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Abstract 
The trend in implementing today’s embedded applications 
is toward the use of commercial-off-the-shelf open 
architecture. Reducing costs and facilitating systems 
integration are among the motives for that trend.  The use 
of the VME bus becomes very common in many industrial 
applications. The VME bus attracts developers with its 
rigorous specifications, multiprocessing support and 
boards availability through multiple vendors. However, 
VME bus standard supports multiprocessing through 
shared memory, which does not impose strong function 
partitioning and allows fault propagation from one board 
to another. Such weakness limits the use of the VME bus 
in highly critical applications such as avionics. This 
paper presents techniques for strong partitioning of 
multiprocessor applications that maintains fault 
containment on the VME bus. The suggested techniques 
do not require any modification in the standard and the 
existing boards, and consequently maintains the plug-
and-play advantage of the VME bus hardware products. 
The techniques are equally applicable to other tightly 
coupled multiprocessor systems. In addition, the paper 
describes the implementation of these techniques and 
reports performance results. Finally, the benefits of this 
technology for a space vehicle and commercial avionics 
are discussed.   

1.   Introduction 
 

Nowadays, the use of digital computer systems 
becomes very common in mission critical applications 
such as flight control and vehicle management systems. 
In such applications, it is essential not only to ensure 
correct semantics but also to provide fault tolerance 
capabilities. Often proprietary design is used in 
implementing such applications. Recently both the 
vendors and consumers have realized that the proprietary 
approach is very expensive and substantially increases 
time-to-market. In addition, proprietary design does not 

provide flexibility to upgrade the system and to adopt 
new technology. Consequently, the use of open 
architecture and commercial-of-the-shelf (COTS) 
components is the trend in developing embedded mission 
critical applications. COTS-based approach maintains 
cost advantages and facilitates system upgrade. However, 
COTS components are usually developed without 
considering fault-tolerance. The challenge is to develop 
fault resilient COTS-based design without the need to 
redesign the components, thus keeping the cost 
advantage. This paper presents techniques that we used 
to tackle some of these challenges to build a VME-based 
fault tolerant architecture for avionics. 

This section presents the motivation of our work and 
why the VME bus has been considered. In addition, an 
overview of the VME bus operation is provided, 
highlighting potential fault containment issues.   

1.1 Motivation 

Advancements in technology have enabled the 
avionics industry to develop new design concepts, which 
results in highly integrated software-controlled digital 
avionics. The new approach, referred to as Integrated 
Modular Avionics (IMA), introduces methods which can 
achieve high levels of reusability and cost effectiveness 
compared to earlier implementations of avionics [1]. The 
IMA approach encourages partitioning and using 
standardized modules in building environmental and 
functional components of avionics. While integration 
enables resource sharing, some boundaries need to be 
imposed to maintain system predictability and to prevent 
bringing down the whole system because of a failure of a 
single function. An IMA system is called strongly 
partitioned if the boundaries between the integrated 
functions are clearly defined so that a faulty function 
cannot cause a failure in any other function. Strong 
functional partitioning facilitates integration, validation 
and FAA certification. Following the IMA guidelines, 
the cost of both development and maintenance is 



expected to decrease because of mass production of the 
building blocks, lower levels of spares, and reduced 
certification costs. 

The backplane bus is one of the most important 
components in integrated modular avionics. While many 
backplane buses have been proposed, only a few are 
actually used. Selecting a backplane bus is influenced by 
many design and engineering factors, such as 
performance, reliability, and fault tolerance. Although 
such issues are very important to ensure certain level of 
safety of commercial jet aircraft and high availability of 
military aircraft, the cost of the bus and associated line 
replaceable modules is a major concern.  

Most of the currently available dependable 
backplane bus systems, such as ARINC 659 [2], are 
expensive and supplied by very few vendors. It is clear 
that there is a need for an affordable bus system that 
provides the required levels of dependability and 
complies with the IMA design methodology. The goal of 
this study is to show how to enhance functionality and 
overcome inefficiencies in commonly used and widely 
manufactured low-cost buses to make them suitable for 
avionics. The VME bus system [3] is a prime candidate 
because it is both rigorously defined and widely 
supported. In addition, there is an expanding selection of 
VME bus boards and vendors that guarantee competitive 
prices and continuous support. Moreover, the VME bus 
offers an open architecture that facilitates the integration 
of multiple vendors’ boards. Such a feature makes the 
VME bus an attractive choice for integrated avionics on 
high visibility projects such as the Venture Star space 
launch vehicle, supported by NASA for its 21st century 
space missions [18].  

