
A Simulation Model of Task Cluster Scheduling in Distributed Systems

Helen D. Karatza
Department of Informatics

Aristotle University of Thessaloniki
54 006 Th essa lon iki, Greece

karatza@csd. auth.gr

Abstract
This paper addresses issues of task clustering-the
coalition of several fine grain tasks into single coarser
grain tasks called task clusters+md task cluster
scheduling on distributed processors. The performance
of various scheduling schemes is studied and compared
f o r a variety of workloads. Simulation results indicate
that the scheduling policy that gives priority to the
cluster with the ,smallest cumulative service demand of
all its tasks performs better than the other policies
examined.

1. Introduction

In distributed systems, the efficiency of execution of
parallel programs critically depends on the policies used
to partition the program into modules or tasks and to
schedule these tasks onto distributed nodes. In these
systems communication cost incurs if two tasks are assi-
gned to different processors. Several partition algorithms
have been proposed in the literature. The goal of them is
to divide the program into the appropriate size and
number of tasks to balance the two conflicting requ-
irements of low communication overhead and a higher
degree of parallelism. One solution that has been propo-
sed is to coalesce several fine grain tasks into single coa-
rser grain tasks called task clusters. Upon construction,
task clusters are scheduled on their assigned processors.
Therefore, task clustering is a pre-process step to sche-
duling.

This is clearly different from the task level models ([3],
[4], [9]), in which, after a job arrives to the system, it is
immediately split into component tasks, and these tasks
will be processed on any processor in any order as long as
the precedence constraints are not violated.

Typically, a set of tasks that represents a distributed
program corresponds to nodes in a directed graph with
node and edge weights. Each vertex in a graph denotes a
task and a weight, which represents its processing time.
Each edge denotes the precedence relation between the
two tasks, and the weight of the edge is the commu-

nication cost incurred if the two tasks are assigned to
different processors ([5], [61, [71, [lo], [l l] , and [12]).

The clustering problem has been shown to be NP-
complete for a general task graph and for several cost
functions ([5]) . For example, if the cost function is the
minimization of parallel time on a completely connected
virtual architecture with an unbounded number of pro-
cessors, then clustering is NP-hard in the strong sense.
Since neither analytic nor absolute results are known,
research has been done to determine the relative perfor-
mance of some promising techniques.

Many authors have been studied the clustering problem
([I], P I , P I , [61, VI, [lo], [111, [121) and they have
proposed various algorithms based on graph scheduling
and heuristics. The primary purpose in most of these
works is to find ways to distribute the tasks among the
processors in order to achieve some performance goals
such as minimizing job execution time, minimizing
communication and other overhead and/or maximizing
resource utilization.

Multitasking that has been studied in [8] is a type of
clustering. In that work a distributed system with two
processors is considered where some jobs consist of a set
(cluster) of two sequential tasks that must be executed on
the same processor, while other jobs consist of two
parallel tasks that can be executed on either processor.
Resequencing of jobs is required after processor service.

There are two fundamental scheduling strategies used in
clustering: scheduling independent tasks in one cluster
(non-linear clustering) and scheduling tasks that are in a
precedence path of the directed graph in one cluster
(linear clustering). Linear clustering fully exploits the
parallelism in the graph while non-linear clustering
reduces the parallelism by sequentializing independent
tasks to avoid high communication.

In this work we consider linear clustering. A simple
probabilistic task clustering method is employed to
coalescing tasks into task clusters. Emphasis is given to
the study of the subsequent cluster scheduling within pro-
cessor queues. Tasks in a cluster must be executed
sequentially on the same processor without preemption.

163 0-7695-0468-x/99 $10.00 0 1999 IEEE

Generally, scheduling policies for distributed systems
and multiprogrammed parallel systems study the influe-
nce of the scheduling policy on processor performance
only. They do not explicitly model the U 0 processing,
although it can significantly influence the overall system
performance. However, scheduling is not an isolated is-
sue. It is but one service provided by the operating sys-
tem. The solution to the scheduling problem must be inte-
grated with solutions to other problems, e.g. VO mana-
gement. The different parts of the system must work toge-
ther to create a cohesive whole in a way that makes sense.

In this work we study task clustering in a closed
queuing network model of a distributed system where we
incorporated VO equipment. The design choices that are
considered include different ways to schedule task clus-
ters for execution. We compare the performance of four
cluster scheduling policies for various coefficients of
variation of the processor service times and for different
degrees of multiprogramming. To our knowledge, such an
analysis of cluster scheduling has not appeared in the re-
search literature.

