
cs
.O

S
/9

80
90

06

2
S

ep
 1

99
8

1

The Design and Architecture of the Microsoft Cluster Service
-- A Practical Approach to High-Availability and Scalability

Werner Vogels1,

Dan Dumitriu1,

Ken Birman1,

Rod Gamache,

Mike Massa,

Rob Short,

John Vert

Joe Barrera,

Jim Gray

May 1998

Technical Report

MSR-TR-98-16

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Published in the Proceedings of FTCS’98, June 23-25, 1998, Munich, Germany
© 199x IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for adver-

tising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to

reuse any copyrighted component of this work in other works must be obtained from the IEEE.

1 Dept. of Computer Science,Cornell University

2

The Design and Architecture of the Microsoft Cluster Service
-- A Practical Approach to High-Availability and Scalability †

Werner Vogels,
Dan Dumitriu, Ken Birman

Dept. of Computer Science
Cornell University

Rod Gamache, Mike Massa,
Rob Short, John Vert

Microsoft Cluster group
Microsoft Corporation

Joe Barrera,
Jim Gray

Scalable Server group
Microsoft Research

† This paper is the result of a collaboration between the Reliable Distributed Computing group at the Computer Science Department of Cornell Univer-
sity, the Cluster Group at Microsoft Corporation and the Scalable Server Group at Microsoft Research. Cornell’s Reliable Distributed Computing group
is analyzing the distributed system components of MSCS and designing new algorithms for scalable operation and cluster-aware application program-
ming. An extended version of this analysis paper is also available [6].
The research by the Reliable Distributed Computing Group is supported by DARPA/ONR under contract N0014-96-1-10014 and by Intel Corporation
and Microsoft Corporation. Inquiries with respect to this paper or the full report, can be send to Werner Vogels, email: vogels@cs.cornell.edu.

Abstract
Microsoft Cluster Service (MSCS) extends the Win-

dows NT operating system to support high-availability
services. The goal is to offer an execution environment
where off-the-shelf server applications can continue to
operate, even in the presence of node failures. Later ver-
sions of MSCS will provide scalability via a node and
application management system which allows
applications to scale to hundreds of nodes. In this paper
we provide a detailed description of the MSCS architec-
ture and the design decisions that have driven the imple-
mentation of the service. The paper also describes how
some major applications use the MSCS features, and de-
scribes features added to make it easier to implement and
manage fault-tolerant applications on MSCS.

1 Introduction
A cluster is a collection of computer nodes that work

in concert to provide a much more powerful system. To be
effective, the cluster must be as easy to program and man-
age as a single large computer. Clusters have the advan-
tage that they can grow much larger than the largest single
node, they can tolerate node failures and continue to offer
service, and they can be built from inexpensive compo-
nents.

Cluster computing is poised to surge in importance
with the emergence of software that supports scalable
clusters using commodity components. Traditionally,
cluster architectures relied on special-purpose hardware.
Software clusters eliminate the need for proprietary hard-
ware. A software cluster can scale to many nodes at a sin-
gle site, and can scale geographically, creating a single
“server” that spans multiple locations. Software clusters
can also offer improved management and ease-of-use.
These benefits are well matched to a web-oriented com-
puting model. Software clusters, integrated with tools for

cluster application development will create new
applicatons for both scalable and fault-tolerant systems.

For clusters to realize this promise, cluster technology
must improve. Users find it difficult to configure clusters
with the desired management and security properties. It is
difficult to configure applications to be automatically
launched in an appropriate order, to deal with wide-area
integration issues, and otherwise to match the cluster to
application needs. Lacking solutions to these problems,
clusters will remain awkward and time-consuming tools,
limiting the growth of cluster-aware applications.

Microsoft Cluster Service (MSCS) takes a phased ap-
proach to solving these problems. The first phase ad-
dresses high-availability file servers, databases, web serv-
ers, and electronic mail servers. For many businesses,
these servers have become essential to daily operation.
MSCS extends Windows NT™ with mechanisms to im-
prove application availability. MSCS detects and restarts
failed components, reducing the mean-time-to-repair
(MTTR) . MSCS also migrates components to other nodes
if one node of the cluster fails. Migration improves avail-
ability by more than an order of magnitude.

In this first phase, MSCS offers only minimal support
for application scalability to two nodes. Later MSCS re-
leases may support larger and geographically distributed
clusters. They will also improve support for self-
management of distributed applications, and for the de-
velopment of cluster-aware (parallel) applications.

Microsoft Cluster Service is not the first technology to
support failover, migration, and automated restart of failed
components. Important prior work includes the applica-
tion fail-over support available on many commercial
cluster platforms, notably the DEC, HP, IBM, NCR, Tan-
dem and Stratus failover products. See [5] for a more
complete review of these and other cluster solutions.
MSCS goes beyond prior work by providing a signifi-

cantly simpler use interface and greater sophistication in
the way that applications are modeled. Moreover, MSCS
has a tighter integration with the operating system than do
most other cluster solutions.

The connections between cluster-style computing and
prior work on reliable group management and communi-
cation (atomic multicast) are of interest. Tracking the ac-
tive set of nodes in a cluster corresponds to the group
membership problem [1]. Avoiding the “split brain syn-
drome” (whereby a cluster splits into two disjoint parts
that both claim to own some critical resource) is analo-
gous to the primary component network partitioning
problem. Linking clusters into a geographically distrib-
uted wide-area system is similar to the wide-area process-
group problem [1]. Maintaining a checkpoint and log for
use during restart is an instance of the more general
transaction processing techniques of logging and com-
mit/abort to perform atomic state transformations on all
the replicas [3]. A cluster can thus be viewed as a way to
package powerful fault-tolerance primitives in a way that
is natural and convenient for a very large class of users for
whom application availability is a key objective.