However, the VME bus architecture does not 
impose strong functional partitioning and allows fault 
propagation from one board to another, as we discuss in 
Section 1.4. For example, a faulty board can perform a 
wild-write, which corrupts the shared memory area and 
disturbs the computation on other boards [10]. Fault 
containment is very crucial for the integrated 
environment to guarantee that a faulty component may 
not cause other components to fail and risk generating a 
total system failure. Considering avionics, a failure in the 
entertainment system must not negatively influence flight 
critical control systems such as the flight manager. 
Lacking the capability of fault containment limits the use 
of the VME bus in mission-critical integrated system. 
This paper presents techniques for strong partitioning of 
multiprocessor applications that maintain fault 

containment on the VME bus. The suggested techniques 
do not require any modification in the standard and 
utilize the existing features1 of the VME boards, and 
consequently maintain the plug-and-play advantage of 
the VME bus hardware products. It should be noted that, 
although the VME bus lacks other capabilities to be fault 
tolerant [8], this paper focuses on preventing fault 
propagation over the bus. The next section presents our 
fault model. 

1.2 Fault Model 

Strong partitioning implies that any erroneous 
behavior of a faulty component will not affect other 
healthy components without detecting the error. This 
erroneous behavior can be the result of a hardware or 
software fault regardless the nature (generic, accidental 
or intentional) and the duration (permanent, transient or 
intermittent) of that fault. A healthy system component 
needs to become aware of the faulty component only if 
they communicate to perform certain function. An 
attempt by the faulty component to corrupt other system 
components should not succeed. Other system 
components, that communicate with the faulty 
component, need to be aware of the error and perform 
recovery according to the nature of the application. We 
assume that there are application-specific semantic 
checks that verify the validity of the communicated data. 

We assume that the system is not liable to Byzantine 
faults, i.e. all faults manifest themselves into errors, 
which are detectable in the same way by all the other 
healthy modules. In this paper, bus failure due to either 
bus damage, stuck control lines or the failure of bus 
arbiter are not addressed. Only faults in modules and the 
data transmission are considered. In addition, this paper 
focuses only on fault containment, in the sense of [11], 
without addressing system-level recovery of the faulty 
component. Fault containment implies that the damage 
caused to an application by a fault is proportional to the 
amount of resources needed by the application, not to the 
total amount of system resources [10]. 

Before illustrating the fault-tolerance deficiencies of 
the VME bus, with respect to the fault model presented 
above, the next section provides an overview of the bus 
operation. 

                                                           
1 Assuming that the VME board is equipped with a memory 
management unit to control read and write access to local memory 



1.3 An Overview of The VME bus 

The VME bus allows multiprocessing, 
expandability, adaptability for many different designs 
and processors. It handles data transfer rates in excess of 
40 Mbytes/sec using parallel data transfer. The VME bus 
is asynchronous and non-multiplexed. Because it is 
asynchronous no clocks are used to coordinate data 
transfer. Data is passed between modules (boards) using 
interlocked handshaking signals where the slowest 
module participating in the cycle sets cycle speed. Using 
asynchronous protocol in the VME bus provides 
reasonable capabilities to integrate products from various 
vendors. 

The VME bus provides support for multiprocessing 
using shared memory. To avoid inconsistency while 
updating shared memory, read-modify-write bus cycles 
are used. The read-modify-write cycle allows updating 
shared memory as an atomic transaction and prevents 
race conditions. Master-slave architecture is used in the 
VME bus. Modules can be designed to act as masters, 
slaves or both. Before a master can transfer data it must 
first acquire the bus using a central arbiter. 

Although the VME bus does provide reasonable 
compatibility to integrate products from various vendors, 
fast parallel data transfer, and a wide support by many 
manufactures, fault tolerance in VME bus based systems 
is very limited. The next section discusses error detection 
mechanisms in the VME bus and elaborates on 
weaknesses in fault containment. 

