
An Active Middleware to Control QoS Level of Multimedia Services

Paolo Bellavista, Antonio Corradi, Rebecca Montanari
DEIS - University of Bologna

{pbellavista, acorradi, rmontanari}@deis.unibo.it

Cesare Stefanelli
Dip. Ingegneria - University of Ferrara

cstefanelli@ing.unife.it

Abstract
The provision of novel Internet services has both to

specify and to maintain differentiated Quality-of-Service
(QoS) levels. Services should tailor to different user QoS
preferences together with the differentiated quality prop-
erties deriving from servers and access points and de-
vices, from workstations connected with high-capacity
networks to wearable devices exploiting limited-capacity
wireless links. The paper claims that service provision
with negotiated and controlled QoS over best-effort net-
works calls for a support infrastructure that activates in-
termediate nodes along the path between clients and serv-
ers. In fact, the paper proposes MASQ, an active middle-
ware solution for the QoS management of Video-on-
Demand (VoD) streaming. At negotiation time, MASQ ex-
ploits code mobility to establish an active path between
the requesting client and the VoD server chosen to tailor
VoD flows based on user profiles and device properties.
At provision time, MASQ dynamically controls the offered
QoS level to adapt locally when and where network re-
source availability changes. MASQ significantly benefits
from dynamic and flexible programmability stemming
from the employment of high-level policies.

1. Introduction

The growing number of users who exploit the Internet
to access multimedia services is a durable and lasting
trend in current distributed computing. The same is for the
number of multimedia service users with an ubiquitous
access to the global network. These mounting trends im-
pose to differentiate and tailor the Quality of Service
(QoS) in multimedia streaming, on the basis of personal
preferences and usage class, to differentiate billing de-
pending on the actually received QoS levels.

The increasing diffusion of mobile access to the Web,
such as the NTT DoCoMo i-Mode and the Wireless Ap-
plication Protocol (WAP) [1], widens this perspective
even further. Terminals interested in accessing multime-
dia services exhibit heterogeneous characteristics (com-
puting power, storage, display size and resolution, ...) by
ranging from traditional workstations and PCs, to laptops,

personal digital assistants and smart phones, with
wired/wireless continuous/intermittent connectivity.

The above scenario motivates service providers, net-
work operators and final users to ask for technologies,
mechanisms, and tools to support Video-on-Demand
(VoD) services over the Internet with differentiated QoS
levels. That means over a best-effort network infrastruc-
ture to control dynamically the QoS level provided at
runtime. In addition, the competition of providers and the
necessity of scalability force to propose scenarios where
multimedia servers and resources can be replicated with
the goal of a better service. This requires design and de-
ployment methodologies that consider global resource
availability, for instance, to decide suitable strategies for
resource replication and allocation.

Such a service provision scenario introduces complex
decisions: from choosing the best server that matches cli-
ent QoS requirements to deciding new caching localities
for successive requests, from identifying the current con-
ditions of server load by monitoring network information
to recognizing promptly congestion and abnormal traffic
situations. The awareness of monitoring information to-
gether with the imposed overhead is crucial to estimate
available resource state at service negotiation time and
service provision time. Resource availability should be
continuously controlled to achieve and maintain a speci-
fied QoS level, and to promptly adapt to modifications of
QoS properties along the path between multimedia servers
and clients [2]. For instance, one multimedia flow can be
split into multiple paths if the bandwidth of active con-
nections goes under a specified threshold. Alternatively, it
is possible to react to network congestion by commanding
application-specific transformations on VoD flows, for
instance via format transcoding, media resynchronization,
and by acting on packet buffering.

