Efficient Construction Of Fixed-Stride Multibit Tries For IP Lookup *

Sartaj Sahni & Kun Suk Kim
{sahni, kskim }@Qcise.ufl.edu
Department of Computer and Information Science and Engineering
University of Florida, Gainesville, FL. 32611

Abstract

Sriniwasan and Varghese [16] have proposed the use
of multibit tries to represent routing tables used for In-
ternet (IP) address lookups. They propose an O(kxW?)
time dynamic programming algorithm to determine the
strides of an optimal k-level multibit fized-stride trie
when the longest prefix in the routing table has length
W. We improve on this algorithm by providing an
alternative dynamic programming formulation. While
the asymptotic complexity of the resulting algorithm for
fized-stride tries is the same as that of the algorithm of
[16], experiments using real IPvj routing table data in-
dicate that our algorithm runs 2 to 4 times as fast.

Keywords: Packet routing, longest matching pre-
fix, controlled prefix expansion, multibit trie, dynamic
programming.

1 Introduction

With the doubling of Internet traffic every three
months [17] and the tripling of Internet hosts every two
years [6], the importance of high speed scalable network
routers cannot be over emphasized. Fast networking
“will play a key role in enabling future progress” [11].
Fast networking requires fast routers and fast routers
require fast router table lookup.

An Internet router table is a set of tuples of the form
(p, a), where p is a binary string whose length is at most
W (W = 32 for IPv4 destination addresses and W =
128 for IPv6), and a is an output link (or next hop).
When a packet with destination address A arrives at a
router, we are to find the pair (p,a) in the router table
for which p is a longest matching prefix of A (i.e., p is
a prefix of A and there is no longer prefix ¢ of A such
that (g, b) is in the table). Once this pair is determined,

1This work was supported, in part, by the National Science
Foundation under grant CCR-9912395.

the packet is sent to ouput link a. The speed at which
the router can route packets is limited by the time it
takes to perform this table lookup for each packet.

Longest prefix routing is used because this results
in smaller and more manageable router tables. It is
impractical for a router table to contain an entry for
each of the possible destination addresses. Two of the
reasons this is so are (1) the number of such entries
would be almost one hundred million and would triple
every three years, and (2) every time a new host comes
online, all router tables will need to incorporate the
new host’s address. By using longest prefix routing,
the size of router tables is contained to a reasonable
quantity and information about host/router changes
made in one part of the Internet need not be propa-
gated throughout the Internet.

Several solutions for the IP lookup problem (i.e.,
finding the longest matching prefix) have been pro-
posed. IP lookup in the BSD kernel is done using
the Patricia data structure [15], which is a variant of a
compressed binary trie [7]. This scheme requires O(W)
memory accesses per lookup. We note that the lookup
complexity of longest prefix matching algorithms is
generally measured by the number of accesses made
to main memory (equivalently, the number of cache
misses). Dynamic prefix tries, which are an extension
of Patricia, and which also take O(W) memory accesses
for lookup have been proposed by Doeringer et al. [5].
LC tries for longest prefix matching are developed in
[13]. Degermark et al. [4] have proposed a three-level
tree structure for the routing table. Using this struc-
ture, IPv4 lookups require at most 12 memory accesses.
The data structure of [4], called the Lulea scheme, is
essentially a three-level fixed-stride trie in which trie
nodes are compressed using a bitmap. The multibit
trie data structures of Srinivasan and Varghese [16] are,
perhaps, the most flexible and effective trie structure
for IP lookup. Using a technique called controlled pre-
fix expansion, which is very similar to the technique
used in [4], tries of a predetermined height (and hence

with a predetermined number of memory accesses per
lookup) may be constructed for any prefix set. Srini-
vasan and Vargese [16] develop a dynamic program-
ming algorithms to obtain space optimal fixed-stride
and variable-stride tries of a given height.