1.4 Fault Propagation Over the VME bus  

The VME bus relies on all connected modules for 
detecting and reporting faults on a specific failure control 
line. VME bus modules are expected to have on-board 
firmware diagnostics to detect faults. The VME bus 
master (sender) monitors the time for data transfer. If the 
slave (receiver) does not acknowledge the message, the 
master times out data transfer and retransmits. The bus 
provides neither error detection nor correction for the 
transferred data. There is no redundancy in either the 
transmission lines or the transferred data on the bus.   

Generally, the built-in-test and transmission timing-
out provide limited fault coverage. In the absence of 
message verification, faults can manifest errors that 
affect healthy modules which is a problem called fault 
propagation from one module to others. Faults cannot be 
contained within the faulty module and can jeopardize 
the behavior of the complete system. In addition, the 
shared model does not prevent a wild-write by a faulty 
module, which can corrupt the memory of other healthy 
module [10]. 

From the former discussion we can conclude that the 
VME bus needs enhancements to strengthen its fault 
tolerance capabilities, specifically in containing faults 
and recovery from failure. In this paper we focus on fault 
containment. The following issues need to be addressed 
in order to improve the fault containment in a VME bus 
system:  
 

1. Validating the inter-module data transfer to detect 
transmission errors over the VME bus. 

2. Preventing fault propagation from one module to 
others through the use of shared memory. 

 
The next section provides a discussion of our 

approach to address these issues.  

2. Fault Containment Techniques 

Because low cost is an important feature of the 
VME bus, enhancing the fault containment capabilities 
should avoid changing the design and the layout of the 
currently available boards. Changing the design of a 
VME board will not only require reengineering and 
revalidation which increases the manufacturing cost, but 
also will again limit the number of vendors who agree to 
do the modifications. Thus, the suggested approach 
should be constrained by preserving the current hardware 
design of the boards as much as possible. 

As illustrated in the previous section, fault 
containment on the VME bus needs to be added. In the 
following subsections, our approach is discussed. 

2.1 Inter-module Data Transfer  

The VME bus features parallel data transfer between 
modules. There are no error detection or correction bits 
associated with the transmitted data. Adding such bits 
will significantly affect the VME board’s design and, 
therefore, is not an option. As an alternate approach, an 
error detection code, e.g. cyclic redundancy check, can 
be appended to the end of the data. A data transmission 
module within the operating system kernel can generate 
this error detection code. Although the software-
generated error detection code is less efficient than the 
hardware-based implementation, no board redesign is 
necessary using the software approach. For higher 
dependability, an error correction code can be appended. 
Because that error detection/correction code will reduce 
the efficiency of the data transfer on the bus and 
consequently the performance, it may be possible 
through the kernel to dynamically select either to append 
error detection or error correction code according to the 
length of the transmitted data. The receiver module 



should validate the data using the error 
detection/correction code before committing that 
received data. 

Using such information redundancy within the 
transferred data fits the multiprocessing scheme 
proposed in the next subsection. 

2.2 Strongly Partitioned Multiprocessing 

Strong partitioning of modules is one of the most 
important IMA requirements, which the VME bus lacks. 
Multiprocessing in the VME bus uses a shared memory 
mechanism that allows faults in one module to cause 
errors in other non-faulty modules by writing to their 
memories. We suggest the use of a message passing 
mechanism instead. The challenge is to support message-
based inter-module communications using the available 
features provided by the VME boards and still detect 
errors and prevent fault propagation. Although the shared 
memory model is convenient for programmers, grouping 
data is a very common practice to enhance the system 
throughput. Thus, the use of massage passing will not 
introduce difficulties that affect the system 
implementation.  In addition, techniques such as [13], 
[14] and [17] can be used to support the shared memory 
paradigm if necessary. 

To support messages, a buffer is to be declared and 
dedicated to messages. A message buffer is the only 
globally accessible memory by other modules. In 
addition, access to a message buffer is restricted to read-
only for modules that do not own that buffer. No board is 
supposed to write to the memory of other boards. If a 
master wants to send data to a slave, it writes a message 
into the master’s message buffer. The slave then reads 
that message from the master memory and reacts to it. 
Defining a read-only VME global address window is a 
very common feature on VME boards. 