An emerging trend in multimedia QoS provisioning is
to introduce distributed support infrastructures that are
aware of all involved network resources and that can as-
sign an active role to the nodes along the paths between
clients and servers [3-10]. The paper claims that the best
solution strategy for QoS support over a global best-effort
network is an active middleware, where the duty of serv-

ice provision cannot be limited to server hosts and client
nodes but should expand to the whole intermediate nodes.
In fact, intermediate nodes have to participate not only as
message routers but also as active service providers and
perform management operations. They can monitor local
resource state, can perform control actions and transfor-
mations on traversing VoD flows, can find new distribu-
tion paths more suited to current requirements, and can
cache VoD contents. Intermediate nodes could offer their
storage for distributed caching of popular VoD flows to
decrease overall traffic and service response time. An-
other example is the case when statically negotiated QoS
level cannot be maintained: the node that ascertains the
problem is the most suitable for taking the needed correc-
tion locally and autonomously.

The paper describes MASQ (Multimedia Active Serv-
ices for QoS), an active middleware for QoS management
in VoD flow provisioning. At negotiation time, MASQ
establishes an active path between the requesting client
and the proper VoD server to tailor the quality of VoD
flow depending on user profile, device characteristics and
network resource availability during negotiation. At pro-
vision time, MASQ dynamically controls the offered QoS
level to trigger local adaptation operations when and
where resource availability changes.

MASQ is implemented in terms of coordinated Mobile
Agents (MAs) that are capable and responsible of the ac-
tivation of intermediate nodes along the VoD flow paths.
MAs can reallocate dynamically, thus achieving the dy-
namic deployment required in open and global scenarios.
The possibility to migrate both code and state during
service provision permits session-dependent control and
adaptation of network resources. In addition, QoS man-
agement operations can be performed locally to the criti-
cal points of the infrastructure, e.g., where there are dis-
continuities in bandwidth. Locality in resource monitor-
ing, control and management is crucial to obtain effective
response times in global provision scenarios [2].

The flexibility and applicability of the MASQ middle-
ware significantly benefit from its dynamic programma-
bility via the specification and enforcement of high-level
policies. Event-triggered policies specify both how
MASQ components allocate resources to served flows on
the intermediate hosts along the active path and how
MASQ should react to modifications in network resource
availability to adapt currently served QoS levels. Policies
permit to specify how to respond to changes in monitoring
information and to separate cleanly QoS management
strategies and actions from application-specific behavior.

2. QoS Management of VoD Flows

QoS awareness is a key requirement for VoD services
over best-effort networks, and QoS visibility is the prop-
erty that an active middleware should be built around, to

tailor and to control dynamically provided QoS levels. We
can distinguish two successive phases for QoS granting:
• QoS tailoring at negotiation time, to customize service

QoS levels to specific user requirements, access device
properties, and resource availability. For instance, an
active VoD service can reduce either frame rate or im-
age resolution depending on current access device;

• QoS adaptation at provision time, to dynamically
change and maintain QoS level during provisioning, by
taking advantage of the knowledge of run-time situa-
tions. Only a continuous monitoring of system state can
trigger promptly management operations, such as re-
negotiation, new communication channels establish-
ment, and multimedia flow transcoding.

The static phase that precedes the real data flow can be
considered a static negotiation of the QoS level among
client, server, and all intermediate network resources. The
main goal of QoS negotiation is to choose the best possi-
ble resource set, on the basis of user profiles, access de-
vices and the current system situation. The first step re-
quires retrieving user preferences and accessing device
characteristics; then, the active middleware should iden-
tify one server that best satisfies the specific QoS re-
quirements. Once the server is known, the infrastructure
should establish a server-to-client network path. The
components of the active infrastructure should be avail-
able (or should install dynamically) on any needed inter-
mediate host along the active path. Distributed middle-
ware components are in charge of negotiating the QoS
level maintained in any path segment and of operating
possible multimedia downscaling operations. In addition,
intermediate entities should perform application-level
admission control and local resource reservation: one can
admit new reservations for VoD flows (or for enhancing
the QoS level of already established ones) only if enough
resources are locally available. The VoD flow distribution
is negotiated to match client QoS specifications, also de-
pending on already admitted service flows and current re-
source availability.