The review of the Microsoft Cluster Service that fol-
lows focuses on the fundamental abstractions of the first
phase. It describes the software architecture of the cluster
service and describes the structure of some major com-
mercial applications that use MSCS.

2 Cluster design goals
A cluster managed by the Microsoft Cluster Service is

a set of loosely coupled, independent computer nodes,
which presents a single system image to its clients. MSCS
adopts a shared nothing cluster model, where each node
within the cluster owns a subset of the cluster resources.
Only one node may own a particular resource at a time,
although, on a failure, another node may take ownership
of the resource. Client requests are automatically routed to
the node that owns the resource.

The first phase of MSCS, released in late 1997 had the
following general goals:

• Commodity. The cluster runs on a collection of off-
the-shelf computer nodes interconnected by a generic
network. The operating system is a standard commer-
cial version of Windows NT server, the network com-
munication is through the standard Internet protocols.

• Scalability. Adding applications, nodes, peripherals,
and network interconnects is possible without inter-
rupting the availability of the services at the cluster.

• Transparency. The cluster, which is built out of a
group of loosely coupled, independent computer nodes,
presents itself as a single system to clients outside the
cluster. Client applications interact with the cluster as if
it were a single high-performance, highly reliable
server. The clients as such, are not affected by interac-
tion with the cluster and do not need modification.

System management tools access and manage the
services at the cluster as if it is one single server. Serv-
ice and system execution information is available in
single image, cluster wide logs.

• Reliability . The Cluster Service is able to detect fail-
ures of the hardware and software resources it man-
ages. In case of failure the Cluster Service can restart
failed applications on other nodes in the cluster. The re-
start policy is part of the cluster configuration. It can
specify the availability requirements for that applica-
tion. A failure can also cause ownership of other re-
sources (shared disks, network names, etc.) to migrate
to other nodes in the system. Hardware and software
can be upgraded in a phased manner without interrupt-
ing the availability of the services in the cluster.

Several issues were explicitly not part of the first
phase of the design: MSCS proves no development sup-
port for fault-tolerant applications (process pair, primary-
backup, active replication), no facilities for the migration
of running applications, and no support for the recovery of
the shared state between client and server. However, all of
these are viewed as options for futures design phases.

3 Cluster Abstractions
MSCS is designed around the abstractions of nodes,

resources, resources dependencies, and resource groups.
This section describes each of these central abstractions
and the relations between the abstractions. The next sec-
tion on Cluster Operation will provide the context in
which the abstractions are used.

3.1 Node
A node is a self-contained Windows NT™ system that

can run an instance of the Cluster Service. Groups of
nodes implement a cluster. Nodes in a cluster
communicate via messages over network interconnects.
They use communication timeouts to detect node failures.
There are two types of nodes in the cluster: (1) defined
nodes are all possible nodes that can be cluster members,
and (2) active nodes are the current cluster members. A
node is in one of three states: Offline, Online, or Paused
(see sections 4.1 and 5.1 for details on this).

3.2 Resource
A resource represents certain functionality offered at a

node. It may be physical, for example a printer, or logical
for example an IP address. Resources are the basic man-
agement units. Resources may, under control of the Clus-
ter Service, migrate to another node.

MSCS implements several resource types: physical
hardware such as shared SCSI disks and logical items
such as disk volumes, IP addresses, NetBios names and
SMB server shares. Applications extend this set by im-
plementing logical resources such as web server roots,
transaction mangers, Lotus or Exchange mail databases,
SQL databases, or SAP applications.

Resources can fail. The Cluster Service uses resource
monitors (section 4.2) to track the status of the resources.
The cluster service restarts resources when they fail or
when one of the resources they depend on fails.

A resource has an associated type, which describes the
resource, its generic attributes, and the resource’s behavior
as observed by the Cluster Service. One of these attributes
is a resource control library that is used by the resource
monitors to implement the specific monitoring for the
type of resource.

3.3 Quorum Resource
The quorum resource provides an arbitration mecha-

nism to control membership. The quorum resource also
implements persistent storage where the Cluster Service
can store the Cluster Configuration Database and change
log. The Quorum Resource must be available when the
cluster is formed, and whenever the Cluster Configuration
Database is changed. It is desirable that the Quorum re-
source be highly available and that it not depend on the
availability of a single node. At present, MSCS employs a
partition on a shared fault-tolerant SCSI disk to imple-
ment the Quorum Resource, although other technologies
may be employed for this purpose in the future.

3.4 Resource Dependencies
Resources often depend on the availability of other re-

sources. An instance of a SQL server depends on the
presence of a certain SQL database that in turn depends
on the availability of the disks that store the database.
These dependencies are declared and recorded in a de-
pendency tree. The dependency tree describes the se-
quence in which the resources should be brought online. It
also describes which resources need to migrate together.
If a resource is restarted, all resources that depend on it
are also restarted. Dependencies cannot cross resource
group boundaries.