A fault-tolerant message format can be imposed that 
contains the sender ID, receiver ID, error detection or 
correction code, and a message unique ID (if necessary). 
The sender should perform error detection and correction 
encoding. The receiver will check the contents of the 
message before reacting to it. The receiver can detect 
addressing errors in the message by verifying the sender 
ID and receiver ID. In addition, transmission errors can 
be detected or recovered using the information 
redundancy in the form of the error detection or 
correction code in the message.  

Execution synchronization of the application tasks 
can be achieved either; by polling the message buffer of 
the sender for the required message, or by notifying the 
receiver by generating an interrupt2 as soon as a message 
is being written by the sender in the designated address. 
The message ID can be useful to overcome race 
conditions if the receiver tried to read the message before 
it is ready which may be possible if the VME bus has a 
higher priority than the local bus. The message buffer 
can be partitioned for various boards and receivers can 
expect a unique location for their messages. The adopted 
application execution-synchronization mechanism is a 
designer decision. 

Using this technique, errors in the sender can be 
isolated and prevented from propagating to the receiver 
because no write permission will be granted for a board 
to the memory of others. Errors in the message can be 
either in data, sender ID, receiver ID, Message ID, or 
message format. The receiver should be able to detect 
errors in the message body by validating the message 
format, error detection code, sender ID and the receiver 
ID. The message ID can be checked to guarantee the 
right message sequence (It may require knowledge of the 
application semantics). Any error in the message 
detected by the receiver will invalidate the entire 
message and a recovery action will be taken. An 
addressing fault in the receiver that may get it to read 
from the wrong board or the wrong address within the 
right board will invalidate the message format and/or the 
sender ID. Furthermore, the mapping of message buffers 
on the boards within the global address space of the 
VME system can be orchestrated so that an addressing 
error can not change a valid global address into another 
valid address. Maintaining a suitable hamming distance 
can guard the system against permanent or transient 
stuck failure of one or more address bits. Thus, the 
system will be functionally partitioned. Faults can be 
within the faulty module and will not affect other 
modules.  

The following section addresses the implementation 
issues of such techniques in the currently available VME 
boards without imposing hardware changes. 

2.3 Applicability of the Approach 

As we discussed earlier, enhancing the fault 
containment capabilities and the support for strong 
functional partitioning on the VME bus should not 
                                                           
2 Can be implemented by using the address-monitoring feature 
provided by the VME bus. 



impose significant modifications to both the hardware 
manufacture and the application developer. Imposing 
significant changes may diminish the cost-effectiveness 
of the VME bus and may limit the number of vendors 
who adapt the modifications. This section presents the 
feasibility of the techniques illustrated in the previous 
section. After conducting a market survey, we found that 
the VMEchip2 [4], from Motorola, and the SVC64 [5], 
from Tundra, are the most commonly used VME bus 
interface chips on VME boards. We studied the 
applicability of these techniques in VME boards that use 
these interface chips.  

Considering both interface chips, the strong 
partitioning protocol can be totally implemented in 
software. In fact, it is possible to use commercial-off-the-
shelf (COTS) operating systems by extending the kernel 
service to include message handling. In addition, the 
generation and validation of the error detection code 
within the message can be included in the message 
handler. Thus, the applicability of the fault containment 
techniques depends on the feasibility of partitioning local 
memory and mapping the message buffer within the 
VME global address space.  

Both the VMEchip2 and SVC64 provide capabilities 
for software configurable global addressing of the on-
board memory of a module. There are software 
configurable map decoders that can be used to control 
the global addressing of the VME boards’ local memory. 
Such a feature allows restricting addresses used by the 
other boards and any wrong addressing will return an 
error. Furthermore, both chips allow the programmer to 
restrict access, by other boards in the system, to this local 
memory to read-only. Thus, a faulty board cannot 
corrupt the memory of other healthy boards. 