The second adaptation phase takes place during service
provision and this dynamicity imposes even stricter con-
straints than the ones on the static phase. Any deviation
from conformity could make the service ineffective and
could clash with the initially negotiated QoS level. In fact,
the QoS levels of VoD flows should change depending on
the state of system/network resources along distribution
paths. Therefore, QoS should be controlled during the
whole provision, and changes in resource availability
should trigger adaptation to readjust QoS levels. Adapta-
tion can affect the transmission of VoD data (from
transcoding to frame resizing, from merging/splitting
multi-layered tracks to reducing frame resolution and rate)
and can ultimately modify established VoD paths. In this
case, a new negotiation phase is preliminary before a re-
distribution of active middleware components. The cor-

rective operations at provision time should consider
user/terminal profiles so to assign priorities to adaptation
alternatives. For instance, a personal digital assistant with
limited display capabilities can suggest lowering frame
resolution instead of decreasing frame rate.

Figure 1 presents a possible deployment scenario
where an active middleware tailors, controls and adapts
the QoS of VoD flows. The infrastructure achieves scal-
ability by organizing clients, servers and network re-
sources in hierarchies of locality abstractions. Active
hosts can be grouped into domains that usually corre-
spond to (a set of) local area networks with common ad-
ministration and management policies. Domains are the
way to confine the visibility scope of middleware compo-
nents thus limiting the management complexity.

At negotiation time, QoS requirements of user1 and
user2 (and of their access devices) have suggested a high-
quality flow from the VoD server and its scaling down at
the active middleware component in domain2. In case of
degradation of link1 bandwidth during provisioning, mid-
dleware components in domain1 and domain2 coordinate
with each other. It is the domain2 component to adapt the
VoD transmission for user1 by reducing frame resolution
according to user1 preferences. If there are no resources
to adapt QoS by respecting negotiated requirements, e.g.,
in case of failure of link2, a new VoD path segment is to
be established. The domain3 infrastructure tries to iden-
tify a suitable VoD server in its neighbor domains. It then
negotiates with new active hosts to finally restart flow
transmission from its interruption point (if server4 sup-
ports random-access to the same VoD content). Apart
from the time required to establish the new path, the
server swap is transparent to the receiver and to all other
intermediate nodes.

Domain 1

user1

Domain 2

ASC VoD
server3

Domain 3

ASC VoD
server1

VoD
server2

Domain 4

VoD
server4

ASC ASC

ASC

ASC ASC

ASC

ASC

link1

ASC

link2

ASC active service
component

negotiated path

provision-time
modified path

ASC

user2

Figure 1. A possible deployment scenario of the
active middleware

3. The MASQ Middleware

The previously presented solution guidelines have
driven the design of the MASQ active middleware in sup-
porting QoS tailoring, control and adaptation of VoD

flows. MASQ is the result of the integration of policy-
based specifications for QoS management with a previous
prototype of active multimedia middleware called
ubiQoS, described elsewhere [11]. After sketching some
aspects of the MASQ middleware, the paper focuses spe-
cifically on how to exploit high-level policies to rule the
management of multimedia QoS and on how the first
MASQ prototype implements this approach.

An important preliminary to the presentation of the
MASQ architecture is the choice of the adopted basic
protocol for exchanging VoD flows. Our active middle-
ware is based on the Real-time Transport Protocol (RTP)
[12]. The motivation of RTP stems from its wide diffu-
sion in application-level approaches to QoS and from its
relevance in the areas of mobile communications and
multimedia distribution [13, 14]. As any application-level
QoS solution, RTP attempts to meet QoS requirements
without modifying the underlying best-effort network
level. RTP permits to obtain monitoring information
about currently available QoS levels and to notify service
components of any QoS modification. Most relevant in-
formation items are sender reports, generated by the
sources of RTP-based multimedia flows, and receiver re-
ports, filled by the target VoD clients. All reports include
sender information (RTP timestamps and the number of
packets and bytes already transmitted) and receiver statis-
tics about the flow (highest sequence number received,
inter-arrival jitter, and fraction of lost packets since last
report).

