
Gang Scheduling in a Distributed System under Processor Failures 
and Time-varying Gang Size 

Helen D. Karatza 
Department of Informatics 

Aristotle University of Thessaloniki 
54124 Thessaloniki, Greece 

karatza@csd.auth.gr

Abstract 

 In this paper we study the performance of a 
distributed system which is subject to hardware failures 
and subsequent repairs. A special type of scheduling 
called gang scheduling is considered, under which jobs 
consist of a number of interacting tasks which are 
scheduled to run simultaneously on distinct processors. 
System performance is examined and compared in cases 
where different distributions for the number of parallel 
tasks per job (gang size) are employed. We examine cases 
where gang size is defined by a specific distribution and 
also a case where gang size distribution varies with time.  

1. Introduction 

 Distributed systems offer considerable computational 
power, which can be used to solve problems with large 
computational requirements. However, it is not always 
possible to efficiently execute jobs. Good scheduling 
policies are needed to improve system and program 
performance. The scheduling of parallel jobs on 
distributed processors has always been an important and 
challenging area of research. In this study jobs consist of 
parallel tasks that are scheduled to execute concurrently 
on a set of processors. The parallel tasks need to start at 
essentially the same time, co-ordinate their execution, and 
compute at the same pace. This type of resource manage-
ment is called “gang scheduling” or “co-scheduling” and 
has been extensively studied in the literature. 
 Distributed systems are considered in this paper. 
Simulation models are used to answer performance 
questions about systems in which the processors are 
subject to failure. In environments that are subject to pro-
cessor failure, any job that has been interrupted by failure 
must restart execution. Recovery from failure implies that 
a newly reactivated processor is reassigned work. When 
an idle processor fails, it can be immediately removed 

from the set of available processors and the reassignment 
of jobs after the processor is repaired can be arbitrary.  
 The main purpose of this paper is to study and 
compare the performance of different scheduling algo-
rithms under different cases of job parallelism. We pursue 
to investigate whether the method that performs better 
than the others for one type of workload, is also the best 
method for the other types of workload that we examine. 
Three cases of job parallelism are considered: in one case, 
jobs have highly variable degree of parallelism during 
their lifetime, while in the second case, the majority of 
jobs exhibit a moderate parallelism. In the third case, job 
parallelism is not defined by a specific pattern but chan-
ges with the time. So, a time interval during which arri-
ving jobs exhibit highly variable degrees of parallelism, is 
followed by a time interval during which the majority of 
jobs exhibit moderate parallelism, and vice-versa.  
 In previous works we studied gang scheduling 
methods in distributed systems where gang parallelism 
was highly variable. For this purpose we used the uniform 
distribution for the number of tasks per job. However, in 
real systems, the variability in job parallelism maybe low, 
or it can vary during the day depending on the jobs that 
run on different time intervals. For this reason in this 
paper we also employ the normal distribution and an 
exponentially varying with the time distribution which 
represents real parallel system workloads. We are 
particularly interested for the last case of job parallelism. 
Also, the performance of different scheduling policies is 
compared for various coefficients of variation of the 
processor service times and for different degrees of 
multiprogramming.  
 Gang scheduling is studied extensively in [1-3], and 
[7-9]. However, these works do not consider processor 
failures. [4], and [5] study gang scheduling under 
processor failures, but they consider only the uniform 
distribution for the gang size. Furthermore, [4] and [5] 
study smaller degrees of multiprogramming than those 
examined here. The routing policy that is employed in [4] 
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is based on the shortest queue criterion, while the routing 
policy that is employed in [5] is based on probabilities.   
Time-varying distribution for the gang size is considered 
in [6], but that paper does not consider processor failures. 
Furthermore the system that is studied in [6] is a shared 
memory partitionable parallel system where all jobs share 
a single queue, whereas this paper considers a distributed 
system because each processor is equipped with its own 
queue.  To our knowledge, the analysis of gang 
scheduling in distributed systems under time-varying 
workload and processor failures does not appear 
elsewhere in the research literature. 
 The structure of the paper is as follows. Section 2.1 
specifies system and workload models, section 2.2 des-
cribes scheduling policies, and section 2.3 presents the 
metrics employed in assessing the performance of the 
scheduling policies that are studied. Model implemen-
tation and input parameters are described in section 3 
while the results of the simulation experiments are 
presented and analyzed in section 4. Section 5 is the 
conclusion and provides suggestions for further research, 
and the last section is references. 

