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Abstract 
This paper addresses issues of task clustering-the 
coalition of several fine grain tasks into single coarser 
grain tasks called task clusters+md task cluster 
scheduling on distributed processors. The performance 
of various scheduling schemes is studied and compared 
f o r  a variety of workloads. Simulation results indicate 
that the scheduling policy that gives priority to the 
cluster with the ,smallest cumulative service demand of 
all its tasks performs better than the other policies 
examined. 

1. Introduction 

In distributed systems, the efficiency of execution of 
parallel programs critically depends on the policies used 
to partition the program into modules or tasks and to 
schedule these tasks onto distributed nodes. In these 
systems communication cost incurs if two tasks are assi- 
gned to different processors. Several partition algorithms 
have been proposed in the literature. The goal of them is 
to divide the program into the appropriate size and 
number of tasks to balance the two conflicting requ- 
irements of low communication overhead and a higher 
degree of parallelism. One solution that has been propo- 
sed is to coalesce several fine grain tasks into single coa- 
rser grain tasks called task clusters. Upon construction, 
task clusters are scheduled on their assigned processors. 
Therefore, task clustering is a pre-process step to sche- 
duling. 

This is clearly different from the task level models ([3], 
[4], [9]), in which, after a job arrives to the system, it is 
immediately split into component tasks, and these tasks 
will be processed on any processor in any order as long as 
the precedence constraints are not violated. 

Typically, a set of tasks that represents a distributed 
program corresponds to nodes in a directed graph with 
node and edge weights. Each vertex in a graph denotes a 
task and a weight, which represents its processing time. 
Each edge denotes the precedence relation between the 
two tasks, and the weight of the edge is the commu- 

nication cost incurred if the two tasks are assigned to 
different processors ([5], [61, [71, [lo], [ l l ] ,  and [12]). 

The clustering problem has been shown to be NP- 
complete for a general task graph and for several cost 
functions ( [5 ] ) .  For example, if the cost function is the 
minimization of parallel time on a completely connected 
virtual architecture with an unbounded number of pro- 
cessors, then clustering is NP-hard in the strong sense. 
Since neither analytic nor absolute results are known, 
research has been done to determine the relative perfor- 
mance of some promising techniques. 

Many authors have been studied the clustering problem 
([I], P I ,  P I ,  [61, VI, [lo], [111, [121) and they have 
proposed various algorithms based on graph scheduling 
and heuristics. The primary purpose in most of these 
works is to find ways to distribute the tasks among the 
processors in order to achieve some performance goals 
such as minimizing job execution time, minimizing 
communication and other overhead and/or maximizing 
resource utilization. 

Multitasking that has been studied in [8] is a type of 
clustering. In that work a distributed system with two 
processors is considered where some jobs consist of a set 
(cluster) of two sequential tasks that must be executed on 
the same processor, while other jobs consist of two 
parallel tasks that can be executed on either processor. 
Resequencing of jobs is required after processor service. 

There are two fundamental scheduling strategies used in 
clustering: scheduling independent tasks in one cluster 
(non-linear clustering) and scheduling tasks that are in a 
precedence path of the directed graph in one cluster 
(linear clustering). Linear clustering fully exploits the 
parallelism in the graph while non-linear clustering 
reduces the parallelism by sequentializing independent 
tasks to avoid high communication. 

In this work we consider linear clustering. A simple 
probabilistic task clustering method is employed to 
coalescing tasks into task clusters. Emphasis is given to 
the study of the subsequent cluster scheduling within pro- 
cessor queues. Tasks in a cluster must be executed 
sequentially on the same processor without preemption. 
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Generally, scheduling policies for distributed systems 
and multiprogrammed parallel systems study the influe- 
nce of the scheduling policy on processor performance 
only. They do not explicitly model the U 0  processing, 
although it can significantly influence the overall system 
performance. However, scheduling is not an isolated is- 
sue. It is but one service provided by the operating sys- 
tem. The solution to the scheduling problem must be inte- 
grated with solutions to other problems, e.g. VO mana- 
gement. The different parts of the system must work toge- 
ther to create a cohesive whole in a way that makes sense. 

In this work we study task clustering in a closed 
queuing network model of a distributed system where we 
incorporated VO equipment. The design choices that are 
considered include different ways to schedule task clus- 
ters for execution. We compare the performance of four 
cluster scheduling policies for various coefficients of 
variation of the processor service times and for different 
degrees of multiprogramming. To our knowledge, such an 
analysis of cluster scheduling has not appeared in the re- 
search literature. 