3.1. Architecture

The MASQ middleware is implemented in terms of
two main types of components working along the active
path between the (also multiple) VoD clients and servers
for flow provisioning:
1) MASQ proxies are in charge of admission con-

trol/reservation for incoming/outgoing flows. They
monitor system- and application-level state of local re-
sources with the goal of triggering local QoS adapta-
tion operations. Proxies are organized in chains to
cover the whole path from clients to servers. They co-
ordinate with their previous and next proxies in the
active path both in the initial negotiation phase and at
provision time for resource availability changes.
Proxies exploit discovery and directory solutions to
find other MASQ components in local and neighbor
domains and to retrieve user/terminal profiles ex-
pressed according to the Composite Capability Prefer-
ence Profile (CC/PP) specification;

2) MASQ processors are in charge of performing QoS
tailoring and adaptation operations on VoD contents
depending on the specific QoS requirements of estab-
lished sessions. In response to a new client request,
one of this processor is in charge of retrieving QoS re-

quirements of the user and of her current access de-
vice. The processor should carry this information by
migrating to the nodes hosting MASQ proxies with
the goal of establishing the active path.

In addition to proxies and processors, the MASQ middle-
ware includes lightweight client/server stubs to permit the
integration with legacy VoD players/servers.

Figure 2 depicts the modular architecture of MASQ
components. They are implemented as MAs to permit dy-
namic installation and updating of existing functions even
while the MASQ middleware is operating. Proxies are the
principal middleware components that monitor and con-
trol the resources locally to the active nodes. They can
install themselves permanently on new hosts taking part
in active paths and their migration is typically single-hop.
On the contrary, processors are transient and ses-
sion/flow-dependent components that have to propagate
from the client toward the server by carrying the QoS re-
quirements of client user/device for that specific service
flow. Let us note that resource reservation, adaptation op-
erations and path decisions may depend on previously
established path segments. This is the reason that makes
important the multiple-hop potential typical of MAs.

Details about the implementation of MASQ compo-
nents in terms of MAs are presented in [11], while the rest
of the paper concentrates on the design and implementa-
tion of the policy-enabled MASQ proxy.

Admission
Control

Accounting

QoS Monitoring
CC/PP
LDAP
Client

Discovery
Client

QoS Adaptation

QoS Manager

MASQ
proxy

RTP flow
receiver

MASQ
C/S stub

RTP flow
sender

Figure 2. The MASQ modular architecture

3.2. The MASQ Proxy Architecture

MASQ proxies are the core components responsible
for providing service tailoring and adaptation to user
needs, to environment conditions and to communication
link characteristics. As Figure 2 shows, the architecture of
MASQ proxies is modularly designed and consists of dif-
ferent modules to provide different functions.

The QoS Monitoring module has the duty of observing
the state of resources and services that are local to its
hosting node. The module extracts and works on moni-

toring information about VoD flows from RTCP
sender/receiver reports. It also achieves the visibility of
Java Virtual Machine (JVM) indicators, e.g., method in-
vocation and object/memory allocation for any Java
thread, via the JVM Profiler Interface, an experimental
API of the Java 2 platform for the monitoring of Java-
based applications. In addition, this module monitors
system indicators, e.g., CPU load, file system occupation,
network packet collision rate, by exploiting the Java Na-
tive Interface to integrate with platform-dependent moni-
toring mechanisms [15]. Any variation in resource and
system state produces the notification of events that can
also be triggered by composing several low-level moni-
toring data. The module is in charge of event subscription
and of notification even to mobile interested subscribers.

The Admission Control module maintains resource al-
location information about all VoD flows currently
served. Any entry include a unique identifier for the flow,
a unique identifier for the VoD content, a tuple of QoS
requirements associated with the flow, and the identifiers
of previous and next MASQ components in the distribu-
tion path. Depending on information obtained from the
QoS Monitoring module and on the current state of al-
ready accepted flows, the module has the responsibility of
choosing the admission/denial of new service requests.