2. Model and methodology 

2.1. System and workload models 

 A closed queuing network model of a distributed 
system is considered (Figure 1). The model represents a 
distributed system because each processor has its own 
queue (memory). There are P = 16 homogeneous and 
independent processors. The degree of multiprogramming 
N is constant during the simulation experiment. A fixed 
number of jobs N are circulating alternatively between the 
processors and the I/O unit. Since we are interested only 
in a system with a balanced program flow, we have 
included an I/O subsystem which has the same service 
capacity as the processors.  
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x
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I/O subsystem
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1

z

Figure 1. The queuing network model 

 There are enough repair stations for all failed 
processors so that they all can be repaired concurrently. In 
this system, simultaneous multiple processor failures are 

not allowed. Idle and allocated processors are equally 
likely to fail. If an idle processor fails, it is immediately 
removed from the set of available processors. It is 
reassigned only after it has been repaired.  
 When a processor fails during task execution, all work 
that was accomplished on all tasks associated with that 
job needs to be redone. Tasks of failed jobs are resubmit-
ted for execution as the first tasks in the assigned queues.  
 The number of tasks in a job is the job’s degree of 
parallelism. The number of tasks in a job is called the 
“size” of the job. We call a job “small” (“large”) if it 
requires a small (large) number of processors. Each time a 
job returns from I/O service to the distributed processors, 
it requires a different number of processors for execution. 
That is, its degree of parallelism is not constant during its 
lifetime in the system.  
 Each task of a job is routed to a different processor for 
execution. The routing policy is that tasks enter the 
shortest queues. Tasks in processor queues are examined 
in order accordingly to the scheduling policy. A job starts 
to execute only if all processors assigned to it are 
available. Otherwise, all tasks of the job wait in the 
assigned queues. When a job finishes execution, all 
processors assigned to it are released.  
 The technique used to evaluate the performance of the 
scheduling disciplines is experimentation using a 
synthetic workload simulation. The workload considered 
here is characterized by the following parameters:  
. The distribution of gang sizes. 
. The distribution of task service demand. 
. The distribution of I/O service time. 
. The distribution of processor failures. 
. The distribution of processor repair time. 
. The degree of multiprogramming.  

2.1.1. Distribution of gang size. Three different types of 
distribution of gang size have been utilized:  
 Uniform distribution. We assume that the number of 
tasks per job is uniformly distributed in the range of 
[1..P]. Therefore, the mean number of tasks per job is 
equal to  = (1+P)/2.
 Normal distribution. We assume a “bounded” normal 
distribution for the number of tasks per job with mean 
equal to  = (1+P)/2. We have chosen standard deviation 
 =  /4.

 Exponentially varying distribution. We assume that 
the distribution of the number of tasks per job changes in 
exponentially distributed time intervals, from uniform to 
normal and vice-versa. Those jobs that arrive at the 
processors within the same time interval have the same 
distribution of gang size. However, during the same time 
interval there may exist some jobs at the processors that 
arrived during a past time interval and which may have a 
different distribution of gang size. These jobs may still 
wait at the processors queues or are being served. The 
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mean time interval for distribution change is d. Figure 2 
shows the changing of gang size distribution with time t.

Uniform
distribution

Normal
distribution

Uniform
distribution

t
Normal

distribution

.. ..

d1 d3d2 dn….

d1, d2, d3, …., dn : exponentially distributed time intervals over time t

Figure 2. Exponentially time-varying distribution 
of gang size 

 It is obvious that jobs of the uniform distribution case 
present larger variability in their degree of parallelism 
than jobs whose number of tasks is normally distributed. 
In the second case, most of the jobs have a moderate 
degree of parallelism (close to the mean ). On the other 
hand, in the case where the distribution of gang size 
changes during time, for some exponentially distributed 
time intervals jobs have highly variable degree of 
parallelism, while during other intervals the majority of 
jobs have a moderate parallelism as compared with the 
number of processors. 

2.1.2. Distribution of task service demand. We examine 
the impact of the variability in task service demand (gang 
execution time) on system performance. A high 
variability in task service demand implies that there are a 
proportionately high number of service demands that are 
very small compared to the mean service time and there 
are a comparatively low number of service demands that 
are very large. When a gang with a long service demand 
starts execution, it occupies its assigned processors for a 
long time interval, and depending on the scheduling 
policy, it may introduce inordinate queuing delays for 
other tasks waiting for service. The parameter that 
represents the variability in task service demand is the 
coefficient of variation of task service demand C. We 
examine the following cases with regard to task service 
demand distribution:  
. Task service demand is an exponentially distributed 

random variable with mean x.
. Task service demand has a Branching Erlang distribu-

tion with two stages. The coefficient of variation is C
>1 and the mean is x.