Waldvogel et al. [18] have proposed a scheme that
performs a binary search on hash tables organized by
prefix length. This binary search scheme has an ex-
pected complexity of O(logW). An alternative adap-
tation of binary search to longest prefix matching is
developed in [8]. Using this adaptation, a lookup in a
table that has n prefixes takes O(W + logn) time.

Cheung and McCanne [3] develop “a model for
table-driven route lookup and cast the table de-
sign problem as an optimization problem within this
model.” Their model accounts for the memory hier-
archy of modern computers and they optimize average
performance rather than worst-case performance.

Hardware solutions that involve the use of content
addressable memory [9] as well as solutions that in-
volve modifications to the Internet Protocol (i.e., the
addition of information to each packet) have also been
proposed [2, 12, 1].

In this paper, we focus on the controlled expansion
technique of Srinivasan and Varghese [16]. In particu-
lar, we develop a new dynamic programming formula-
tion for the construction of space optimal fixed-stride
tries of a predetermined height. Our algorithm has the
same asymptotic complexity as does the corresponding
algorithm of [16]. However, our algorithm runs about
2 to 4 times as fast on real IPv4 router prefix sets.

In Section 2, we develop our new dynamic program-
ming formulation, and in Section 3, we present our ex-
perimental results.

2 Construction Of Multibit Tries
2.1 1-Bit Tries

A 1-bit trie is a tree-like structure in which each
node has a left child, left data, right child, and right
data field. Nodes at level I — 1 of the trie store prefixes
whose length is [(the length of a prefix is the num-
ber of bits in that prefix; the terminating * (if present)
does not count towards the prefix length). If the right-
most bit in a prefix whose length is [is 0, the prefix is
stored in the left data field of a node that is at level
l — 1; otherwise, the prefix is stored in the right data
field of a node that is at level [— 1. At level i of a trie,
branching is done by examining bit ¢ (bits are num-
bered from left to right beginning with the number 0,
and levels are numbered with the root being at level 0)
of a prefix or destination address. When bit i is 0, we

move into the left subtree; when the bit is 1, we move
into the right subtree. Figure 1(a) gives the prefixes in
the 8-prefix example of [16], and Figure 1(b) shows the
corresponding 1-bit trie. The prefixes in Figure 1(a)
are numbered and ordered as in [16]. Since the trie of
Figure 1(b) has a height of 6, a search into this trie
may make up to 7 memory accesses. The total mem-
ory required for the 1-bit trie of Figure 1(b) is 20 units
(each node requires 2 units, one for each pair of (child,
data) fields). The 1-bit tries described here are an ex-
tension of the 1-bit tries described in [7]. The primary
difference being that the 1-bit tries of [7] are for the
case when all keys (prefixes) have the same length.

Original prefixes
P5=0*

P1=10*
P2=111*
P3=11001*
P4=1*
P6=1000*
P7=100000*
P8=1000000*

(a) 8-prefix (b) Corresponding
example of 1-bit trie
(16]

Figure 1. Prefixes and corresponding 1-bit trie

When 1-bit tries are used to represent IPv4 router
tables, the trie height may be as much as 31. A lookup
in such a trie takes up to 32 memory accesses. Table 1
gives the characteristics of five IPv4 backbone router
prefix sets. For our five databases, the number of nodes
in a 1-bit trie is between 2n and 3n, where n is the
number of prefixes in the database.

2.2 Fixed-Stride Tries

2.2.1 Definition

Srinivasan and Varghese [16] have proposed the use
of fixed-stride tries to enable fast identification of the
longest matching prefix in a router table. The stride
of a node is defined to be the number of bits used at
that node to determine which branch to take. A node
whose stride is s has 2% child fields (corresponding to
the 2% possible values for the s bits that are used) and
2% data fields. Such a node requires 2° memory units.
In a fized-stride trie (FST), all nodes at the same level
have the same stride; nodes at different levels may have
different strides.