3.5 Resource Groups
A Resource Group is the unit of migration (failover).

Although a resource dependency tree describes the re-
sources which must failover together, there may be addi-
tional considerations for grouping resources into migra-
tion units. The cluster administrator can assign a collec-
tion of independent resource dependency trees to a single
resource group. When the group needs to migrate to an-
other node in the cluster, all the resources in the group
will move to the new location. Failover policies are set on
a group basis, including the list of preferred owner nodes,
the failback window, etc.

3.6 Cluster Database
All configuration data necessary to start the cluster is

kept in the Cluster Configuration Database. The database,
which is replicated at each node in the cluster, is accessed
through the standard Windows NT configuration database,
called the registry. The initial node forming the cluster

initializes the database from the Quorum Resource, which
stores the master copy of the database change logs. The
Cluster Service, during the Cluster Form or Join opera-
tions, ensures that the replica of the configuration data-
base is correct at each active node. When a node joins the
cluster, it contacts an active member to determine the cur-
rent version of the database and to synchronize its local
replica of the configuration database. Updates to the data-
base during the regular operation are applied to the Master
copy and to all the replicas using an atomic update proto-
col similar to Carr’s Global Update Protocol [2].

4 Cluster Operation
There are four areas of particular interest in an MSCS

cluster: (1) cluster membership activities, (2) resource
management and resource failure handling, (3) application
state failover, and (4) cluster management.

4.1 Cluster Membership Operation
When a cluster node restarts, it can take one of two

distinct paths: (1) If there are already active nodes in the
cluster, the new node will synchronize with these nodes
and join the cluster (i.e. become active). (2) If the node
cannot discover any other active cluster nodes, it will try
to form a cluster by itself. It will assume it is the first node
to start and that other nodes will join later.

The next sections describe the different phases of the
membership operation. Section 5 has more details on the
membership protocols.

Starting a Node
When the node starts, as part of its reboot process it

will bring all its local devices online, except for those
device that are shared with other nodes. Shared devices
may already be controlled by other nodes, so they are only
be brought online after the node has joined or formed a
cluster. Then the active node negotiates with the other
nodes in cluster for device ownership.

Offline

Start Cluster

Service Fails
Cluster Service

Started

Member
Search

Joining

Paused

Online

Exiting

Sleeping

Quorum
Disk Search

Forming

ResumePause

Join
Succeeds

Join Fails

Found
Online

Member

Search Fails

Search Fails

Evict or Leave
Cluster

Shutdown System

Synchronize
Succeeds

Timeout

Retries
Exceeded

Complete
Rundown

Quorum
Disk

Found

Initializing

Key:

- Externally visibile state

- Internal state

Figure 1: State transition diagram for cluster membership.

The operating system starts the Cluster Service proc-
ess at node startup. The Cluster Service first enters a dis-
covery phase. The node uses information from its local
copy of the cluster configuration database to find the
names of the defined nodes (potential cluster members).
The node’s Cluster Service tries (in parallel) to contact
any other Cluster Service at a defined node. If it succeeds
in finding an active node, the new node will join the ex-
isting cluster. If all the connection attempts time out, the
node will try to form a cluster.

Joining a Cluster
If the starting node is able to find an active cluster

node, the applicant engages in a startup negotiate with the
active node (sponsor). First the sponsor validates the
authentication credentials of the joining node and checks
whether the applicant has a right to join the cluster. If the
applicant is a defined member of the cluster the sponsor
moves to the second phase.

Next the sponsor sends version information of the con-
figuration database and possibly sends database log in-
formation to the applicant if changes were made while the
applicant was offline. The sponsor then atomically broad-
casts information about the applicant to all active nodes
members. The active nodes update their local membership
information.

Once the applicant is a full member of the cluster and
is guaranteed to have access to the correct configuration
information, the applicant brings any resources online that
it is responsible for and that are not online elsewhere in
the cluster.

Forming a Cluster
A node attempts to form its own cluster if it cannot

find an active node during the discovery phase. The node
uses the local cluster database (registry) to find the ad-
dress of the quorum resource. The quorum resource holds
the master copy of the configuration database and the
change logs. The node attempts to attach to the quorum
resource. The quorum resource supports an arbitration
protocol that assures that at most one node can own the
resource. If the node is able to acquire ownership of the
quorum resource, the node synchronizes the local cluster
database instance with the master copy. When the data in
the local database is updated, the node has formed a new
instance of the cluster and has become an (the) active
member. It can now start bringing shared resources on-
line. Other defined members can now join the newly
formed cluster.

Leaving a Cluster
When leaving a cluster, a cluster member sends a

ClusterExit message to all other members in the cluster,
notifying them of its intent to leave the cluster. The exit-
ing cluster member does not wait for any responses but
instead immediately proceeds to shutdown all resources
and close all connections managed by the cluster software.

The active members gossip about the departed member
and update their cluster databases.

Node Failure
To track the availability of the active members in the

cluster, all members send periodic heartbeat messages to
others and all monitor the network for heartbeat messages
(see section 6.1). The communication manager signals a
failure suspicion to the Cluster Service when two succes-
sive heartbeats have not been received from a particular
node. In this case, the Cluster Service starts the regroup
membership algorithm to determine the current member-
ship in the cluster (see section 5.1). After the new mem-
bership has been established, resources that were online at
any failed member are brought online at the active nodes,
based on the cluster configuration.

Node States
Defined but inactive nodes are offline. Active mem-

bers may be in one of two states: online or paused. Active
members, even paused ones, honor cluster database up-
dates, contribute votes to the quorum algorithm and
maintain heartbeats. However, when the node is in paused
state it cannot take ownership of any resource groups.