2. Model and methodology

2.1. System and workload models

A closed queuing network model of a distributed system
is considered. There are P homogeneous and independent
processors each serving its own queue. We have
examined the system in two cases: for P = 4 and for P =
16. This is a reasonable choice for the current existing
medium-scale departmental networks of workstations. It
is believed that qualitative results for other numbers of
processors even for large-scale distributed, are similar for
the data demonstrated .here. A high-speed network with
negligible communication delays interconnects the distri-
buted nodes.

As mentioned in the introduction, the two step approach
to scheduling is: 1) Clustering, 2) Scheduling the clusters.
The scheduling problem is equivalent to determining a
mapping of the clusters to processors and then
determining an ordering of the clusters within each pro-
cessor queue.

Jobs are partitioned into tasks that can be run either
sequentially or in parallel. A simple probabilistic
clustering method is employed to coalescing tasks into
task clusters. Processors are characterized by numbers 1,
2 , .., P. Tasks are assigned random numbers that are
uniformly distributed in the range of [1 .. PI. We consider
that assignment is realized in such a way that tasks of a
job with precedence constraints are assigned the same
number and perform a cluster that is mapped to the
processor labeled with this number. Duplication of tasks
in separate clusters is not allowed.

On completing execution, a task waits at the join point
for its sibling tasks of all clusters of the same job to

complete execution. Therefore synchronization among
tasks is required. The price that one pays for the increased
parallelism is the synchronization delay that occurs when
tasks wait for their siblings to finish execution.

Tasks are executed according to the cluster scheduling
method that is currently employed. No migration or
preemption is permitted. Once a task of a cluster starts
execution, then this task and all other tasks belonging to
the same cluster will also run to completion without inter-
ruption. Although tasks scheduled on two different
processors communicate with each other, we do not model
any communication overhead and we consider it as part of
task execution time.

The degree of multiprogramming N is constant during
the simulation experiment. The configuration of the model
is shown in Figure 1.

I P=16 I res...;I FCFS

N
4

Figure 1. The queuing network model (E16)

Since we are interested in a system with balanced
program flow, we have considered an U 0 channel, which
has the same service capacity as the processors.

The workload considered here is characterized by three
parameters: the distribution of the number of tasks per
job, the distribution of task execution time, and the degree
of multiprogramming. We assume that there is not corre-
lation between the different parameters. For example, a
job with a small number of tasks may have a long
execution time.

Jobs consist of a set of n 2 1 tasks. We assume that the
number of tasks of jobs is uniformly distributed in the
range of [l .. PI. The number of tasks of a job x is rep-
resented as @). Each time a job returns from U 0 service
to distributed processors, it is partitioned into a different
number of tasks and it needs a different number of
processors for execution. That is its degree of parallelism
is not constant during its lifetime in the system.

The number of clusters of a job x is represented as c(x)
and is equal to the number of processors p (x) required by
job x. Therefore the following relations hold:

t (x) <= P and c(x) = p(x) <= r(x)
W e also investigate the impact of the variability in task

service demand on system performance. A high
variability in task service demand implies that there is

164

proportionately a high number of service demands that are
very small compared to the mean service time and a
comparatively low number of service demands that are
very large. When a task with a long service demand starts
execution, it occupies a processor for a long interval of
time and depending on the scheduling policy applied it
may introduce inordinate queuing delays for the other
tasks waiting for service.

The parameter, which represents the variability in task
execution time, is the coefficient of variation of execution
time (0. We examine the following cases:

. Task execution times are independent and identically
distributed (IID) exponential random variables with
mean m.

Task execution times have a Branching Erlang distribu-
tion with two stages and are IID. The coefficient of
variation is C , where C > 1 and the mean is m.

After a job leaves the processors, i t requests service
from the U 0 unit. The U 0 queuing discipline is FCFS.
The U 0 service times are exponentially distributed with
mean k and are IID.

All notations used in this paper appear in Table 1.

K
R

2.2. Cluster scheduling policies

Mean cycle time
System throughput

In this work we examine only non-preemptive cluster
scheduling policies. All tasks belonging to the same
cluster must finish execution before any other task starts
processing. Tasks within a cluster are executed sequen-
tially. We assume that the scheduler has perfect informa-
tion when making decisions, i.e. it knows:
. The number of clusters of each job, that is the number

of processors required by each job.
. The number of tasks of each cluster.
. The service time of tasks.