To prevent the possibility of other boards reading by 
mistake from the wrong board, one may use different 
combinations for the most significant bits for the VME 
address of each board so that the hamming distance will 
be more than 1 bit. Thus, we can guarantee that boards 
cannot read from the wrong board unless there is more 
than one transmission error. Given that the number of 
boards is limited (maximum 22 according to the IEEE 
standard [3]), it is possible to achieve a distance of at 
least 8 bits among board addresses and to isolate up to 8 
simultaneous error. Reading from a non-existing board 
will be timed out by the VME bus and can be detected. 
Errors in the least significant 16 bits of the address can 
be detected by validating the messages. Reading from a 
different location within the sender message buffer will 
contain neither the right format nor the correct message 
semantic. 

The strong partitioning protocol has been 
implemented and tested on boards that use the SVC64 

chip. The next section provides details about the 
implementation and test environment. 

3. Implementation and Test Environment 

A proof-of-concept prototype has been built using 
COTS components, Figure 1. The prototype includes a 
VME backplane that hosts six VME-171 PowerPC 80 
MHz processor boards from DY4 Systems. VxWorks, a 
real-time operating system from WindRiver Systems, is 
installed and integrated with the hardware. The strong 
partitioning inter-processor communication protocol has 
been implemented and integrated within VxWorks. 
Testing and fault injection experiments have been 
performed. In addition, the performance of 
multiprocessing communication using the protocol is 
measured. This section illustrates the implementation of 
the strong partitioning protocol in this test environment 
and describes the results of the experiments of fault 
injection and performance measurements.  

3.1 Protocol Implementation 

In a single processor system, tasks may establish 
communication among each other through the use of 
message queues. A message queue is an abstraction of a 
unidirectional channel (The choice of this abstraction is 
due to the fact that VxWorks applies the same 
technique), and is typically identified by a “queue ID” or 
QID.  Two communicating tasks use the same QID to 
exchange messages, Figure 2. The delivery of the 
messages is handled by the Inter-Task Communication 
(ITC) Service (typically part of the operating system 
library functions) which may maintain several message 

Figure 1: A proof-of-concept demonstration prototype 



queues depending on how many communication channels 
are open.  The ITC Service takes care of synchronization 
issues such as the mutually exclusive access to the 
message queue. 

 

 
In order to achieve fault containment within a faulty 

board, the inter-processor communication (IPC) over a 
VME backplane is to follow the protocol presented in 
Section 2. Across board communication is to be 
accomplished through message queues that need to be 
allocated in a globally addressable read-only memory 
buffer where the sender will leave outgoing messages for 
other processor boards, or simply processors, to read. 
Although a separate queue for every pair of 
communicating tasks can be allocated, managing the 
message buffer becomes complicated if tasks are created 
dynamically. The message buffer usually cannot grow 
dynamically and there will be a potential that the system 
runs out of free memory space within the message buffer. 
Instead, queues are allocated to communicating boards. 
For each (sender, receiver) permutation of processor 
boards, there is a processor queue which is created 
within the global portion of the sender’s main memory to 
hold any messages sent to that specific receiver by any 
task running on the sender board.  Receivers have read-
only privilege on the message queues owned by other 
processors. Figure 3 illustrates the implementation of the 
protocol. 

An IPC daemon is in charge of maintaining these 
queues.  The IPC daemon is an independent task created 
by the system at initialization to handle inter-processor 
communication. When, say, task A on processor 1 needs 
to send a message to task B on processor 2, it contacts 
the local ITC service on processor 1, which recognizes 
that the target queue belongs to an external processor.  
Therefore, the message is inserted in the IPC daemon 
queue. The IPC daemon on processor 1 processes the 
buffered message by appending it to the processor queue 
associated with processor 2.  Processor 2’s IPC daemon 
is then notified that it has a message waiting inside 
processor 1. This kind of notification takes the form of 
generating a location monitor interrupt on the recipient 

board. The location monitor interrupt routine sends a 
message to the IPC daemon announcing that there is a 
message ready for delivery at processor board 1. The 
IPC daemon on processor 2 fetches the message from 
board 1 and notifies the IPC of processor 1 after 
successful completion. At that time, the IPC daemon of 
processor 1 deletes the message from its processor 
queue. Meanwhile, the IPC on processor 2 delivers the 
message to the ITC, which finally stores the message in 
the message queue, connected to Task B (This is a 
regular message queue maintained by the operating 
system, VxWorks in our implementation). The 
notification of successful message delivery takes the 
form of writing the message ID in a pre-defined location 
on the receiver VME-mapped memory to acknowledge 
the receipt of the message. The sender daemon polls for 
the message acknowledgement until the receiver writes 
the message ID. 
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Figure 2: Inter-task communication Service 
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Figure 3: Implementation of the Strong Partitioning 
Protocol 
 