4.2 Resource management
The Cluster Service manages resources by invoking a

pre-defined set of calls to a resource control program
library (a dynamically linked library (DLL)) that is pro-
vided when the resource type is defined. Central to this is
means by which the Cluster Service can monitor the state
of the resource. As resources are very diverse it is impos-
sible for the cluster service to have a generic way to man-
age the state transitions of all resource types. The resource
control libraries, which implement the control of the spe-
cific resource types (see section 3.3), present a polymor-
phic state transition mechanism. The resource control li-
braries for each type hide the complexity of managing
state changes for that resource type. This polymorphic
design allows for a single Cluster Service to manage
varied resource types. One just plugs in a new resource
control library for the new resource type.

A resource has five distinct states:
• Offline . The (initial) inactive state of the resource, in

which it does not provide any service to its clients. In
this state the Cluster Service may request the resource
to go online. The Cluster Server can bring a resource
into offline state by issuing a request while the resource
is in online or failed state.

• Online-pending. The resource has accepted a request
by the Cluster Service to bring its services online. The
resource remains in this state while it initializes the
service. If the resource fails to initialize it goes into the
failed state, otherwise the resource signals the Cluster
Service that the resource is online.

• Online. The resource is providing services correctly.
When the resource is in this state the Cluster Service

uses the resource control library callbacks to check for
problems with the resource.

• Offline-pending. The Cluster Service has requested the
resource to stop offering service and go offline.

• Failed. The resource control library has decided that
the resource has failed and cannot continue to provide
services. This is signaled to the Cluster Service which
can decide to restart the resource by bringing it offline
and online again (perhaps at another active node.)
The configuration database has a list of possible hosts

for a resource and an ordered list of preferred owners. The
Cluster Server brings a resource online when any of the
possible hosts is available and when all the dependent
resources are online.

4.3 Resource Migration
A resource group may migrate to another node for

many reasons: (1) failure of the original node, (2) failure
of the resource at the original node, (3) the resource group
prefers to execute at the other node, and (4) the operator
requests the group to move. In the first case Cluster Serv-
ices pull the resource groups to the surviving cluster
nodes. In the other cases, the owning Cluster Service
pushes the resource group to the other node.

Pushing a Group
If a resource fails, the local Cluster Service repeatedly

tries to online the resource. Failing that, the Cluster Serv-
ice will optionally move the containing resource group to
another node. First all resources in the resource group are
taken to the offline state. A new active host node is se-
lected, and the resource group is brought online at the new
hosting node by its local Cluster Service. This process is
called pushing a group to another node. The Cluster Ad-
ministrator tool and load balancing tools, using the cluster
call interfaces, can also initiate a group push.

Pulling a Group
When an active node fails, its resource groups must be

pulled to the other active nodes. This process is similar to
pushing a resource group, but without the shutdown phase
on the failed node. The complication here is determining
what groups were running on the failed node and which
node should take ownership of the various groups. All
nodes capable of hosting the groups determine for them-
selves the new ownership. This selection is based on node
capabilities, the group’s preferred owner list, and a simple
tie breaker rule, in case the nodes cannot decide which
node should be the new host. The replicated cluster data-
base gives all nodes full knowledge of the resource groups
on the failed node. Hence, the nodes can determine the
new hosts without communicating with one another. Each
active node pulls (brings online) the resource groups it
now owns.

Fail-back
A resource group that migrated from its preferred

owner is not automatically migrated back when the pre-
ferred owner rejoins the cluster. Migration back is con-
strained by the resource group failback window described
in the Cluster Configuration Database. The failback win-
dow indicates how long the new node must be up and
running, before the resource group is migrated back to its
preferred owner. It also indicates blackout periods when
failbacks are deferred for cost or availability reasons (mi-
gration causes temporary service outage).

4.4 Client Access to Resources
NT clients normally access resources using names that

look like \\node\service. With MSCS, resources and serv-
ices migrate among nodes. Clients do not want the service
name to change when it migrates -- migration should be
transparent to the client. MSCS provides transparency by
de-coupling the physical node name from the service
name.

Resources are accessed through network names: a
NetBIOS name or a DNS name/IP address combination.
These names become logical resources that are added to
the resource group. Whenever the resource migrates to
another node in the cluster, the resource’s network name
and IP address also migrates as part of its resource group.
Consequently, there is an immutable mapping between
network names and services. From the client’s perspective
there are no nodes in the cluster, only services and the
network names through which they are accessible: the
cluster becomes a single virtual node.

Clients experience a service disruption while a re-
source group is migrated to a new node. Migration is
transparent for connectionless protocols like HTTP and
NFS. If the client is connection-oriented, the client must
reconnect to the service after the service migrates. This
behavior is identical to server failure and reconnect in the
monolithic case. Many off-the-shelf client software sys-
tems, such as the standard file-system network redirector,
already handle this temporary unavailability and recon-
nect in a transparent manner. Some clients such as ODBC
v3 and the SAP R/3 presentation server are cluster aware
in that they store sufficient information at the client to
reconnect to new instance of the middle tier application
servers. These reconnections are not transparent
(connection state is lost), but they are automatic.

5 Cluster Architecture
The MSCS architecture presents cluster management

in three tiers: (1) cluster abstractions, (2) cluster opera-
tion, and (3) operating system interaction.