Next we describe the scheduling strategies employed in
this work. As in most studies we assume that their
overhead is negligible.

. First-Come-First-Served (FCFS): With this strategy,
each cluster is scheduled into the assigned queue in the
order of its arrival. This policy is the simplest form of
cluster scheduling.

Job with the Smallest Number of Clusters First
(JSNCF): This policy gives higher priority to clusters
that belong to the job with the smallest number of
clusters. That is, this strategy uses the number of clusters
of a job as an indicator of job granularity. Coarse-grain
jobs are given higher priority. Depending on their
assigned priority, clusters are inserted in the appropriate
position in their assigned queue.

. Cluster with Smallest Number of Tasks First (CSNTF):
In this case the scheduling criterion is the number of

N
C

tasks per cluster. The cluster currently including the
smallest number of tasks is assigned the highest priority.

. Shortest Cluster First (SCF): This policy assumes that a
priori knowledge about a cluster is available in form of
cumulative service demand of all its tasks. When such
knowledge is available, clusters in the processor queues
are ordered in a decreasing order of total service
demand. However, it should be noted that a priori
information is not often available and only an estimate
of task execution time can be obtained. In this study,
task execution time estimated is assumed to be
uniformly distributed within *E% of the exact value.

When using priorities, in the case of ties the FCFS
method is used.

Degree of multiprogramming
Coefficient of variation

2.3. Performance metrics

k
E

Consider the following definitions:

. Response time of a random job is the interval of time
from the dispatching of this job clusters to processor
queues to service completion of the last task of this job.

Cycle time of a random job is the time that elapses
between two successive processor service requests of this
job. In our model cycle time is the sum of response time
plus queuing and service time at the U 0 unit.

Parameters used in later simulation computations are
presented in Table 1.

In our model the system throughput (system perfor-
mance) and the mean cycle time (program performance)
determine the external performance. Internal efficiency is
primarily determined by the mean processor utilization.

Mean YO service time
Estimation error

Table 1. Notations
I RT I Mean remonse time I

I U p I Mean Drocessor utilization I

I m I Mean task execution time I

3. Simulation results and discussion

3.1. Model implementation and input parameters

The queuing network model was simulated with discrete
event simulation models using the independent replication
method. For every mean value a 95% confidence interval

165

was evaluated. All confidence intervals were found to be
less than 5% of the mean values.

Both systems considered are balanced:

m= 1 .O, k = 0.625 P = 4 case
m=1.0, k=0.531 P = 16case

The reason we have chosen k = 0.625 (k = 0.531) for
balanced program flow is that at the processors there are
on average 2.5 (8.5) tasks per job in the cases of P = 4
and P = 16 respectively. So, when all processors are busy,
an average of 1.6 (1.882) jobs is served each unit of time.
This implies that U 0 mean service time must be equal to
111.6 = 0.625 (U1.882 = 0.531) if the U 0 unit is to have
the same service capacity.

The system was examined in cases of C = 1, 2, and 4. N
was taken as 2, 4, 6, 8, and 10. In the SCF case we have
also examined estimation errors f1M and f30%.

3.2. Performance analysis

Due to space limitations, only the following results are
presented, but they are representative of the overall model
performance:

. In Tables 2-3 performance parameters for the C=l case.

. In Figures 2-3 mean cycle time (K) is plotted versus N

. In Figures 4-9 system throughput (R) for all cases

for C=l.

examined. . In Figure 10 system throughput in the C=l, P=16, SCF
case for E = 0, 10, 30.

Simulation results show the following:
The relative performance of the four scheduling policies

is similar in the P=4 and P=16 systems. From the results
we observe that, for the same degree of multiprogram-
ming, system performance is better in the P=4 case than
in the P=16 (lower utilization and throughput in the P=16
case). This is due to the fact that in the P=4 case for each
processor correspond on average (N x 2.5) / P = N x
0.625 tasks, while in the P=16 case (N x 8.5) I P = N x
0.53 1 tasks.

For all N the performance in terms of mean cycle time
and system throughput, is superior with the SCF method.
This is due to the fact that with the SCF policy, clusters
with small cumulative service demand are never blocked
behind a cluster that has a large service time and is
waiting in the queue. Blocking behind a ‘large’ cluster
introduces inordinate queuing delays and also synchro-
nization overhead to the sibling clusters. During that time
it is most probable for the U 0 unit to remain idle and then
to be deluged with many jobs that are forced to delay in its
queue. SCF alleviates this problem, yielding lower RT
than the other policies, which results in lower mean cycle
time and higher system throughput.