Database | Number of | Number of

prefixes nodes
Paix 85682 173012
Pb 35151 91718
MaeWest 30599 81104
Aads 26970 74290
MaeEast 22630 65862

Table 1. Prefix databases obtained from IPMA
project[10] on Sep 13, 2000. The last column
shows the number of nodes in the 1-bit trie
representation of the prefix database. Note
that the number of prefixes stored at level i
of a 1-bit trie equals the number of prefixes
whose length is i + 1.

Suppose we wish to represent the prefixes of Fig-
ure 1(a) using an FST that has three levels. Assume
that the strides are 2, 3, and 2. The root of the trie
stores prefixes whose length is 2; the level one nodes
store prefixes whose length is 5 (2 + 3); and level three
nodes store prefixes whose length is 7 (2 + 3 + 2).
This poses a problem for the prefixes of our example,
because the length of some of these prefixes is different
from the storeable lengths. For instance, the length of
P5is 1. To get around this problem, a prefix with a
nonpermissible length is expanded to the next permis-
sible length. For example, P5 = 0* is expanded to P5a
= 00* and P5b = 01*. If one of the newly created pre-
fixes is a duplicate, natural dominance rules are used
to eliminate all but one occurrence of the prefix. For
instance, P4 = 1* is expanded to P4a = 10* and P4b
= 11*. However, P1 = 10* is to be chosen over P4a
= 10*, because P1 is a longer match than P4. So,
P4a is eliminated. Because of the elimination of dupli-
cate prefixes from the expanded prefix set, all prefixes
are distinct. Figure 2(a) shows the prefixes that result
when we expand the prefixes of Figure 1 to lengths 2,
5, and 7. Figure 2(b) shows the corresponding FST
whose height is 2 and whose strides are 2, 3, and 2.

Since the trie of Figure 2(b) can be searched with at
most 3 memory references, it represents a time perfor-
mance improvement over the 1-bit trie of Figure 1(b),
which requires up to 7 memory references to perform
a search. However, the space requirements of the FST
of Figure 2(b) are more than that of the corresponding
1-bit trie. For the root of the FST, we need 8 fields
or 4 units; the two level 1 nodes require 8 units each;
and the level 3 node requires 4 units. The total is 24
memory units.

We may represent the prefixes of Figure 1(a) using

_ PS5 00
Expanded prefixes P5 01
(3levels) P1 10

00" (P5a) P4 11
01: (PSb) 000[___P6
10* (P1) 001 _P6 001 P3
11* (P4) o010 - o010 -
11100* (P2a) o1 - o1 -
11101* (P2b) 100 100 P2
11110* (P2c) 101 101 P2
11111* (P2d) 110 110 P2
11001* (P3) 111 m[P2
10000* (P6a)
10001* (Péb) By
1000001* (P7)

1000000* (P8) —

000 -

(a) Ex- (b) Corresponding
panded fixed stride trie
prefixes

Figure 2. Prefix expansion and fixed stride trie

a one-level trie whose root has a stride of 7. Using
such a trie, searches could be performed making a sin-
gle memory access. However, the one-level trie would
require 27 = 128 memory units.

2.2.2 Construction Of Optimal Fixed-Stride
Tries

In the fized-stride trie optimization (FSTQO) problem,
we are given a set P of prefixes and an integer k. We
are to select the strides for a k-level FST in such a
manner that the k-level FST for the given prefixes uses
the smallest amount of memory.

For some P, a k-level FST may actually require more
space than a (k — 1)-level FST. For example, when
P = 00*%, 01*, 10*, 11*, the unique 1-level FST for
P requires 4 memory units while the unique 2-level
FST (which is actually the 1-bit trie for P) requires
6 memory units. Since the search time for a (k — 1)-
level FST is less than that for a k-level tree, we would
actually prefer (k — 1)-level FSTs that take less (or
even equal) memory over k-level FSTs. Therefore, in
practice, we are really interested in determining the
best FST that uses at most & levels (rather than exactly
k levels). The modified MSTO problem (MFSTO) is to
determine the best FST that uses at most k levels for
the given prefix set P.