The top tier provides the abstractions described in
Section 3: nodes, resources, dependencies, and groups.
The important operations features are resource manage-
ment, which controls the local state of resources, and fail-

ure management, which orchestrates responses to failure
conditions.

The shared registry allows the cluster service to see a
globally consistent view of the cluster’s current resource
state. The cluster’s registry is updated with an atomic up-
date protocol and made persistent using transactional log-
ging techniques. The current cluster membership is re-
corded in the registry. The membership agreement proto-
col and failure detection is based on the Tandem multi-
computer membership algorithms [4].

The cluster service relies heavily on the Windows NT
process and scheduling control, RPC mechanisms, name
management, network interface management, security,
resource controls, file system, etc. The Cluster Service
extends the basic operating system with two new modules.
(1) The cluster disk, which implements the Chal-
lenge/Defense protocol for shared SCSI disks (section
6.2), and (2) the cluster network module, which imple-
ments a simplified interface to intra-cluster communica-
tion and implements the heartbeat monitoring.

The core of MSCS consists of 11 components jointly
known as the Cluster Service (see table 1). They are com-
bined in a single process, with some communication
functionality delegated to the cluster network driver.

The following sections describe some elements of two
of the components responsible for the Cluster Service’s
distributed operation. A detailed description of all compo-
nents can be found in the technical report [6].

5.1 Membership Manager
Membership management is based on the Tandem

membership protocol [4]. It maintains consensus among
the active nodes: who is active and who is defined. There
are two important components to the membership man-
agement: (1) the join mechanism admits new members
into the cluster, and (2) the regroup mechanism deter-
mines current membership on startup or suspected failure.

Member Join
Section 4.1 described the operation from the

perspective of a joining node. The join algorithm is con-
trolled by he sponsor and has 5 distinct phases for each
active node.

The sponsor starts the algorithm by broadcasting the
identity of the joining node to all active nodes. It then
informs the new node about the current membership and
cluster database. This starts the new member’s heartbeats.
The sponsor waits for the first heartbeat from the new
member, and then signals the other nodes to consider the
new node a full member. The algorithm finishes with an
acknowledgement to the new member

All the broadcasts are repeated RPC’s to each active
node. If there is a failure during the join operation (de-
tected by an RPC failure), the join is aborted and the new
member is removed from the membership.

Member Regroup
If there is suspicion that an active node has failed, the

membership manager runs the regroup protocol to detect
membership changes. This suspicion can be caused by
problems at the communication level, missing heartbeat
messages, or power failures.

The regroup algorithm moves each node through six
stages. Each node sends periodic status messages to all
other nodes, indicating which stage it has finished. None
of the nodes can move to the next stage until all nodes
have finished the current stage.
1. Activate. Each node waits for a local clock tick so that

it knows that its timeout system is working. After that
the node starts sending and collecting status messages.
It advances to the next stage if all active nodes have re-
sponded, or when the maximum waiting time has
elapsed.

2. Closing. This stage determines whether partitions exist
and whether the current node is in a partition that

Table 1: components of the Cluster Service
Component Functionality
Event processor Provides intra-component event delivery service

Object manager A simple object management system for the object collections in the Cluster Service

Node manager Controls the quorum Form and Join process, generates node failure notifications, and manages net-
work and node objects

Membership manager Handles the dynamic cluster membership changes

Global Update manager A distributed atomic update service for the volatile global cluster state variables.

Database manager Implements the Cluster Configuration Database

Checkpoint manager Stores the current state of a resource (in general its registry entries) on persistent storage.

Log manager Provides structured logging to persistent storage and a light-weight transaction mechanism

Resource manager Controls the configuration and state of resources and resource dependency trees. It monitors active
resources to see if they are still online

Failover manager Controls the placement of resource groups at cluster nodes. Responds to configuration changes and
failure notifications by migrating resource groups

Network manger Provides inter-node communication among cluster members

should survive. A partition survives if any one of the
following conditions is satisfied
1. The new membership contains more than half the

original membership.
2. (a) the new membership has exactly half the original

members, and (b) there are at least two members in
the current membership, and (c) this membership
contains the tie breaker node that was selected when
the cluster was formed.

3. (a) the original membership contained exactly two
members and (b) the new membership only has one
member, and (c) this node owned the quorum disk in
the previous group.

If the new group survives, the new members select a
tiebreaker node to use in the next regroup. This tie-
breaker then checks the connectivity information re-
ceived from all nodes to ensure that the surviving group
is fully connected. (If not it prunes the partially con-
nected members nodes). It then announces the new
membership to all members. All now move to stage 3.

3. Pruning. All nodes that have been pruned for lack of
connectivity halt in this phase. All others move forward
to the first cleanup phase.

4. Cleanup Phase One. All surviving nodes install the
new membership mark the nodes that did not survive
the membership change as inactive, and inform the
cluster network manager to filter out messages from
these nodes. Each node’s Event Manger then invokes
local callback handlers to announce the node failures.

5. Cleanup Phase Two. Once all members have indicated
that the Cleanup Phase One has been successfully exe-
cuted, a second cleanup callback is invoked to allow a
coordinated two-phase cleanup. Once all members have
signaled the completion of this last cleanup phase they
move to the final state.

6. Stabilized. The regroup has finished.
There are several points during the operation, where

timeouts can occur. These timeouts cause the regroup
operation to restart at phase 1.