FCFS performs almost the same as JSNCF. CSNTF
performs very slightly better than these two methods.
However, there is an overhead involved with JSNCF and
CSNTF due to reordering of tasks in the queues, which is
not modelled in this work.

In all cases the superiority of SCF over FCFS is higher
at high degrees of multiprogramming. This is due to the
fact that at high N there are more tasks in the queues and
therefore there are more opportunities to exploit the
advantages of SCF. For N 5 4 and for all C all strategies
perform very close.

The simulation results reveal that the decrease in
response time due to the superiority of SCF is higher than
the decrease in K and the increase in R. For example, in
the P=4 system case, for C=l and N=10 the decrease in
RT is 12% while the decrease in K is 6% and the increase
in R is 6.4%. This is due to the fact that the overall system
performance depends not only on the processors but on
the I/O unit as well.

We conducted additional simulation experiments to
assess the impact of service time estimation error on the
performance of the SCF method. Figure 10 shows the
effect of service time estimation error on system through-
put for the C=l, P=16 case. The estimation error in this
figure is set at f O % , f10% and f30%. The graph shows
that the estimation error in task service time affects margi-
nally system performance. Therefore, no profit can be
gained from the a priori knowledge of exact task service
times.

For all N, the superiority of SCF over the other three
methods examined is generally increasing with increasing
C. This is due to the fact that as C increases the variability
in task execution time increases too and this results in
better exploitation of the SCF strategy. The superiority of
SCF over FCFS was more significant for P=4 than for
P=16. For example, regarding R, in the P=4, N=10, C=4
case the superiority is about lo%, while in the P=16,
N=10, C=4 case it is about 6%.

4. Conclusions and further research

In this work we studied task clustering in distributed
systems. We used simulation as the means of obtaining
results. Four scheduling policies were considered. First-
Come First-Served (FCFS), Job with the Smallest
Number of Clusters First (JSNCF), Cluster with the
Smallest Number of Tasks First (CSNTF), and Smallest
Cluster First (SCF). Their performance was studied and
compared for various degrees of multiprogramming N and
coefficients of variation C of task execution times. The si-
mulation results reveal the following:

. In all cases examined SCF performed better than the

FCFS performed very close to JSNCF and CSNTF.

other policies.

166

The superiority of SCF over the other methods is

For low N all methods perform close.

. The SCF policy can tolerate estimation error in task

increasing with increasing Nand increasing C.

service time.

~

6
8

FCFS and SCF policies have their merits. System
performance is better in the case of SCF but this method
assumes a priori knowledge of an approximate task
execution time. When the scheduler does not have this
information, then the FCFS method should be preferred
from the rest of the methods examined, as it performs
very close to them, it is easier to implement, and it
produces less overheard.

This work is a case study. It should be extended so that
task communication overhead to be considered and also
pre-emptive service disciplines to be studied.

~ ~ ~

0.51 5.15 6.10 0.98
0.58 5.98 7.10 1.13

Table 2. C=l, SCF case, p = 4

N I U p I R T I K I R
2 I 0.41 I 2.28 I 3.03 I 0.66 1 1 1

0.77 4.53 6.33 1.26
I I I 10 I 0.81 I 5.21 I 7.45 I 1.34 I

Table 3. C=l, SCF case, p = 16
N I U p I R T I K I R
2 I 0.26 I 3.49 I 4.10 I 0.49

I I

I 4 I 0.41 I 4.36 I 5.13 I 0.78 I

c I

I 10 I 0.64 I 6.76 I 8.07 I 1.24 I

. - - - - I

N

-FCFS -t JSNCF
+CSNTF t S C F

Figure 2. K versus N, p 4 , C=l

t I

6 8 IO
N

-FCFS t J S N C F
*CSNTF f SCF

Figure 3. K versus N, p16, C=l
R

0,49 -
8 10

N
-FCFS +JSNCF
-CSNTF +SCF

Figure 4. R versus N, p 4 , C=l

R

. . . :
i

I
1,29 1 . . ,

n

0,49 I
4 6 8 I O

N
-FCFS I JSNCF
-CSNTF +SCF

Figure 5. R versus N, p 4 , C=2
R

.