2. Model and methodology 

2.1. System and workload models 

A closed queuing network model of a distributed system 
is considered. There are P homogeneous and independent 
processors each serving its own queue. We  have 
examined the system in two cases: for P = 4 and for P = 
16. This is a reasonable choice for the current existing 
medium-scale departmental networks of workstations. It 
is believed that qualitative results for other numbers of 
processors even for large-scale distributed, are similar for 
the data demonstrated .here. A high-speed network with 
negligible communication delays interconnects the distri- 
buted nodes. 

As mentioned in the introduction, the two step approach 
to scheduling is: 1) Clustering, 2 )  Scheduling the clusters. 
The scheduling problem is equivalent to determining a 
mapping of the clusters to processors and then 
determining an ordering of the clusters within each pro- 
cessor queue. 

Jobs are partitioned into tasks that can be run either 
sequentially or in parallel. A simple probabilistic 
clustering method is employed to coalescing tasks into 
task clusters. Processors are characterized by numbers 1, 
2 ,  .., P.  Tasks are assigned random numbers that are 
uniformly distributed in the range of [ 1 .. PI. We consider 
that assignment is realized in such a way that tasks of a 
job with precedence constraints are assigned the same 
number and perform a cluster that is mapped to the 
processor labeled with this number. Duplication of tasks 
in separate clusters is not allowed. 

On completing execution, a task waits at the join point 
for its sibling tasks of all clusters of the same job to 

complete execution. Therefore synchronization among 
tasks is required. The price that one pays for the increased 
parallelism is the synchronization delay that occurs when 
tasks wait for their siblings to finish execution. 

Tasks are executed according to the cluster scheduling 
method that is currently employed. No migration or 
preemption is permitted. Once a task of a cluster starts 
execution, then this task and all other tasks belonging to 
the same cluster will also run to completion without inter- 
ruption. Although tasks scheduled on two different 
processors communicate with each other, we do not model 
any communication overhead and we consider it as part of 
task execution time. 

The degree of multiprogramming N is constant during 
the simulation experiment. The configuration of the model 
is shown in Figure 1. 

I P=16 I res...;I FCFS 

N 
4 

Figure 1. The queuing network model (E16)  

Since we are interested in a system with balanced 
program flow, we have considered an U 0  channel, which 
has the same service capacity as the processors. 

The workload considered here is characterized by three 
parameters: the distribution of the number of tasks per 
job, the distribution of task execution time, and the degree 
of multiprogramming. We  assume that there is not corre- 
lation between the different parameters. For example, a 
job with a small number of tasks may have a long 
execution time. 

Jobs consist of a set of n 2 1 tasks. We  assume that the 
number of tasks of jobs is uniformly distributed in the 
range of [ l  .. PI. The number of tasks of a job x is rep- 
resented as @). Each time a job returns from U 0  service 
to distributed processors, it is partitioned into a different 
number of tasks and it needs a different number of 
processors for execution. That is its degree of parallelism 
is not constant during its lifetime in the system. 

The number of clusters of a job x is represented as c(x) 
and is equal to the number of processors p ( x )  required by 
job x. Therefore the following relations hold: 

t (x)  <= P and c(x) = p(x)  <= r(x) 
W e  also investigate the impact of the variability in task 

service demand on system performance. A high 
variability in task service demand implies that there is 
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proportionately a high number of service demands that are 
very small compared to the mean service time and a 
comparatively low number of service demands that are 
very large. When a task with a long service demand starts 
execution, it occupies a processor for a long interval of 
time and depending on the scheduling policy applied it 
may introduce inordinate queuing delays for the other 
tasks waiting for service. 

The parameter, which represents the variability in task 
execution time, is the coefficient of variation of execution 
time (0. We examine the following cases: 

. Task execution times are independent and identically 
distributed (IID) exponential random variables with 
mean m. 

Task execution times have a Branching Erlang distribu- 
tion with two stages and are IID. The coefficient of 
variation is C ,  where C > 1 and the mean is m. 

After a job leaves the processors, i t  requests service 
from the U 0  unit. The U 0  queuing discipline is FCFS. 
The U 0  service times are exponentially distributed with 
mean k and are IID. 

All notations used in this paper appear in Table 1. 

K 
R 

2.2. Cluster scheduling policies 

Mean cycle time 
System throughput 

In this work we examine only non-preemptive cluster 
scheduling policies. All tasks belonging to the same 
cluster must finish execution before any other task starts 
processing. Tasks within a cluster are executed sequen- 
tially. We assume that the scheduler has perfect informa- 
tion when making decisions, i.e. it knows: 
. The number of clusters of each job, that is the number 

of processors required by each job. 
. The number of tasks of each cluster. 
. The service time of tasks. 