The Accounting module exploits the monitoring func-
tions to keep a local log of the QoS level actually pro-
vided to the different receivers. It is in charge of authenti-
cating users and associating them with the requested VoD
flows and the corresponding accounting information. For
any couple <VoD flow identifier, user identifier>, ac-
counting data record possible modifications of QoS levels
during provision. These data are stored in log files local to
the MASQ proxies and can be processed off-line, for in-
stance when billing users.

The QoS Adaptation module is responsible for any
transformation of data depending on the negotiated QoS
level. The module exploits JMF de/multiplexers, codecs
and renderers, together with a set of ad hoc Java-based
transcoding components. In addition, the module main-
tains buffers for current VoD flows to respond timely to
incoming client requests in its locality and to pre-fetch the
transcoding of served flows when needed. For any flow, it
locally stores the version received with the maximum
QoS level [11].

The QoS Manager module coordinates the other mod-
ules and decides the QoS levels for the MASQ compo-
nents in the VoD path. During the negotiation phase, it
combines QoS requirements from user/terminal profiles
and reservation data from admission control. On this ba-
sis, it decides to enforce a specific point in the space of
possible values for QoS parameters, e.g., frame rate, size
and resolution. Usually, an interval for QoS parameters is
permitted; the Manager module chooses at default the
QoS point to maintain by minimizing local resource con-

sumption. However, service providers can also specify
other different allocation policies for their administered
resources, as shown in the following section. At provision
time, the QoS Manager module can modify the provided
QoS level by moving in the QoS space to maximize a cost
function with weighted QoS parameters specified in
user/terminal profiles. For instance, a device with limited
display capabilities can specify a cost function with a
frame rate weight larger than the frame resolution one, to
indicate a preference in degradation of image quality in-
stead of frequency decrease.

3.3. MASQ Proxies and Processors at Work

Let us describe how MASQ proxies and processors
coordinate in a possible case of service provision sce-
nario, as in Figure 3. Any client request for an active VoD
service is served by one MASQ processor. The processor
has the duty of finding and carrying the full information
about QoS requested parameters and related profiles [11].
Once the whole data has been collected, the processor
helps in establishing the active path, by involving all nec-
essary proxies. MASQ processors migrate toward the
available proxies in the locality and in close/connected
domains to present there their carried request. It is up to
proxies the decision phase by comparing requested QoS
level and local resource availability.

If the MASQ proxy has direct local access to the VoD
content with the proper QoS level, it behaves as the final
VoD server in simple client/server architectures. After the
proxies command the negotiated tailoring operations to
the processors on the path, the VoD active service starts to
flow, without any further proxy intervention.

If the VoD content is not directly available to the local
proxy, then the establishment of the proper active path is
passed to a neighbor MASQ proxy. The processor respon-
sible for establishing the active path is cloned and for-
warded to the next proxy. The forwarded processor can
have knowledge of the previous path segments and can
bring the history of previous choices. This propagation
goes on until a successful match occurs between re-
quested QoS levels and locally offered VoD contents. At
this point, the whole active path has been successfully
established, and all intermediate nodes host the needed
MASQ components. Similarly to the chain of processors
traversed by the flow, there is an analogous path of prox-
ies that play only a control role.

Location awareness and knowledge of local monitor-
ing information at provision time drive the adaptation
when the agreed QoS level cannot be maintained. The
processor-based distribution of QoS requirements
throughout the whole active path permits optimal deci-
sions avoiding further negotiations. Proxies have the duty
of continuously monitoring currently offered QoS levels
and of identifying possible deviations. We claim that lo-

cality is the key for prompt identification: as soon as a
proxy ascertains a problem, i.e., any QoS parameter can
no longer be granted, it commands a corrective action to
the processor. The most common situation is a congestion
point in the local path segment, with the corrective action
of downscaling the VoD flow to a reduced quality provi-
sioning.