, , 0 9 r . . . ' ! . .

0,69 *

0,49
8 I O

N
-FCFS -+-JSNCF
*CSNTF *SCF

Figure 6. R versus N, p 4 , C=4

167

5. References

0 24 c + ~

’ 2 4 6 8 10

N
+FCFS -JSNCF
+CSNTF il SCF

Figure 7. R versus N, p 1 6 , C=l

0.24 I * t
6 8 IO
N

-FCFS t J S N C F
“CSNTF +SCF

Figure 8. R versus N, p 1 6 , C=2

0.84 1 - -
I
I

. . . I
0,64 ! ‘ I
044 ! -- ---r: . . . ~

i
0,24

2 4 6 8 IO
N

-FCFS -JSNCF
* CSNTF DSCF

Figure 9. R versus N, ~ 1 6 , C=4

1,24

0.44 ”“J I
0,24

2 4 6 8 1 0

N

-E=O +E=lO +E=30

Figure 10. R versus N, p 1 6 , C=l, SCF case

[I] J. Aguilar, and E. Gelenbe, “Task Assignment and
Transaction Clustering Heuristics for Distributed Systems”,
INFORMATION SCIENCES, Elsevier Science Inc., March 1997,
pp. 199-219.

[2] T. Bultan, and C. Aykanat, “A New Mapping Heuristic Ba-
sed on Mean Field Annealing”, Journal of Parallel and Distri-
buted Computing, Academic Press, Vol. 16, 1992, pp. 292-305.

[3] S. Dandamudi, “A Comparison of Task Scheduling
Strategies for Multiprocessor Systems”, Proceedings of the IEEE
Symposium on Parallel and Distributed Processing, Dallas, TX,
Dec. 1991, pp. 423-426.

[4] S. Dandamundi, “Performance implications of task routing
and task scheduling strategies for multiprocessor systems”, Pro-
ceedings of the IEEE-Euromicro Conference on Massively Pa-
rallel Computing Systems, Ischia, Italy, May 1994, pp. 348-353.

[SI A. Gerasoulis, and T. Yang, “A comparison of Clustering
Heuristics for Scheduling Directed Acyclic Graphs on
Multiprocessors”, Journal of Parallel and Distributed
Computing, Academic press, Vol. 16, 1992, pp. 276-29.1.

[6] A. Gerasoulis, and T. Yang, 1993, “On the granularity and
clustering of directed acyclic task graphs”, IEEE Transactions
on Parallel and Distributed Systems, Vol. 4, No.6, June 1993,
pp. 686-701.

[7] A. Gerasoulis, J. Jiao and T. Yang, “Experience with
Scheduling Irregular Scientific Computation”, Proceedings of
the First IPPS Workshop on Solving Irregular Problems on
Distributed Memory Machines, IEEE Computer Society Press,
Santa Barbara, CA, April 1995, pp. 1-8.

[8] H.D. Karatza, “Simulation Study of Multitasking and
Resequencing in a Homogeneous Distributed System”, Pro-
ceedings of the Eurosim Congress ’95, Elsevier Publishers P.V.,
Vienna, Sept. 11-15, 1995, pp. 541-546.

[9] H.D. Karatza, ‘Simulation Study of Task Scheduling and
Resequencing in a Multiprocessing System”, Simulation Jour-
nal, Special Issue: Modelling and Simulation of Computer Sys-
tems and Networks: Part Two, SCS, April 1997, pp. 241-247.

[lo] L.C. McCreary, A.A. Khan, J. J. Thomson, and M. E.
McArdle, “A Comparison of Heuristics for Scheduling DAGS
on Multiprocessors”, Proceedings of Eighth International
Parallel Processing Symposium, IEEE Computer Society Press,
Cancun, Mexico, April 1994, pp. 446-45 1.

[l l] M.A. Palis, J.-C. Liou, and D.S.L. Wei, ‘“Task Clustering
and Scheduling for Distributed Memory Parallel Architectures”,
IEEE Transactions on Parallel and Distributed Systems, Vol. 7,
No. I , Jan. 1996, pp. 46-54.

[I21 T. Yang and A. Gerasoulis, “DSC: Scheduling parallel
tasks on an unbounded number of processors”, IEEE Tran-
sactions on Parallel and Distributed Systems, Vol. 5 , No.9,
1994, pp. 95 1-967.

168

