 1995.

[11] M. Rosenblum, et al., “Implementing efficient fault

containment for multiprocessors: confining faults in a
shared-memory multiprocessor environment”,
Communications of the ACM, 39(9), pp. 52-61,
September 1996.

[12] W. Halang and A. Stoyenko, Constructing Predictable

Real-Time Systems. Boston-Dordrecht-London: Kluwer
Academic Publishers, 1991.

[13] C. Amza, et al. “TreadMarks: Shared Memory Computing

on Networks of Workstations”, IEEE Computer, Vol. 29,
No 2, pp. 18-28, February 1996.

[14] M. Stumm and S. Zhou, “Algorithms Implementing

Distributed Shared Memory”, IEEE Computer, Vol. 23,
No. 5, pp. 54-64, May 1990.

[15] B. Fleisch, “Reliable Distributed Shared memory”, in the

Proceedings of the 2nd Workshop on Experimental
Distributed Systems, pp. 102-105, 1990.

[16] M. Stumm and S. Zhou, “Fault Tolerant Distributed

Shared Memory Algorithms”, in the Proceedings of the
2nd IEEE Symposium on Parallel and Distributed
Processing, pp. 719-724, December 1990.

[17] B. Fleisch and G. Popek, “Mirage: A Coherent

Distributed Shared Memory Design”, in the Proceedings
of the 12th ACM Symposium on Operating Systems
Principles, published in Operating Systems Review 23(5)
Special Issue, pp. 211-223, December 1989.

[18] J. Keller, “Avionics innovation marks new space shuttle”,

Military & Aerospace Electronics, pp. 1-7, Vol. 8, No. 4,
April 1997.

	Introduction
	Motivation
	Fault Model
	An Overview of The VME bus
	Fault Propagation Over the VME bus

	Fault Containment Techniques
	Inter-module Data Transfer
	Strongly Partitioned Multiprocessing
	Applicability of the Approach

	Implementation and Test Environment
	Protocol Implementation
	Fault injection Experiment
	
	
	
	
	
	Experiment 1 – Disruption

	Experiment 2 – Corruption
	
	Experiment 3 – Protection

	Performance Analysis

	Related Work
	Conclusion
	
	Acknowledgement

	References