5.2 Global Update Manager
Many components of the NT Cluster Service need to

share volatile global state among nodes. The algorithm
used by the Global Update Manager is a variant of the
Tandem GLUP protocol [2]. It is an atomic multicast
protocol guaranteeing that if one surviving member in the
cluster receives an update, all surviving members eventu-
ally receive the update, even if the original sender fails. It
also guarantees that updates are applied in a serial order.

Locker Node
One cluster node, dubbed the locker node, is assigned

a central role in the Global Update Protocol. Any node
that wants to start a global update first contacts the locker.
The locker node promises that if the sender fails during
the update, the locker (or it’s successor) will take over the
role of sender and update the remaining nodes. Once the

sender is finished updating all the members in the cluster
it sends the locker node an unlock request to indicate the
protocol terminated successfully.

Node Updates
Once a sender knows that the locker has accepted the

update, the sender RPCs to each active node (including
itself) to install the update. The nodes are updated one-at-
a-time in a node-ID order starting with the node immedi-
ately following the locker node, and wrapping around the
ID’s up to the node with ID preceding the locker’s. Once
the update has been installed at all nodes, the locker is
notified of the completion.

Failures
The protocol assumes that if all nodes that received the

update fail, it is as if the update never occurred. The re-
maining nodes do not need to recover such updates. Ex-
amples of such failures are (1) sender fails before locker
accepts update, or (2) sender installs the update at the
locker, but both sender and locker node fail after that.

If the sender fails during the update process, the locker
reconstructs the update and sends it to each active node.
Nodes that already received the update detect this through
a duplicate sequence number and ignore the duplicate
update.

If the sender and locker nodes both fail after the
sender managed to install the update at any node beyond
the locker node, a new locker node will be assigned. This
new locker node will always be the next node in the up-
date list. Given the way the updates are ordered, this node
must have already received the update. If the sender man-
aged to install the update past the locker node, it did
starting at the node immediately following the locker no-
de. The new locker will complete any update that was in
progress using the saved update information. To make this
work, the locker allows at most one update at a time. This
gives a total ordering property to the protocol -- updates
are applied in a serial order.

6 Support Components.
The Cluster Service uses several support components

unique to MSCS: the cluster network component, the
cluster disk driver, the event logger, and the time service.

6.1 Cluster Network
The Cluster Network component provides the cluster

service with:
1. A uniform interface to communicate with other nodes,

independent of the network infrastructure.
2. Predictable processing of I’m-Alive heartbeat messages
3. Node failures detection based on heartbeats.
4. Network and interface failure detection.

Heartbeat Management
The cluster network keeps an active-node connectivity

vector. For each active node, the network manager keeps a

list of interfaces that can reach that node. Each node peri-
odically sends a heartbeat message to each other active
node over each of these interfaces. When a heartbeat ar-
rives from an active node, the sender’s local timeout
counter for that node is reset, and its heartbeat sequence
number is recorded. Duplicates arriving over alternate
interfaces are ignored for the node’s alive count, but do
test the network for latent failures. If, after a certain pe-
riod (currently 2 heartbeat periods), no messages have
arrived over a certain interface or from a particular host,
failure suspicions are generated.

6.2 Cluster Disk driver
MSCS provides support for the disks connected to a

shared SCSI bus. Multiple nodes in the cluster can be
connected to the same SCSI bus. At any time, each disk is
"owned" by one of the nodes, but each node can own
some disks on the bus. This allows dynamic ownership
and failover of disks among cluster members.

The Cluster Service uses the shared disk mechanism to
implement the Cluster Quorum Resource. The quorum
resource has two roles: (1) it breaks ties when exactly half
of the nodes are trying to form a cluster, and (2) it stores
the cluster database and log information across cluster
failure periods. By using the SCSI challenge-defense
protocol, the cluster service arbitrates for the ownership of
the quorum resource.

6.3 Cluster Wide Event Logging
Event logs are an important tool for NT server admin-

istrators. Logs track the execution state and potential
problems of NT devices, services, and the applications
running on the node. The administrator uses an event
viewer to display the logs. In a cluster there is no longer a
clear association between node and the applications and
services running on the node, as such it is complex for to
track nodes and services using the traditional mechanisms.

The Cluster Service extends the event log mechanism
by enabling administrators to view a single event log
containing all the events in the cluster, even if the node
that reported the event is currently down.

To implement this global event log, the local event log
mechanism forwards local events to the local Cluster
Services. Events reported to the Cluster Service are sent
via RPC to all other nodes in the cluster, where they are
appended to the local event log files.

6.4 Time Service
The Cluster Service ensures that the clocks at the

nodes in the cluster never drift apart more than the short-
est time it takes to failover a resource. This ensures that
resources that failover between nodes see a monotonically
increasing local clock. The Cluster Service uses the stan-
dard NT Time System Service, but uses its resource con-
trol library to dynamically update the registry information
to match the primary time source within the cluster. This
allows all clocks to be synchronized with universal time.

7 Virtual Servers
Virtual NT servers extend the resource group concept

to provide a simple abstraction for applications and ad-
ministrators. Applications run within a virtual server envi-
ronment. This environment provides the application with
the illusion that it is running on a virtual NT node with
virtual services, a virtual registry, and with a virtual name
space. When an application migrates to another node, it
appears to the application that it restarted at the same
virtual NT node.

The Virtual Server environment provides applications,
administrators, and clients with the illusion of a single,
stable environment -- even if the resource group migrates.