At negotiation time, MASQ proxies have to distribute
on all nodes of the active path. Two different processors
(for user1 and user2) establish two partially overlapping
active paths by migrating and cloning on any involved
active node. It is the user1 processor that performs the
VoD flow downscaling as specified in user1 terminal pro-
file. At provision time, in case of degradation of link1

bandwidth, proxies in domain1 and domain2 coordinate
and command the user1 processor in domain2 to further
reduce frame resolution of user1 VoD flow according to
the receiver profile. In case of failure of link2, a new path
segment is established. The proxy in domain3 tries to
identify a suitable server stub in close domains. Then, it
starts a negotiation phase with the proxy of domain4 by
cloning and migrating two new processors to this new
domain.

Domain 1

user1

Domain 2

SS3 VoD
server3

Domain 3

SS1 VoD
server1

VoD
server2

Domain 4

VoD
server4

CS

P P

CS2

P SS2

P

SS4

link1

SS

P

P

link2

ubiQoS
client stub

ubiQoS
server stub

ubiQoS
proxy

user1’s ubiQoS
processor

user2’s ubiQoS
processor

CS1

user2

Figure 3. MASQ proxies and processors in a
possible service provision scenario

4. Policy-based QoS Management in MASQ

MASQ currently provides a set of predefined QoS
management strategies that address most common envi-
ronment situations and user requirements. However, static
QoS decisions built a-priori into the QoS Manager lacks
flexibility and involves re-engineering efforts wherever
there is an unexpected change. To overcome static strate-
gies for QoS tailoring and control, MASQ administrators
can represent and manage QoS adaptation requirements
without hard-wiring them into QoS Managers. The ulti-
mate goal is to reuse MASQ proxies in different environ-
ments and application scenarios without requiring modifi-
cations to the core architecture. This calls for solutions to
dynamically define, install and possibly modify QoS
management strategies tailored to the specific usage con-

text. In this direction, a key issue is the separation be-
tween QoS management rules and the code of MASQ
components. This promotes dynamic QoS tailoring and
adaptation with no impact on the QoS Manager imple-
mentation. We claim that policy-based approaches pro-
vide promising solution guidelines in these contexts of
application [16, 17].

Policies can be defined as explicit rules governing
choices in the behavior of a system, cleanly separated
from the components in charge of their interpretation.
Policies are typically expressed in a declarative way at a
high abstraction level. They specify only the management
tasks to perform and not how to achieve them, being de-
tails left to the run-time policy support [16]. MASQ poli-
cies can specify QoS management decisions that QoS
Managers have to perform to tailor and adapt multimedia
flows to client requirements and current system state.
Both negotiation and adaptation can benefit from policy-
based approaches: policies can specify how to allocate
resources to address user requirements and can drive
management operations for dynamic QoS adaptation.

Policy adoption for QoS management makes necessary
the integration of MASQ with a policy-based framework.
Our current effort is to develop a policy-enabled MASQ
prototype that integrates a policy framework called Pon-
der and to make available a set of services for the support
of automatic and transparent policy lifecycle, from policy
initial distribution to policy activation and control. Ponder
is a declarative object-oriented language for the specifica-
tion of several types of distributed management policies.
The Ponder framework allows administrators to represent
QoS management decisions at a high level of abstraction
[18]. The MASQ middleware only uses a subset of Pon-
der policies, i.e., obligation ones, typically event-
triggered. Obligation policies are essentially declarative
event-action-condition rules, defining the actions that
policy subjects must perform on target objects when spe-
cific events occur and when specific conditions hold at
event occurrence.