2.1.3. Distribution of I/O service time. After a job 
leaves the processors, it requests service on the I/O unit. 
The I/O service times are exponentially distributed with 
mean z.

2.1.4. The distribution of processor failures. Processor 
failure is a Poisson process with a failure rate of .

2.1.5. The distribution of processor repair time.
Processor repair time is an exponentially distributed 
random variable with the mean value of 1/ .

2.2. Scheduling strategies

 We present two well known queuing policies when 
gang scheduling is used. A queuing policy is a set of rules 
that prioritizes the order with which jobs are selected for 
execution. We assume that the scheduler knows the exact 
number of processors required by all jobs in the queues. 
 Adaptive First-Come-First-Served (AFCFS). This 
method attempts to schedule a job whenever processors 
assigned to its tasks are available. When there are not 
enough processors available for a large job whose tasks 
are waiting in the front of the queues, AFCFS policy 
schedules smaller jobs whose tasks are behind the tasks of 
the large job. One major problem with this scheduling 
policy is that it tends to favor those jobs requesting a 
smaller number of processors and thus may increase 
fragmentation of the system. 
 Largest-Gang-First-Served (LGFS). With this policy 
tasks are placed in increasing job size order in processor 
queues (tasks that belong to larger gangs are placed at the 
head of queues). All tasks in queues are searched in order, 
and the first jobs whose assigned processors are available 
begin execution. This method tends to improve the 
performance of large, highly parallel jobs at the expense 
of smaller jobs, but in many computing environments this 
discrimination is acceptable, if not desirable. For example, 
supercomputer centers often run large, highly parallel jobs 
that cannot run elsewhere. 
 When a processor fails during task execution, all tasks 
of the corresponding job are resubmitted for execution as 
the leading tasks in the assigned queues. They wait at the 
head of these ready queues until the failed processor is 
repaired. During that time there are two cases for each of 
the AFCFS and LGFS policies: 
 Blocking case. The remaining processors assigned to 
the interrupted job are blocked and cannot execute other 
job tasks. Unfortunately, this case is conservative since 
jobs are only retained on processor queues when they 
could run on those processors.  
 Non-blocking case. Jobs in queues are processed early 
instead of requiring them to wait until the blocked job 
resumes execution. The remaining processors assigned to 
the blocked job execute tasks of other jobs waiting in their 
queues. This case incurs additional overhead since it can 
examine all jobs in these queues when a processor fails.  
 In order to distinguish the scheduling policies in the 
two different cases we use the notations AFCFS(B) and 
LGFS(B) for the blocking case, while we use the notations 
AFCFS and LGFS in the non-blocking cases.  
 For the I/O subsystem, the FCFS policy is employed. 
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2.3. Performance metrics

 We consider the following definitions: 
. Response time of a random job is the interval of time 
from the dispatching of this job tasks to processor queues 
to service completion of this job (time spent in processor 
queues plus time spent in service). 
. Cycle time of a random job is the time that elapses 
between two successive processor service requests of this 
job. In our model cycle time is the sum of response time 
plus queuing and service time at the I/O unit. 
 Parameters used in later simulation computations are 
presented in Table 1.  

Table 1.  Notations 
K   Mean cycle time 
R System throughput 
U Mean processor utilization 
N Degree of multiprogramming 

 Failure rate 
1/ Mean repair time 

The failure to repair ratio ( /  ) 
x Mean processor service time 
z Mean I/O service time 
d Mean time interval for distribution change
P Number of processors 
DR The relative (%) increase in R when policy Y 

performs better than policy X 
DK The relative (%) decrease in K when policy Y 

performs better than policy X 

 Overall system performance is determined by R. K
represents program performance.  