Let O be the 1-bit trie for the given set of prefixes,
and let F' be any k-level FST for this prefix set. Let
80, ---y Sg—1 be the strides for F. We shall say that
level 0 of F' covers levels 0,...,5¢ — 1 of O, and that
level j, 0 < j < k of F covers levels a, ...,b of O, where
a=Y3"s,and b= 3! s,—1. So, level 0 of the FST
of Figure 2(b) covers levels 0 and 1 of the 1-bit trie of

Figure 1(b). Level 1 of this FST covers levels 2, 3, and
4 of the 1-bit trie of Figure 1(b); and level 2 of this
FST covers levels 5 and 6 of the 1-bit trie. We shall
refer to levels e, = Eg 8¢, 0 < u < k as the ezpansion
levels of O. The expansion levels defined by the FST
of Figure 2(b) are 0, 2, and 5.

Let nodes(i) be the number of nodes at level i of
the 1-bit trie O. For the 1-bit trie of Figure 1(a),
nodes(0 : 6) = [1,1,2,2,2,1,1]. The memory re-
quired by F is Zlg_l nodes(eq) * 2°¢. For example,
the memory required by the FST of Figure 2(b) is
nodes(0) * 22 + nodes(2) * 23 + nodes(5) * 22 = 24.

Let T'(j,7), r < j + 1, be the cost (i.e., memory re-
quirement) of the best way to cover levels 0 through j
of O using exactly r expansion levels. When the maxi-
mum prefix length is W, T(W — 1, k) is the cost of the
best k-level FST for the given set of prefixes. Srini-
vasan and Varghese [16] have obtained the following
dynamic programming recurrence for 7':

T(]a T) = {T(mar - 1) +

min
mée{r—2..j—1}
nodes(m +1) *29~™} r > 1 (1)

T(j,1) =2 (2)

The rationale for Equation 1 is that the best way to
cover levels 0 through j of O using exactly r expansion
levels, 7 > 1, must have its last expansion level at level
m+1 of O, where m must be at least r—2 (as otherwise,
we do not have enough levels between levels 0 and m
of O to select the remaining r — 1 expansion levels) and
at most j — 1 (because the last expansion level is < j).
When the last expansion level is level m + 1, the stride
for this level is j — m, and the number of nodes at this
expansion level is nodes(m + 1). For optimality, levels
0 through m of O must be covered in the best possible
way using exactly 7 — 1 expansion levels.

As noted by Srinivasan and Varghese [16], using the
above recurrence, we may determine T(W — 1,k) in
O(kW?2) time (excluding the time needed to compute O
from the given prefix set and determine nodes()). The
strides for the optimal k-level FST can be obtained in
an additional O(k) time. Since, Equation 1 also may be
used to compute T(W — 1,q) for all ¢ < k in O(kW?2)
time, we can actually solve the MFSTO problem in the
same asymptotic complexity as required for the FSTO
problem.

We can reduce the time needed to solve the MFSTO
problem by modifying the definition of T'. The modi-
fied function is C, where C(j,r) is the cost of the best
FST that uses at most r expansion levels. It is easy to

see that C(j,r) < C(j,r—1), r > 1. A simple dynamic
programming recurrence for C' is:

C(j,r) = min {C(m,r — 1) +

me{—-1..j—1}
nodes(m + 1) x2/"™},j > 0,r > (3)

C(-L,r) = 0and C(j,1) = 2+, >0 (4)

To see the correctness of Equations 3 and 4, note
that when 5 > 0, there must be at least one expansion
level. If r = 1, then there is eactly one expansion level
and the cost is 27!, If r > 1, the last expansion level
in the best FST could be at any of the levels 0 through
j. Let m + 1 be this last expansion level. The cost
of the covering is C(m,r — 1) + nodes(m + 1) * 29—™.
When j = —1, no levels of the 1-bit trie remain to be
covered. Therefore, C(—1,r) = 0.