One benefit of virtual servers is that many instances of
an application can be executed on a single node, each
within its own virtual server environment. This allows two
SQL Servers or two SAP environments to execute as two
virtual servers on one physical NT node.

7.1 Client Access
A virtual server resource group requires a node name

resource (NetBios and DNS), and an IP address resource.
Together, these present consistent naming for the clients.
The virtual server name and IP address migrate among
several physical nodes. The client connects using the
virtual server name, without regard to the physical loca-
tion of the server.

7.2 Server Encapsulation
Each virtual server environment provides a name

space and configuration space separated from other virtual
servers running at the same node: registry access, service
control, named communication (pipes), and RPC end-
points. This allows two instances of an application service
running on the same node but in separate virtual service
environments not to clash in the access of configuration
data or internal communication patterns.

To provide this transparency, three features were
added to NT:
• Virtual server naming. System services (such as Get-

ComputerName) return the network name associated
with the virtual server instead of the host node name.

• Named pipe re-mapping. When an application service
consist of several components that use interprocess
communication to access each other’s services, the
communication endpoints must be named relative to
the virtual server. To achieve this a name remapping
facility for the named pipe interface was implemented.
Named pipe names are translated from
\\virtual_node\service to \\host\$virtual_node\service.

• Registry replication. The Windows NT registry stores
most application configuration data. To allow applica-
tions that run in separate virtual servers to run on the
same host node, registry trees must be remapped to
virtual-server local trees. nt state in the registry, parts
Each unique tree represents a single virtual server and

is internally dependent on the name associated with the
virtual server. When the virtual server migrates, the lo-
cal tree is rebuilt from the logs on the quorum device.
Although virtual servers are a clean abstraction for

encapsulating applications, the implementation is ex-
tremely difficult. It is difficult to know all the dependen-
cies on node specific resources, as applications often
make use of dynamic loadable libraries in ways that intro-
duce new naming dependencies.

8 Experience
Most major NT Server applications have been

modified to use MSCS. The next sections describe three
of them: Microsoft SQL Server, Oracle Parallel and Fail-
safe servers, and the SAP R/3 business system.

8.1 Microsoft SQL-Server
SQL Server 6.5 is a client/server relational database

system consisting of a main server process and a helper
process called the executive. The server process manages
a collection of databases that in turn map down to the NT
file system. The server is a free-threaded process that lis-
tens for SQL requests and executes them against the data-
base. It is common to encapsulate the database with stored
procedures that act on the database. Client requests invoke
these procedures, written in the TransactSQL program-
ming language. The procedures execute a program with
control flow and calls to read and write the database.
These procedures can also access other NT services (e.g.
Mail is often used for operator notification.)

The SQL executive performs housekeeping tasks like
launching periodic jobs to backup or replicate the data-
base. The replication is quite flexible. It is often used to
create a replica of the database that can be used in case the
primary system fails.

SQL Server Database Failover
In 1996, Microsoft shipped a version of SQL Server

that provided database failover. This design predated
MSCS. In that design, two SQL Servers were configured
on two NT nodes with disks shared between them. Each
database, (a self-describing collection of SQL tables, with
its own transaction log file) was configured as a subset of
the shared disks. SQL Server was able to migrate a data-
base from one server to another. The ODBC client proto-
col was aware of the different server names and was en-
hanced to select the second server for a database if the
first one was not available.

This design "worked" but it had some unexpected
problems. Fundamentally, it was very hard to configure
correctly, especially at the server side. A database that
moves between two SQL servers finds itself with two sets
of registry entries that determine how the server (and the
database) should behave. Administrators quickly learned
that they needed to keep the two servers identical. One
important difficulty is that the administrator may not re-
alize that some operation is modifying the registry. Simi-

larly, security on the two servers had to be kept identical.
Stored procedures often reside in a server-global database.
Administrators discovered that they needed to exactly
replicate these procedures at each server so that when the
database failed over to the second server, clients would be
able to find the same procedures. SQL Server’s replication
software and many utilities did not use the ODBC inter-
face and so did not failover. This effectively disabled rep-
lication -- a major loss of functionality.

SQL Server Failover under MCSC.
Using MSCS it was possible to move away from data-

base failover and redesign SQL Server to use server
failover as the mechanism for high-availability. A SQL
Server resource group is configured as a virtual NT server
with a virtual registry, virtual devices, virtual services,
virtual name, virtual IP address, and whatever else is
needed to create the fiction that it is a virtual NT node.
Clients connect to the server running on this virtual node.
The server application thinks it is running on this virtual
server and the virtual server can migrate among physical
servers.

This design allows a two-node MSCS cluster to have
two or more high-availability SQL Servers. The clients
always see the same server name, even as the server mi-
grates from node to node. The server sees the same envi-
ronment, even as it migrates. Administrators, who are
really just clients, administer virtual servers, just like real
servers (no new concepts have been added). Replication
and other mechanisms just work. Again, it is as if nothing
has changed -- the server is just virtualized. This simple
design has proved to be very easy to understand and to
explain to users.

8.2 Oracle Database Servers
Oracle Corporation’s Oracle Parallel Server (OPS)

runs on most cluster environments. OPS relies on the
shared disk model for its cluster technology, using a dis-
tributed lock manager (DLM) to coordinate disk accesses.
Each instance of the OPS database server can access all
databases stored on the shared disk array. Whenever an
instance of the server fails, a surviving OPS runs a recov-
ery operation to recover the database.