3. Experimental methodology 

 The queuing network model is simulated with discrete 
event simulation modelling using the independent 
replication method. The system considered is balanced 
(refer to Table 1 for notations): x = 1.0, z = 0.531. The 
reason z = 0.531 is chosen for balanced program flow is 
that there are on average 8.5 tasks per job at the 
processors. So, when all processors are busy, an average 
of 1.88235 jobs are served each unit of time. This implies 
that I/O mean service time must be equal to 1/1.88235 = 
0.531 if the I/O unit is to have the same service capacity. 
 The system is examined for cases of task execution ti-
me with exponential distribution (C = 1), and Branching 
Erlang for C = 2, 4. The degree of multiprogramming N is 
16, 24, 32, .., 80. In typical systems, processor failures 
and repairs do not occur very frequently. In order to 
produce a sufficient number of data points for these rare 
events, the simulation program was run for 20,000,000 
job services at the processors. A value of  = 10-3 is used 

(i.e., mean inter-failure time or 1/  = 103). The failure to 
repair ratio (or ) is set at 0.05, and 0.1, which means 
mean repair times (or 1/ ) are set to 50, and 100.  
 In the varying distribution case, the mean time interval 
for distribution change is considered to be d = 10, 20, 30. 
These are reasonable choices considering that the mean 
service time of tasks in equal to one.  

4. Performance analysis  

 A large number of simulation experiments were 
conducted, but to conserve space, only a representative 
sampling of the experimental results is presented in this 
paper.
 Tables 2 and 3 show the mean processor utilization 
range for all N in the  = 0.10 case, for C = 1 and C = 4 
respectively (see Table 1 for notations). 
 The relative increase in R between the non-blocking 
case and the blocking case of each method for the time-
varying distribution case is shown in Figures 3, and 4, for 

 = 0.10, d = 30, and C = 1, 4 respectively. The relative 
increase in R when each of LGFS(B), AFCFS, and LGFS 
is employed instead of AFCFS(B) is depicted in Figures 
5, 6, and 7, (9, 10, and 11) in the  = 0.10, d = 30, and C
= 1, (and C = 4) cases respectively. Figures 8, and 12 
show the relative decrease in K in the time-varying 
distribution case when each of LGFS(B), AFCFS, and 
LGFS is employed instead of AFCFS(B)  for  = 0.10, d
= 30, and C = 1, and C = 4 respectively. Figures 13, 14, 
and 15 represent DR versus N, in the  = 0.10, C = 2, and 
d = 10, 20, and 30 cases respectively. Figure 16 shows DR

versus N in the  = 0.05, C = 2, d = 20 case. 
 The following conclusions are drawn from the results. 
 With each scheduling method, the mean processor 
utilization is slightly higher in the non-blocking case than 
in the blocking case (Tables 2, and 3). However, in both 
cases part of the processor utilization is repeat work 
caused by processor failures rather than useful work.  
 In Figures 3 and 4 it is shown that in the varying 
distribution case for  = 0.10, the difference in perfor-
mance between each one of AFCFS, and LGFS and the 
corresponding blocking case is less than 6.5%. The 
smallest difference in performance is observed at N = 16 
and is less than 4%. In the uniform (normal) distribution 
case for the same N the difference is less than 3 (less than 
5.5) respectively. The reasons that blocking does not 
significantly degrade performance are the following: 
Every job which has a task assigned to the failed 
processor has to wait until the failed processor recovers, 
no matter if a blocking or a non-blocking scheduling 
policy is employed. The interrupted job in the blocking 
case resumes execution as soon as the failed processor 
recovers. However, in the non-blocking case, that job may 
have an elongated response time. This is because when 
the failed processor recovers, some of the processors as-
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signed to that job may work on other jobs already. Those 
jobs will not finish at the same time and therefore, their 
assigned processors will not be used efficiently. 
 In all cases, the LGFS method performs better than the 
other methods, while the worst performance is 
encountered with the AFCFS(B) policy. This is because 
the mean response time of jobs is lower (higher) in the 
LGFS (AFCFS(B)) policy case than in the other methods 
cases. This results in a lower (higher) mean cycle time 
respectively, and therefore in better (worst) overall 
performance.  
 The relative performance of LGFS(B) and AFCFS 
depends on the workload. In some cases the second best 
method after LGFS is LGFS(B) while in other cases 
AFCFS is the second best method. For example, Figures 
5-7, and 9-11 show that: In the uniform distribution case, 
for C = 1 LGFS(B) outperforms AFCFS, while for C = 4, 
AFCFS outperforms LGFS(B).  In the normal distribution 
case, for C = 1 and for small N AFCFS outperforms 
LGFS(B)  but as N increases the superiority of AFCFS 
over LGFS(B)  is decreasing and LGFS(B) tends to 
outperform AFCFS. For C = 4 in the same distribution 
case AFCFS outperforms LGFS(B) but the difference in 
performance is decreasing with increasing N. In the time-
varying distribution case AFCFS outperforms LGFS(B), 
but the difference in performance decreases as N
increases. This relative difference in performance is 
smaller in the C = 1 case than in the C = 4 case.   
 With regard to mean cycle time, the relative difference 
in performance of the scheduling policies for the time-
varying distribution case is depicted in Figures 8 and 12. 
The conclusions are similar to those derived from the 
values of DR.
 Generally, the superiority of LGFS(B), LGFS, and 
AFCFS over AFCFS(B) is increasing with increasing N.
This is due to the fact that the advantages of these policies 
as compared to AFCFS(B) are better exploited in the 
cases of larger queues than in the cases of smaller queues.  
 In the results presented in Figures 13, 14, and 15 for 
the time-varying distribution case, we observe that the 
relative performance of the different policies is not 
significantly affected by the size of the mean time interval 
for distribution change. Also, simulation results presented 
in Figures 14 and 16 show that the relative performance 
of LGFS(B) and AFCFS depends on .
 When we compare a blocking policy with the 
respective non-blocking policy we should take into 
account that the non-blocking policy incurs an additional 
overhead as all jobs in the queues may be examined when 
a processor fails. This overhead has not been modelled in 
this paper.  Therefore, in the cases where non-blocking 
gang scheduling does not perform significantly better than 
blocking scheduling, the blocking case should be prefer-
red since it is easier to be implemented.  