We may obtain an alternative recurrence for C(j,r)
in which the range of m on the right sideis r—2..5 -1
rather than —1..j — 1. First, we obtain the following
dynamic programming recurrence for C':

C(j,’l") = min{C(j,r - 1)7T(j7T)}7 r>1 (5)

C(j,1) =2 (6)

The rationale for Equation 5 is that the best FST
that uses at most r expansion levels either uses at most
r —1 levels or uses exactly r levels. When at most r —1
levels are used, the cost is C(j,r—1), and when exactly
r levels are used, the cost is T'(j,r), which is defined
by Equation 1.

Let U(j,r) be as defined below:

U(j,r) = {C(m,r—1)+nodes(m+1)x21—™}

min
mée{r—2..j—1}
From Equations 1 and 5 we obtain:
C(J7 ,r) = mln{C(J, r—= 1)7 U(]J T)} (7)

To see the correctness of Equation 7, note that for
all j and r such that » < j + 1, T(j,7) > C(4,7),
Furthermore,

min { T(m,r —1)+ nodes(m + 1) x29~™}
me{r—2..j—1}

\Y%

i Cim,r—1)+
me{rn—nZI.l.j—l}{ (m ")

nodes(m + 1) x 29~™}
= UG (8)

Therefore, when C(j,r — 1) < U(j4,r), Equations 5
and 7 compute the same value for C(j,r). When

C(j,r —1) > U(y,r), it appears from Equation 8 that
Equation 7 may compute a smaller C(j,r) than is com-
puted by Equation 5. However, this is impossible, be-
cause

C(j,r) = min {C(m,r—1)+

me{—1..j—1}
nodes(m + 1) * 27~™}

i C(m,r—1)+
mepin {0 =1

nodes(m + 1) x 27~™}

IN

where C(—1,7) = 0. Therefore, the C(j,r)s computed
by Equations 5 and 7 are equal.

In the remainder of this section, we use Equations 3
and 4 for C. The range for m (in Equation 3) may be
restricted to a range that is (often) considerably smaller
than r —2..5 — 1. To obtain this narrower search range,
we first establish a few properties of 1-bit tries and
their corresponding optimal FSTs.

Lemma 1 For every 1-bit trie O, (a) nodes(i) < 2¢,
i >0 and (b) nodes(i + j) < 2'nodes(i), j >0, i > 0.

Proof Follows from the fact that a 1-bit trie is a
binary tree.]

Let M (j,r), r > 1, be the smallest m that minimizes
C(m,r —1) + nodes(m + 1) % 29=™
in Equation 3.
Lemma 2 V(5 > 0,r > 1)[M(j +1,7) > M(j,7)].

Proof Omitted. |

Lemma 3 V(j > 0,r > 0)[C(j,r) < C(j +1,7)].

Proof [|

The next few lemmas use the function A, which
is defined as A(j,r) = C(j,r — 1) — C(4,r). Since,
C(j,r) < C(j,r — 1), A(j,r) > 0 for all j§ > 0 and all
r>2.

Lemma 4 ¥(j > 0)[A(j,2) < A(j +1,2)].

Proof Omitted. |

Lemma 5 V(j > 0,k > 2)[A(j, k —

J>)S (+1)k_
D=V 20,k>2)[A4,k) <A+ 1K

Proof Omitted. [|

Lemma 6 V(j > 0,k > 2)[A(j, k) < AG +1,k)].

Proof Follows from Lemmas 4 and 5. [|

Lemma 7 Let k > 2. V(j > 0)[A(j,k—1) < A(j +
Lk-1)]=V({ 2 0)[M(,k) > M(j,k—1)].
Proof Omitted. [|

Lemma 8 V(5 >0,k > 2)[M(j,k) > M(j,k — 1)].

Proof Follows from Lemmas 6 and 7. [|

Theorem 1 V(]

1, k), M(j,k = 1)}].