Classic OPS running on an MSCS cluster uses the
same model. Consequently, the shared disks are not
resources managed by MSCS. OPS just uses MSCS to
track cluster organization and membership notifications.

Oracle developed the Oracle Fail-Safe product to inte-
grate more closely with MSCS. Fail-Safe uses the MSCS
shared nothing model and data partitioning. Each Fail-
Safe server instance manages one or more databases.

A Fail-Safe server instance runs as a service (process)
at each node in the cluster. It performs database monitor-
ing (interacting with the MSCS resource monitors) for
each database at that node, and it maintains the dynamic
configuration of the client/server interface modules.

The Oracle Fail-Safe server is a container service in
the sense that a single server process at a node supports
many resource groups. Resource groups can migrate to
and from the container service. Microsoft’s SQL Server by
contrast is a process-service: there is one resource group
per process, and new processes are created when the re-
source migrates.

Each Oracle Fail-Safe database is stored on one or
more shared disks, but conforming to the MSCS model,
the database is only accessible to the Oracle server that
controls the disk as a cluster resource. Each instance of a
Fail-Safe database is an MSCS virtual server. Upon fail-
ure, the virtual server (disk, database, IP address, and
network name) migrates to another active node. Once the
resources are brought on-line, the local Fail-Safe server is
notified of the new resources. The Fail-Safe server
initiates recovery and begins offering database access.

Clients access a database through the network names
and IP addresses associated with the resource group that
holds each database. When a database fails, the client
reconnects to the database server under the same name
and address, which have moved to the surviving node.
Application builders are encouraged to maintain transac-
tion state information, so that after a failure any in-flight
transactions can be resubmitted.

8.3 SAP R/3
SAP AG offers a scalable system for business appli-

cations. It is the world’s largest supplier of business solu-
tions. SAP builds its systems around the sophisticated
middleware system SAP R/3. R/3 is a three-tier Cli-
ent/Server system, separating presentation, application
and data storage into clearly isolated layers. Although all
the business logic is in the application tier of the system,
there is no persistent state at the application servers. This
separation allows application servers to be added to sys-
tem to achieve higher processing capacity and availability.
Load balancing and availability management of the par-
allel application servers is through dedicated R/3 man-
agement tools.

All persistent state of R/3 is maintained in the database
tier where a 3rd party database is used for data storage. To
facilitate the use of different database vendors, the system
avoids the storage of non-portable elements such as data-
base stored procedures. There are 3 components of which
only a single instance can be active in the system, and
which are thus a single point of failure: the database, the
message server and the enqueue server. The failure of any
of these servers will bring the complete system to a halt.

These services are made highly available with MSCS.
Given that only single instances of these servers can

be active in the system, partitioned failover is used to or-
ganize the cluster. During normal operation, one node of
the cluster hosts the database virtual server and the other
provides the SAP middleware and enqueue virtual server
that are combines the application components into a

server dubbed the Central Instance (CI). Upon failure of
either node, the failed virtual server migrates to the
surviving node. The application components are all
placed in a joint resource group, with dedicated resource
libraries managing each of the components. The resources
are organized in several complex dependency trees. SAP
application migration is relatively simple as no persistent
state is kept at this tier.

The application servers in SAP R/3 are "failover
aware", in that they can be temporarily disconnected from
the database or message/enqueue server. After a waiting
period they try to reconnect. A failure in the database tier
is transparent to the user, as the application servers mask
the potential transaction failure that was the result of the
failure. Migration of the application server is handled at
the client by establishing a new login-session at the new
node hosting the application server.

9 Future Directions
We commented that MSCS is still in a first phase. The

second phase will focus on scalability and extending
availability management. The scaling effort has two major
components: First there is cluster software itself, where
scalability of the algorithms used in the distributed opera-
tion is critical to growing clusters to larger numbers of
nodes [7]. Secondly, we are exploring the introduction of
cluster aware mechanisms for use by developers of so-
phisticated servers that might exploit cluster-style paral-
lelism. In support of such an approach it would be neces-
sary to provide programming interfaces for cluster mem-
bership and communication services, similar to services in
Isis [1]. Server developers would then use these to build
scalable applications.

References.
[1] Birman, K.P., Building Secure and Reliable Network Appli-

cations. Manning Publishing Co. and Prentice Hall, 1997

[2] Carr, R., "Tandem Global Update Protocol", Tandem Sys-
tems Review, V1.2 1985

[3] Gray, J., and Reuter A., Transaction Processing Concepts
and Techniques, Morgan Kaufmann, 1994.

[4] Katzman., J.A., et.al., "A Fault-tolerant multiprocessor
system", United States Patent 4,817,091, March 28, 1989.

[5] Pfister, G.F., In Search of Clusters : The Coming Battle in
Lowly Parallel Computing, Prentice Hall, 1995.

[6] Vogels, W., Dumitriu, D., Birman, K. Gamache, R., Short,
R., Vert, J., Massa, M., Barrera, J., and Gray, J., "Analysis
of the Design and Architecture of the Microsoft Cluster
Service", Cornell University Dept. of CS Technical Report,
number assignment in preparation, May 1997

[7] Vogels, W., Dumitriu, D., Agrawal, A., Chia, T., and Guo
K., "Scalability of the Microsoft Cluster Service", Pro-
ceedings of the Second Usenix Windows NT Symposium,
Seattle, WA, August 1998.

