
Gang Scheduling in a Distributed System under Processor Failures
and Time-varying Gang Size

Helen D. Karatza
Department of Informatics

Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

karatza@csd.auth.gr

Abstract

 In this paper we study the performance of a
distributed system which is subject to hardware failures
and subsequent repairs. A special type of scheduling
called gang scheduling is considered, under which jobs
consist of a number of interacting tasks which are
scheduled to run simultaneously on distinct processors.
System performance is examined and compared in cases
where different distributions for the number of parallel
tasks per job (gang size) are employed. We examine cases
where gang size is defined by a specific distribution and
also a case where gang size distribution varies with time.

1. Introduction

 Distributed systems offer considerable computational
power, which can be used to solve problems with large
computational requirements. However, it is not always
possible to efficiently execute jobs. Good scheduling
policies are needed to improve system and program
performance. The scheduling of parallel jobs on
distributed processors has always been an important and
challenging area of research. In this study jobs consist of
parallel tasks that are scheduled to execute concurrently
on a set of processors. The parallel tasks need to start at
essentially the same time, co-ordinate their execution, and
compute at the same pace. This type of resource manage-
ment is called “gang scheduling” or “co-scheduling” and
has been extensively studied in the literature.
 Distributed systems are considered in this paper.
Simulation models are used to answer performance
questions about systems in which the processors are
subject to failure. In environments that are subject to pro-
cessor failure, any job that has been interrupted by failure
must restart execution. Recovery from failure implies that
a newly reactivated processor is reassigned work. When
an idle processor fails, it can be immediately removed

from the set of available processors and the reassignment
of jobs after the processor is repaired can be arbitrary.
 The main purpose of this paper is to study and
compare the performance of different scheduling algo-
rithms under different cases of job parallelism. We pursue
to investigate whether the method that performs better
than the others for one type of workload, is also the best
method for the other types of workload that we examine.
Three cases of job parallelism are considered: in one case,
jobs have highly variable degree of parallelism during
their lifetime, while in the second case, the majority of
jobs exhibit a moderate parallelism. In the third case, job
parallelism is not defined by a specific pattern but chan-
ges with the time. So, a time interval during which arri-
ving jobs exhibit highly variable degrees of parallelism, is
followed by a time interval during which the majority of
jobs exhibit moderate parallelism, and vice-versa.
 In previous works we studied gang scheduling
methods in distributed systems where gang parallelism
was highly variable. For this purpose we used the uniform
distribution for the number of tasks per job. However, in
real systems, the variability in job parallelism maybe low,
or it can vary during the day depending on the jobs that
run on different time intervals. For this reason in this
paper we also employ the normal distribution and an
exponentially varying with the time distribution which
represents real parallel system workloads. We are
particularly interested for the last case of job parallelism.
Also, the performance of different scheduling policies is
compared for various coefficients of variation of the
processor service times and for different degrees of
multiprogramming.
 Gang scheduling is studied extensively in [1-3], and
[7-9]. However, these works do not consider processor
failures. [4], and [5] study gang scheduling under
processor failures, but they consider only the uniform
distribution for the gang size. Furthermore, [4] and [5]
study smaller degrees of multiprogramming than those
examined here. The routing policy that is employed in [4]

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEEAuthorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:22 from IEEE Xplore. Restrictions apply.

is based on the shortest queue criterion, while the routing
policy that is employed in [5] is based on probabilities.
Time-varying distribution for the gang size is considered
in [6], but that paper does not consider processor failures.
Furthermore the system that is studied in [6] is a shared
memory partitionable parallel system where all jobs share
a single queue, whereas this paper considers a distributed
system because each processor is equipped with its own
queue. To our knowledge, the analysis of gang
scheduling in distributed systems under time-varying
workload and processor failures does not appear
elsewhere in the research literature.
 The structure of the paper is as follows. Section 2.1
specifies system and workload models, section 2.2 des-
cribes scheduling policies, and section 2.3 presents the
metrics employed in assessing the performance of the
scheduling policies that are studied. Model implemen-
tation and input parameters are described in section 3
while the results of the simulation experiments are
presented and analyzed in section 4. Section 5 is the
conclusion and provides suggestions for further research,
and the last section is references.