Next we describe the scheduling strategies employed in 
this work. As in most studies we assume that their 
overhead is negligible. 

. First-Come-First-Served (FCFS): With this strategy, 
each cluster is scheduled into the assigned queue in the 
order of its arrival. This policy is the simplest form of 
cluster scheduling. 

Job with the Smallest Number of Clusters First 
(JSNCF): This policy gives higher priority to clusters 
that belong to the job with the smallest number of 
clusters. That is, this strategy uses the number of clusters 
of a job as an indicator of job granularity. Coarse-grain 
jobs are given higher priority. Depending on their 
assigned priority, clusters are inserted in the appropriate 
position in their assigned queue. 

. Cluster with Smallest Number of Tasks First (CSNTF): 
In this case the scheduling criterion is the number of 

N 
C 

tasks per cluster. The cluster currently including the 
smallest number of tasks is assigned the highest priority. 

. Shortest Cluster First (SCF): This policy assumes that a 
priori knowledge about a cluster is available in form of 
cumulative service demand of all its tasks. When such 
knowledge is available, clusters in the processor queues 
are ordered in a decreasing order of total service 
demand. However, it should be noted that a priori 
information is not often available and only an estimate 
of task execution time can be obtained. In this study, 
task execution time estimated is assumed to be 
uniformly distributed within *E% of the exact value. 

When using priorities, in the case of ties the FCFS 
method is used. 

Degree of multiprogramming 
Coefficient of variation 

2.3. Performance metrics 

k 
E 

Consider the following definitions: 

. Response time of a random job is the interval of time 
from the dispatching of this job clusters to processor 
queues to service completion of the last task of this job. 

Cycle time of a random job is the time that elapses 
between two successive processor service requests of this 
job. In our model cycle time is the sum of response time 
plus queuing and service time at the U 0  unit. 

Parameters used in later simulation computations are 
presented in Table 1. 

In our model the system throughput (system perfor- 
mance) and the mean cycle time (program performance) 
determine the external performance. Internal efficiency is 
primarily determined by the mean processor utilization. 

Mean YO service time 
Estimation error 

Table 1. Notations 
I RT I Mean remonse time I 

I U p  I Mean Drocessor utilization I 

I m  I Mean task execution time I 

3. Simulation results and discussion 

3.1. Model implementation and input parameters 

The queuing network model was simulated with discrete 
event simulation models using the independent replication 
method. For every mean value a 95% confidence interval 
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was evaluated. All confidence intervals were found to be 
less than 5% of the mean values. 

Both systems considered are balanced: 

m= 1 .O, k = 0.625 P = 4 case 
m=1.0, k=0.531 P =  16case 

The reason we have chosen k = 0.625 (k = 0.531) for 
balanced program flow is that at the processors there are 
on average 2.5 (8.5) tasks per job in the cases of P = 4 
and P = 16 respectively. So, when all processors are busy, 
an average of 1.6 (1.882) jobs is served each unit of time. 
This implies that U 0  mean service time must be equal to 
111.6 = 0.625 (U1.882 = 0.531) if the U 0  unit is to have 
the same service capacity. 

The system was examined in cases of C = 1, 2, and 4. N 
was taken as 2, 4, 6, 8, and 10. In the SCF case we have 
also examined estimation errors f1M and f30%. 

3.2. Performance analysis 

Due to space limitations, only the following results are 
presented, but they are representative of the overall model 
performance: 

. In Tables 2-3 performance parameters for the C=l case. 

. In Figures 2-3 mean cycle time ( K )  is plotted versus N 

. In Figures 4-9 system throughput (R) for all cases 

for C=l. 

examined. . In Figure 10 system throughput in the C=l, P=16, SCF 
case for E = 0, 10, 30. 

Simulation results show the following: 
The relative performance of the four scheduling policies 

is similar in the P=4 and P=16 systems. From the results 
we observe that, for the same degree of multiprogram- 
ming, system performance is better in the P=4 case than 
in the P=16 (lower utilization and throughput in the P=16 
case). This is due to the fact that in the P=4 case for each 
processor correspond on average (N x 2.5) / P = N x 
0.625 tasks, while in the P=16 case (N x 8.5) I P = N x 
0.53 1 tasks. 

For all N the performance in terms of mean cycle time 
and system throughput, is superior with the SCF method. 
This is due to the fact that with the SCF policy, clusters 
with small cumulative service demand are never blocked 
behind a cluster that has a large service time and is 
waiting in the queue. Blocking behind a ‘large’ cluster 
introduces inordinate queuing delays and also synchro- 
nization overhead to the sibling clusters. During that time 
it is most probable for the U 0  unit to remain idle and then 
to be deluged with many jobs that are forced to delay in its 
queue. SCF alleviates this problem, yielding lower RT 
than the other policies, which results in lower mean cycle 
time and higher system throughput. 