Let us introduce a simple example to illustrate Ponder
obligation policies. Figure 4 reports two different policies
used in the MASQ middleware with different goals. The
P1 policy is used at negotiation time to support admission
control management. In particular, P1 states that, when a
service request is accepted (the event following the on
field), the QoS manager (the subject field) has to
choose in the permitted interval the QoS point that maxi-
mizes the amount of allocated resources (the action
field), to express the management requirement of maxi-
mizing local resource usage. This is possible only if the
number of currently served VoD flows is under a speci-
fied threshold (the when field). The P2 policy, on the
contrary, is exploited at service provision time to com-
mand the QoS manager to request the QoS Adaptation
module (the target field) to transcode flows from Mo-

tionJPEG to MPEG3 when the available bandwidth falls
under a specified threshold.

inst oblig P1
on ServiceRequest (VoD flow identifier, user identifier) ;

 subject s = QoS Manager;
 do s.allocateMaximumResources(VoD flow identifier)

 when #acceptedVoDflows()≤threshold
inst oblig P2
on Decrease (bandwidth, threshold) ;

 subject s = QoS Manager;
 target t = QoS Adaptation
 do t.transcode(MPEG3)

Figure 4. Ponder obligation policies

We are currently testing the first prototype that en-
riches the MASQ proxy architecture with the following
support services (see Figure 5):
• the Policy Specification Service (PSS), designed to en-

able the specification and compilation of Ponder obliga-
tion policies. PSS currently consists of a Policy Editor
and a Policy Compiler. The Policy Editor handles the
editing/deleting and browsing of policies. The Policy
Compiler provides tools for parsing policy specifica-
tions and for the automatic translation of Ponder speci-
fications into low-level policies to be interpreted in the
Java programming environment. PSS is in charge of
compiling, distributing and installing policies into the
Enforcement Service. Any successive variation in the
policies forces PSS to coordinates with the Enforcement
Service to ensure a consistent and update vision. Be-
cause prevention of potential policy conflicts is essential
for the success of policy-based management, we plan to
extend the PSS with tools capable of supporting static
policy analysis;

• the Enforcement Service (ES), targeted at supporting the
parsing and activation of Ponder obligation policies
when needed. For this purpose, we have implemented
ES as the composition of two main logical modules,
Coordinator and Executor. The Coordinator plays a key
role at both initial policy specification and execution
time. When policies are first defined, the Coordinator
parses them and retrieves relevant information, such as
their triggering events, actions and conditions. Relevant
events are registered to the MASQ monitoring; then,
policies are distributed and installed into Executors in
charge of their interpretation. At service provision time,
events can trigger the Coordinator to command correc-
tive management to the Executor.

Let us note that all the QoS management operations per-
formed by MASQ proxies can be either specified directly
within the QoS Manager module code or expressed sepa-
rately from the module code as Ponder obligation policies.
In the former case, any change of QoS management re-
quirements implies to suspend service provision and to
update and re-compile the proxy code to reflect variations.
On the contrary, in the latter approach, the evolution of

QoS management goals can be addressed by simply
changing the set of high-level policy specifications with-
out stopping the proxy execution. It is the underlying run-
time policy support that transparently disables/enforces
old/new policies when required and propagates changes to
QoS Manager modules without impacting on their code
implementation.

Admission
Control

Accounting

QoS Monitoring

CC/PP
LDAP
Client

Discovery
Client

QoS
Adaptation

MASQ proxy

RTP flow
receiver

MASQ
C/S stub

RTP flow
sender

Policy
Specification

Service

Coordinator Executor

Enforcement Service

QoS Manager

Figure 5. The policy-enabled MASQ proxy

5. Current Work

We are currently investigating some directions of
work:
• how to avoid/resolve possible conflicts among different

policies specified in different localities by different us-
ers, administrators and service providers;

• how to bind client requests with most proper service of-
ferings by establishing most effective active paths in a
completely decentralized and dynamic way, without as-
suming global knowledge of all resources available;

• how to guarantee a worst-case reaction time between
modifications in distributed state and corresponding cor-
rective actions triggered by the enforced policy.