 

It is worth noting that the ITC on each processor still 
handles local inter-task communication.  It only contacts 
the IPC if the target receiver is on a different processor. 
Consequently, the inter-processor communication service 
is transparent to the system developer. However, a 
system configuration needs to be read by each board 
before starting the IPC daemon to resolve queue 
addresses and the VME global memory map. We should 
also note that even though there may be multiple 
communication sessions established between any two 
processors, there are only two processor queues carrying 
the communication; one queue for each direction. The 
sizes of the daemon queue and the processor queues 
depend on the amount of available memory and the 
expected communication traffic density. Moreover the 
IPC service, in the current implementation, has been 



added as a library service and the IPC daemon was 
defined as a high priority user-task since the source code 
of VxWorks was not available. However, the protocol 
can be completely integrated within the operating system 
by defining the IPC daemon as a system-task and 
augmenting the library of system calls with the IPC 
library functions.  

3.2 Fault injection Experiment 

Several fault injection experiments were conducted 
to demonstrate the resiliency of the strong partitioning 
protocol. A test application was developed for a client-
server application. The server continuously accepts 
messages with requests to perform arithmetic and logic 
operations. The client sends requests with two operands 
and an operation. The server handles the request and 
sends a message back with the result. All communication 
between the server and the client follow the strong 
partitioning protocol. A third board has been designated 
as a faulty board whose erroneous behavior interferes 
with the server and the client. The following three fault 
injection experiments were run: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Experiment 1 – Disruption 

While the client and the server are communicating, the 
faulty board sends bogus messages to both boards 
attempting to disrupt the communication. Both the 
client and the server acknowledge receipt of the bogus 
data by displaying the warning message “Invalid 
sender and/or receiver ID in msg.”, as shown in Figure 
4. This experiment demonstrates the protocol ability to 
detect erroneous messages and to protect healthy 
boards from bogus traffic on the VME bus. Using 

shared memory; the faulty board would have easily 
corrupted the shared memory area without 
demonstrating odd behavior that other boards can 
detect as an error. 
 

 
Figure 4: Resiliency to disruption 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Detection of corrupted messages 

 
 

Experiment 2 – Corruption 

While the client and server are communicating, the 
faulty board sends a formatted (but corrupted) message 
to the server. The server detects the receipt of a 
corrupted message by validating the error detection 
code (CRC) and displays the error message “Invalid 
CRC in message”, as shown in Figure 5. 
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Figure 6: Protected memory experiment 
xperiment 3 – Protection 

While the client and server are communicating, the 
faulty board attempts to access protected memory on 



both server and client boards. The attempted access of 
protected memory generates a VME bus error on the 
offending board, as shown in Figure 6. The client and 
the server continue their operation without 
interruption.  

 
In addition to the above experiments a VME 

extender board has been used to allow the emulation of 
stuck faults in the data and address lines of the VME bus. 
A series of experiments were performed to test the 
resiliency of the protocol against stuck faults. The results 
of the experiments clearly showed the robustness of the 
protocol and its capabilities in preventing fault 
propagation. 