Table 2. U range, C = 1, = 0.10, d = 30 
 Uniform Normal Time-

varying 
AFCFS(B) 0.623-0.678 0.543-0.571 0.586-0.629 
LGFS(B) 0.645-0.721 0.552-0.604 0.600-0.664 
AFCFS 0.638-0.716 0.571-0.603 0.607-0.665 
LGFS 0.663-0.768 0.581-0.639 0.623-0.705 

Table 3. U range, C = 4, = 0.10, d = 30 
 Uniform Normal Time-

varying
AFCFS(B) 0.562-0.640 0.530-0.562 0.548-0.606 
LGFS(B) 0.567-0.669 0.531-0.581 0.551-0.628 
AFCFS 0.575-0.673 0.554-0.591 0.567-0.639 
LGFS 0.579-0.706 0.556-0.613 0.570-0.663 
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Figure 3. DR versus N, d = 30, C = 1,  = 0.10, 
Time-varying distribution 
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Figure 4. DR versus N, d = 30, C = 4,  = 0.10, 
Time-varying distribution  
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Figure 5. DR versus N, C = 1,  = 0.10, Uniform 
distribution 
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Figure 6. DR versus N, C = 1,  = 0.10, Normal 
distribution 
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Figure 7. DR versus N, d = 30, C = 1,  = 0.10, 
Time-varying distribution 
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Figure 8. DK versus N, d = 30, C = 1,  = 0.10, 
Time-varying distribution 
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Figure 9. DR versus N, C = 4,  = 0.10,  
Uniform distribution 
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Figure 10. DR versus N, C = 4,  = 0.10, 
Normal distribution 
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Figure 11. DR versus N, d = 30, C = 4,  = 0.10, 
Time-varying distribution 
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Figure 12. DK versus N, d = 30, C = 4,  = 0.10, 
Time-varying distribution
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Figure 13. DR versus N, d = 10, C = 2,  = 0.10, 
Time-varying distribution
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Figure 14. DR versus N, d = 20, C = 2,  = 0.10, 
Time-varying distribution
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Figure 15. DR versus N, d = 30, C = 2,  = 0.10, 
Time-varying distribution
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Figure 16. DR versus N, d = 20, C = 2,  = 0.05, 
Time-varying distribution

5. Conclusions and further research  

 The simulation results reveal that in all cases of gang 
size distribution that we examine, time-varying, uniform, 
and normal, the LGFS method outperforms the other 
methods. Furthermore, the simulation results show that 
the relative performance of the scheduling policies 
depends on the workload. We also conclude that in the 
cases where non-blocking gang scheduling does not 
significantly outperform blocking scheduling, the 
blocking case should be preferred as it does not incur the 
additional overhead associated with the non-blocking 
gang scheduling. 

 In this paper we consider a time-varying distribution 
only for gang size. A logical extension is to also examine 
the case of a time-varying distribution for task service 
demand.  
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