Proof Follows from Lemmas 2 and 8. [|

0,k > 2)[M(j, k) > maz{M(j —

Note 1 From Lemma 6, it follows that whenever
A4, k) >0, Ag, k) >0, Vg > j.

Theorem 1 leads to Algorithm FizedStrides (Fig-
ure 3), which computes C(W — 1,k). The complexity
of this algorithm is O(kW?2). Using the computed M
values, the strides for the OFST that uses at most k ex-
pansion levels may be determined in an additional O(k)
time. Although our algorithm has the same asymp-
totic complexity as does the algorithm of Srinivasan
and Varghese [16], experiments conducted by us using
real prefix sets indicate that our algorithm runs 2 to 4
times as fast.

3 Experimental Results

We programmed our dynamic programming algo-
rithms in C and compared their performance against
that of the C codes for the algorithms of Srinivasan and
Varghese [16]. All codes were compiled using the gcc
compiler and optimization level 02. The codes were
run on a SUN Ultra Enterprise 4000/5000 computer.
For test data, we used the five IPv4 prefix databases
of Table 1.

Figure 4 shows the memory required by the best k-
level FST for each of the five databases of Table 1. Note
that the y-axis of Figure 4 uses a semilog scale. The
k values used by us range from a low of 2 to a high of
7 (corresponding to a lookup performance of at most
2 memory accesses per lookup to at most 7 memory
accesses per lookup). As was the case with the data
sets used in [16], using a larger number of levels does
not increase the required memory. We note that for
k = 11 and 12, [16] reports no decrease in memory

Algorithm FixedStrides(W, k)

//
//
//
{

Memory (KB)

W is length of longest prefix.
k is maximum number of expansion levels desired.
Return C(W — 1,k) and compute M (x, *).

for (j =0;5 < W;j+ +){
Cj,1) = 2+,
for (r=1L1;r <k;jr++4)
C(-1,r):=0;
for (r=2;7r <k;jr++)
for (j=r—1;<W;j++){
// Compute C(j,r).
mind == mazx(M(j — 1,7), M(j,r — 1));
minCost := C(j,r — 1);
minL := M(j,r — 1);
for (m = minJ;m < j;m + +){
cost := C(m,j — 1) + nodes(m + 1) x 29=™;
if (cost < minCost) then
{minCost := cost; minL := m;}}
C(j,r) := minCost; M(j,r) := minL;}
return C(W —1,k);

Figure 3. Algorithm for fixed-stride tries.

10 :
-v - Paix
3 —— Pb
§\ —+- MaeWest
\ —<— Aads
-= - MaeEast

=
o
T

S
iz
S
z
A
Z

10° T
S

10° : ‘ ‘ ‘

2 3 4 ° °

Figure 4. Memory required (in KBytes) by best
k-level FST

v

| References

Paix Pb MaeWest Aads MaeEast
k | [16] | Our | [16] | Our | [16] | Our | [16] | Our | [16] | Our
2 39 21 41 21 39 21 37 20 37 21
3 85 30| 81 30| &4 31 74 31| 96 31
4| 123 39 | 124 40 | 128 38 | 122 40 | 130 40
5| 174 46 | 174 48 | 147 46 | 161 45 | 164 46
6 | 194 53 | 201 54 | 190 55 | 194 54 | 190 53
7 | 246 62 | 241 63 | 221 63 | 264 62 | 220 62

Table 2. Execution time (in p sec) for FST al-
gorithms

required for three of their data sets. We did not try
such large k values for our data sets.

Table 3 and Figure 5 show the time taken by both
our algorithm and that of [16] (we are grateful to Dr.
Srinivasan for making his code available to us) to de-
termine the optimal strides of the best FST that has
at most k levels. As expected, the run time of the al-
gorithm of [16] is quite insensitive to the number of
prefixes in the database. Although the run time of our
algorithm is independent of the number of prefixes, the
run time does depend on the values of nodes(x) as these
values determine M (%, %) and hence determine minJ in
Figure 3. As indicated by the graph of Figure 5, the
run time for our algorithm varies only slightly with the
database. As can be seen, our algorithm provides a
speedup of between ~2 and =4 compared to that of
[16].