FCFS performs almost the same as JSNCF. CSNTF 
performs very slightly better than these two methods. 
However, there is an overhead involved with JSNCF and 
CSNTF due to reordering of tasks in the queues, which is 
not modelled in this work. 

In all cases the superiority of SCF over FCFS is higher 
at high degrees of multiprogramming. This is due to the 
fact that at high N there are more tasks in the queues and 
therefore there are more opportunities to exploit the 
advantages of SCF. For N 5 4 and for all C all strategies 
perform very close. 

The simulation results reveal that the decrease in 
response time due to the superiority of SCF is higher than 
the decrease in K and the increase in R.  For example, in 
the P=4 system case, for C=l and N=10 the decrease in 
RT is 12% while the decrease in K is 6% and the increase 
in R is 6.4%. This is due to the fact that the overall system 
performance depends not only on the processors but on 
the I/O unit as well. 

We conducted additional simulation experiments to 
assess the impact of service time estimation error on the 
performance of the SCF method. Figure 10 shows the 
effect of service time estimation error on system through- 
put for the C=l, P=16 case. The estimation error in this 
figure is set at f O % ,  f10% and f30%. The graph shows 
that the estimation error in task service time affects margi- 
nally system performance. Therefore, no profit can be 
gained from the a priori knowledge of exact task service 
times. 

For all N, the superiority of SCF over the other three 
methods examined is generally increasing with increasing 
C. This is due to the fact that as C increases the variability 
in task execution time increases too and this results in 
better exploitation of the SCF strategy. The superiority of 
SCF over FCFS was more significant for P=4 than for 
P=16. For example, regarding R, in the P=4, N=10, C=4 
case the superiority is about lo%, while in the P=16, 
N=10, C=4 case it is about 6%. 

4. Conclusions and further research 

In this work we studied task clustering in distributed 
systems. We used simulation as the means of obtaining 
results. Four scheduling policies were considered. First- 
Come First-Served (FCFS), Job with the Smallest 
Number of Clusters First (JSNCF), Cluster with the 
Smallest Number of Tasks First (CSNTF), and Smallest 
Cluster First (SCF). Their performance was studied and 
compared for various degrees of multiprogramming N and 
coefficients of variation C of task execution times. The si- 
mulation results reveal the following: 

. In all cases examined SCF performed better than the 

FCFS performed very close to JSNCF and CSNTF. 

other policies. 
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The superiority of SCF over the other methods is 

For low N all methods perform close. 

. The SCF policy can tolerate estimation error in task 

increasing with increasing Nand increasing C.  

service time. 

~ 

6 
8 

FCFS and SCF policies have their merits. System 
performance is better in the case of SCF but this method 
assumes a priori knowledge of an approximate task 
execution time. When the scheduler does not have this 
information, then the FCFS method should be preferred 
from the rest of the methods examined, as it performs 
very close to them, it is easier to implement, and it 
produces less overheard. 

This work is a case study. It should be extended so that 
task communication overhead to be considered and also 
pre-emptive service disciplines to be studied. 

~ ~ ~ 

0.51 5.15 6.10 0.98 
0.58 5.98 7.10 1.13 

Table 2. C=l, SCF case, p = 4 

N I  U p I  R T I  K I  R 
2 I 0.41 I 2.28 I 3.03 I 0.66 1 1 1  

0.77 4.53 6.33 1.26 
I I I 10 I 0.81 I 5.21 I 7.45 I 1.34 I 

Table 3. C=l, SCF case, p = 16 
N I  U p I  R T I  K I  R 
2 I 0.26 I 3.49 I 4.10 I 0.49 

I I 

I 4 I 0.41 I 4.36 I 5.13 I 0.78 I 

c I 

I 10 I 0.64 I 6.76 I 8.07 I 1.24 I 

. . . . .  - - - - I  

N 

-FCFS -t JSNCF 
+CSNTF t S C F  

Figure 2. K versus N, p 4 ,  C=l 
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Figure 3. K versus N, p16, C=l 
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Figure 4. R versus N, p 4 ,  C=l 
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Figure 5. R versus N, p 4 ,  C=2 
R 

. .  . . . . . .  . . .  

, , 0 9 r . .  . ' .  . . . . . .  ! . .  

0,69 * 

0,49 
8 I O  

N 
-FCFS -+-JSNCF 
*CSNTF *SCF 

Figure 6. R versus N, p 4 ,  C=4 
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