3.3 Performance Analysis 

To measure the performance of the protocol, we 
used a tool for monitoring embedded application, called 
“WindView”, from WindRiver Systems. Using 
WindView a set of events can be defined. Programs are 
instrumented during compilation to time-stamp these 
events by inserting calls to some library functions. 
During the execution the marked event as well the time-
stamps are stored as a RAM-file. WindView can be 
executed afterward to visualize the sequence of events 
and display the time stamps. Using WindView, one can 
achieve a time resolution of a microsecond with a 
maximum of 4% intrusion (due to the overhead needed 
for time stamping). To measure the performance of the 
protocol, we instrumented the client-server application 
discussed above. Since the application programs are 
running on separate boards without clock 
synchronization, we time-stamped events on each board 
independently and measured the elapsed time between 
events. Since both the server and client programs are 
running on exactly similar boards, we did not need to 
perform any calibration for the speed of the processors. 
The end-to-end delivery time for messages of length of 
256 bytes has been measured. An information 
redundancy (sender ID, receiver ID, etc.) of 32 bytes is 
included in the massage. Table 1 shows the time needed 
to perform each step. It should be noted that the values 
reported in Table 1 are the average of 50 independent 
readings. The end-to-end message delivery time is 302.3 
µ sec (209.9 + 92.4).  

We performed two additional experiments to 
compare the performance of the protocol with other 
mechanisms. In the first experiment we performed a 
memory write of 256 bytes from one board to the other 
using assembly instruction. The time for writing 256 
bytes was measure using a logic analyzer and found to be 
144 µ sec. This value is consistent with the message 

transfer time measured by WindView in Table 1, noting 
that the actual size of data transfer is larger by 32 bytes. 
This experiment provided an upper bound for the bus 
transfer rate and validated the accuracy of the 
measurements obtained using WindView. It should be 
noted that this upper bound could be only achieved using 
assembly code. Today’s embedded applications are so 
complex that assembly programming can no longer be 
used in developing these applications. Support for 
multiprocessing and inter-process communication is 
always needed from an operating system. 

The second experiment considered the operating 
system overhead to maintain mutual exclusive access to 
shared data. The client-server application has been 
rewritten using VxMP, which is a multiprocessor 
extension of VxWorks. VxMP provides an abstraction of 
shared memory so that applications can refer to the 
shared object by name. VxMP only resolves the 
addresses for the programmer without maintaining 
mutual exclusion for accessing the shared memory 
relying on hardware support for that. Obviously VxMP 
provides only shared memory management without fault 
containment.  Table 2 shows the performance results for 
sharing 256 bytes data. It should be noted that VxMP 
requires the shared memory to be physically located on 
only one board. Thus transferring data between boards 
usually requires two bus transmissions; first the sender 
writes to the shared memory, the second transmission 
occurs when the receiver reads that data from the shared 
memory. The end-to-end time for sending 256 byte using 
VxMP is 433 µ sec (217.6 + 215.4).  Comparing the two 
tables, it is clear that the protocol not only maintains 
fault containment with reasonable performance penalty 
but it also out-performs other multiprocessor support 
tools currently available in the market.  
 

Action Description Duration 
in µµµµsec 

Receive One Message  
    Handle location monitor interrupt 37.6
    Fetch message across the VME bus 170.0
   Validate and acknowledge message 2.3

Total for receive 209.9
Send One Message 
   Get message from daemon queue 49.1
    Put message in processor queue 42.1
    Notify receiver 1.2

Total for Send 92.4
Table 1: Performance measurements for the 

partitioning protocol 



 
It should be noted that the current implementation of 

the protocol is to prove the concept. There are many 
opportunities for optimization, which significantly 
enhance the performance. In addition, we noticed that 
significant performance improvement could be achieved 
if multiple messages are sent or received in one cycle of 
the IPC daemon. Since most of the advanced processors, 
such as the PowerPC, have instructions cache, the 
daemon code is usually fetched to this cache upon 
activation of the daemon. Thus, the first send or receive 
operation always suffers a cache miss. We observed 
about 35% improvement in the message handling, not 
including the time for data transfer over the VME bus, 
after the first sending or receiving activity.  Moreover, 
the strong partitioning protocol proved to be very useful 
in debugging and system integration since it defines clear 
boundaries that facilitate detection of programming 
errors.  
 