Acknowledgements
Work supported by the Italian Ministero della Ricerca
Scientifica e Tecnologica ("MUSIQUE: Infrastructure for
QoS in Web Multimedia Services with Heterogeneous
Access") and by the University of Bologna (Funds for
Selected Research Topics: "An integrated Infrastructure to
support Secure Services").

References
[1] J. Krikke, "Graphics Applications over the Wireless Web:

Japan Sets the Pace", IEEE Computer Graphics and Ap-
plications, Vol. 21, No. 3, May/June 2001.

[2] P. Bellavista, A. Corradi, C. Stefanelli, "An Integrated
Management Environment for Network Resources and
Services", IEEE Journal on Selected Areas in Communi-
cation, Vol. 18, No. 5, May 2000.

[3] K. Psounis, "Active Networks: Applications, Security,
Safety, and Architectures", IEEE Communications Sur-
veys, Vol. 2, No. 1, 1999.

[4] H. Yasuda (ed.), 2nd Int. Working Conf. Active Networks
(IWAN’00), Springer-Verlag LNCS, Japan, Oct. 2000.

[5] R. Koster and T. Kramp, "Structuring QoS-Supporting
Services with Smart Proxies", IFIP/ACM Int. Conf. Dis-
tributed Systems Platforms (Middleware 2000), Springer-
Verlag LNCS, Apr. 2000.

[6] W. Marshall, C. Roadknight, "Provision of Quality of
Service for Active Services", Computer Networks, Vol.
36, No. 1, June 2001.

[7] M. Baldi, G. P. Picco, F. Risso, "Designing a Videocon-
ference System for Active Networks", 2nd Int. Workshop
on Mobile Agents (MA'98), 1998.

[8] E. Amir, S. McCanne, R. Katz, "An Active Service
Framework and its Application to Real-time Multimedia
Transcoding", ACM SIGCOMM Conf., 1998.

[9] F. Kon, R. H. Campbell, S. Tan, M. Valdez, Z. Chen, J.
Wong, "A Component-based Architecture for Scalable
Distributed Multimedia", 14th Int. Conf. Advanced Science
and Technology (ICAST'98), 1998.

[10] F. Kon, R. H. Campbell, K. Nahrstedt, "Using Dynamic
Configuration to Manage a Scalable Multimedia Distribu-
tion System", Computer Communications, Vol. 24, No. 1,
Jan. 2001.

[11] F. Baschieri, P. Bellavista, A. Corradi, "Mobile Agents for
QoS Tailoring, Control and Adaptation over the Internet:
the ubiQoS Video-on-Demand Service", to be published in
2nd IEEE Int. Symposium on Applications and the Internet
(SAINT'02), Japan, Jan. 2002.

[12] T. Braun, "Internet Protocols for Multimedia Communica-
tions - Part II: Resource Reservation, Transport, and Ap-
plication Protocols", IEEE Multimedia, Vol. 4, No. 4, Oct.
1997.

[13] D. Chalmers, M. Sloman, "A Survey of Quality of Service
in Mobile Computing Environments", IEEE Communica-
tions Surveys & Tutorials, Vol. 2, No. 2, 1999.

[14] A. T. Campbell, "QoS-aware Middleware for Mobile
Multimedia Communications", Multimedia Tools and Ap-
plications, Vol. 7, No. 1-2, 1998.

[15] P. Bellavista, A. Corradi, C. Stefanelli, "How to Monitor
and Control Resource Usage in Mobile Agent Systems", to
be published in 3rd IEEE Int. Symp. on Distributed Objects
and Applications (DOA'01), Italy, Sep. 2001.

[16] R. Wies, "Policies in Network and System Management –
Formal Definition and Architecture", Journal of Network
and Systems Management, Vol. 2, No. 1, 1994.

[17] M. Sloman, "Policy Driven Management For Distributed
Systems", Journal of Network and Systems Management,
Vol. 2, No. 4, 1994.

[18] Imperial College - Ponder, http://www-dse.doc.ic.ac.uk/
research/policies/software/