4 Conclusions

We have developed a faster algorithm to compute
the optimal strides for fixed-stride tries, than the one
proposed in [16]. For IPv4 prefix databases, our al-
gorithm is faster by a factor of between 2 and 4. We
expect these speedup factors will be larger for IPv6
databases.

[1] A. Bremler-Barr, Y. Afek, and S. Har-Peled,
Routing with a clue, ACM SIGCOMM 1999, 203-

;214

[2] G. Chandranmenon and G. Varghese, Trading
packet headers for packet processing, IEEE Trans-

actions on Networking, 1996.

[3] G. Cheung and S. McCanne, Optimal routing ta-
ble design for IP address lookups under memory

constraints, IEEE INFOCOMM, 1999.

300

-+ - Paix-[16]
—o— Paix-Our
Al - Pb-[16]
250¢)/ ¥ —— Pb-Our
74 —& - MaeWest—[16]
o MaeWest-Our
200¢ i -o - Aads—[16]
o 227 -+ - Aads-Our
5} -
4] //)Z: o —— MaeEast-[16]
~—150 et —~+- MaeEast-Our
= 7
100t P
-2
LY
P e /4//67
50+.% : : e 1
-4 e
‘%}/
O i i
2 3 4 5 6 7

Figure 5. Execution time (in p sec) for FST
algorithms

[4] M. Degermark, A. Brodnik, S. Carlsson, and S.
Pink, Small forwarding tables for fast routing
lookups, ACM SIGCOMM, 1997, 3-14.

[5] W. Doeringer, G. Karjoth, and M. Nassehi, Rout-
ing on longest-matching prefixes, IEEE/ACM
Transactions on Networking, 4, 1, 1996, 86-97.

[6] M. Gray, Internet growth summary,
http://www.mit.edu/people/mkgray/net
/internet-growth-sumary.html, 1996.

[7] E. Horowitz, S.Sahni, and D. Mehta, Fundamen-
tals of Data Structures in C++, W.H. Freeman,
NY, 1995, 653 pages.

[8] B. Lampson, V. Srinivasan, and G. Varghese, IP
Lookup using Multi-way and Multicolumn Search,
IEEE Infocom 98, 1998.

[9] A. McAuley and P. Francis, Fast routing table
lookups using CAMs, IEEE INFOCOM, 1382-
1391, 1993.

[10] Merit, Ipma statistics, http://nic.merit.edu/ipma,
(snapshot on Sep. 13, 2000), 2000.

[11] D. Milojicic, Trend Wars: Internet Technology,
http://www.computer.org/concurrency/articles/
trendwars_200_1.htm, 2000.

[12] P. Newman, G. Minshall, and L. Huston, IP
switching and gigabit routers, IEEE Communica-
tions Magazine, Jan., 1997.

[13] S. Nilsson and G. Karlsson, Fast address look-up
for Internet routers, IEEE Broadband Communi-
cations, 1998.

[14] S. Sahni, Data Structures, Algorithms, and Appli-
cations in Java, McGraw-Hill, 2000.

[15] K. Sklower, A tree-based routing table for Berke-
ley Unix, Technical Report, University of Califor-
nia, Berkeley, 1993.

[16] V. Srinivasan and G. Varghese, ”Faster IP
Lookups using Controlled Prefix Expansion”,
ACM Transactions on Computer Systems, Feb:1-

40, 1999.

[17] A. Tammel, How to survive as an ISP, Networld

Interop, 1997.

[18] M. Waldvogel, G. Varghese, J. Turner, and B.
Plattner, Scalable high speed IP routing lookups,

ACM SIGCOMM, 25-36, 1997.