Action Description Duration 
in µµµµsec 

Receive One Message  
   Handle location monitor interrupt 30.4 
   Read message across the VME bus 187.2 

Total for receive 217.6 
Send One Message  
   Put  message into shared memory 213.4 
   Notify receiver 2.0 

Total for Send 215.4 

Table 2: Performance measurements for VxMP 

4. Related Work 

This paper proposes a mechanism, which is fully 
implementable in software and integrable with the 
operating system, to support message passing on shared 
memory multiprocessor architecture. On the contrary, 
there is plenty of work on supporting shared memory on 
a loosely coupled system, which is referred to as 
distributed shared virtual memory [7]. Examples of this 
include the TreadMarks system [13] and Mirage [17]. A 
survey for different approaches can be found in [14].  To 
support recovery from a failure on distributed shared 
virtual memory system; a checkpointing mechanism is 
often introduced [15][16]. During normal fault-free 
operation, snapshots of the system state (registers and 
memory contents) are stored in a repository to assist the 
applications recover from a failure.  The reader is 

referred [6] to for a survey of various recovery 
techniques and strategies.   

Achieving fault containment in shared memory 
multiprocessor systems has been the subject of intense 
study at the Computer System laboratory at Stanford for 
the FLASH multiprocessor architecture [9],[10] and 
[11]. The approach taken is to partition the 
multiprocessors into cells. Every cell controls a portion 
of the hardware and shared resources. A cell may include 
one or multiple processors. Each cell runs an 
independent multiprocessor operating system. A 
hardware solution has been suggested to protect a cell 
from a wild-write by any faulty cell. The operating 
system continuously runs across-cell checks for failure 
detection and a distributed recovery routine needs to be 
executed upon the detection of a fault. Our approach is 
different in that we rely on the memory management unit 
to protect boards from wild-write since we cannot 
introduce any hardware change. We prevent across-
board writing and consequently restrict inter-processor 
communication only to massage passing and do not 
support memory sharing. However, we do not see that as 
a drawback since virtual memory is usually not 
recommended in mission critical real-time applications 
due to its negative impact on system predictability [12]. 
In addition, our fault detection is quite simple. We rely 
on timing out messages, a feature, which is built in the 
VME bus interface logic. Furthermore, the strong 
partitioning protocol, presented above, is easy to 
implement and integrate with COTS single processor 
operating systems.  

5. Conclusion 

In this paper, it has been shown that the VME bus 
can be strongly partitioned with fault isolation 
capabilities that prevent fault propagation to healthy 
boards. A multiprocessor message passing 
communication protocol has been presented. The 
message passing protocol provides fault containment 
over the bus. Messages can be verified with respect to 
sender and receiver IDs as well as the message ID. In 
addition, information redundancy in the form of error 
detection and correction code can be provided within the 
message to verify data transmission over the bus.  

The strong partitioning protocol has been 
implemented in software without imposing any hardware 
modifications. A proof-of-concept prototype has been 
built, in which the strong partitioning protocol has been 
integrated with COTS real-time operating system. The 
protocol has been added as an operating system service, 
which is transparent to programmers. The fault injection 



experiments demonstrated the efficiency of the approach 
in fault containment.  

Although the increased data transfer due to message 
overhead and information redundancy will affect the 
performance of the VME bus, it has been shown that the 
burden on the bus bandwidth is limited. Clearly the 
longer the data size within the message, the more 
efficient the strong partitioning protocol. In the future, 
we would like to extend our approach to provide support 
for programs that use the shared memory paradigm in 
order to facilitate the integration of legacy code. 

The technology presented in this paper is crucial for 
multiple space and avionics programs within 
AlliedSignal, Inc. The vehicle management computer 
(VMC) for an unmanned space shuttle is currently under 
development. The VMC integrates multiple mission 
critical control modules such as mission manager, flight 
control and vehicle subsystems manager with other less 
critical modules within a VME cabinet. It is extremely 
important to contain any fault within the faulty module 
and protect other modules in the system. The integration 
of utility control system is another project that benefits 
from this technology. The goal is to integrate multiple 
utility control units, which are currently federated on the 
aircraft, into one cabinet. Utility controls such as electric 
power system, cabinet pressure and bleed air system are 
regarded as medium-criticality control functions on the 
aircraft. However, integrating multiple utility control 
modules makes the integrated unit highly critical since it 
may affect the safety of the flight. The strong partitioning 
protocol is to be used for handling inter-module 
communication to prevent fault propagation and protect 
the system from a complete failure when one module 
fails.  
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