2. Model and methodology

2.1. System and workload models

 A closed queuing network model of a distributed
system is considered (Figure 1). The model represents a
distributed system because each processor has its own
queue (memory). There are P = 16 homogeneous and
independent processors. The degree of multiprogramming
N is constant during the simulation experiment. A fixed
number of jobs N are circulating alternatively between the
processors and the I/O unit. Since we are interested only
in a system with a balanced program flow, we have
included an I/O subsystem which has the same service
capacity as the processors.

P

N

x

x

x
I/O subsystem

2

1

z

Figure 1. The queuing network model

 There are enough repair stations for all failed
processors so that they all can be repaired concurrently. In
this system, simultaneous multiple processor failures are

not allowed. Idle and allocated processors are equally
likely to fail. If an idle processor fails, it is immediately
removed from the set of available processors. It is
reassigned only after it has been repaired.
 When a processor fails during task execution, all work
that was accomplished on all tasks associated with that
job needs to be redone. Tasks of failed jobs are resubmit-
ted for execution as the first tasks in the assigned queues.
 The number of tasks in a job is the job’s degree of
parallelism. The number of tasks in a job is called the
“size” of the job. We call a job “small” (“large”) if it
requires a small (large) number of processors. Each time a
job returns from I/O service to the distributed processors,
it requires a different number of processors for execution.
That is, its degree of parallelism is not constant during its
lifetime in the system.
 Each task of a job is routed to a different processor for
execution. The routing policy is that tasks enter the
shortest queues. Tasks in processor queues are examined
in order accordingly to the scheduling policy. A job starts
to execute only if all processors assigned to it are
available. Otherwise, all tasks of the job wait in the
assigned queues. When a job finishes execution, all
processors assigned to it are released.
 The technique used to evaluate the performance of the
scheduling disciplines is experimentation using a
synthetic workload simulation. The workload considered
here is characterized by the following parameters:
. The distribution of gang sizes.
. The distribution of task service demand.
. The distribution of I/O service time.
. The distribution of processor failures.
. The distribution of processor repair time.
. The degree of multiprogramming.

2.1.1. Distribution of gang size. Three different types of
distribution of gang size have been utilized:
 Uniform distribution. We assume that the number of
tasks per job is uniformly distributed in the range of
[1..P]. Therefore, the mean number of tasks per job is
equal to = (1+P)/2.
 Normal distribution. We assume a “bounded” normal
distribution for the number of tasks per job with mean
equal to = (1+P)/2. We have chosen standard deviation
 = /4.

 Exponentially varying distribution. We assume that
the distribution of the number of tasks per job changes in
exponentially distributed time intervals, from uniform to
normal and vice-versa. Those jobs that arrive at the
processors within the same time interval have the same
distribution of gang size. However, during the same time
interval there may exist some jobs at the processors that
arrived during a past time interval and which may have a
different distribution of gang size. These jobs may still
wait at the processors queues or are being served. The

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEEAuthorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:22 from IEEE Xplore. Restrictions apply.

mean time interval for distribution change is d. Figure 2
shows the changing of gang size distribution with time t.

Uniform
distribution

Normal
distribution

Uniform
distribution

t
Normal

distribution

.. ..

d1 d3d2 dn….

d1, d2, d3, …., dn : exponentially distributed time intervals over time t

Figure 2. Exponentially time-varying distribution
of gang size

 It is obvious that jobs of the uniform distribution case
present larger variability in their degree of parallelism
than jobs whose number of tasks is normally distributed.
In the second case, most of the jobs have a moderate
degree of parallelism (close to the mean). On the other
hand, in the case where the distribution of gang size
changes during time, for some exponentially distributed
time intervals jobs have highly variable degree of
parallelism, while during other intervals the majority of
jobs have a moderate parallelism as compared with the
number of processors.

2.1.2. Distribution of task service demand. We examine
the impact of the variability in task service demand (gang
execution time) on system performance. A high
variability in task service demand implies that there are a
proportionately high number of service demands that are
very small compared to the mean service time and there
are a comparatively low number of service demands that
are very large. When a gang with a long service demand
starts execution, it occupies its assigned processors for a
long time interval, and depending on the scheduling
policy, it may introduce inordinate queuing delays for
other tasks waiting for service. The parameter that
represents the variability in task service demand is the
coefficient of variation of task service demand C. We
examine the following cases with regard to task service
demand distribution:
. Task service demand is an exponentially distributed

random variable with mean x.
. Task service demand has a Branching Erlang distribu-

tion with two stages. The coefficient of variation is C
>1 and the mean is x.

2.1.3. Distribution of I/O service time. After a job
leaves the processors, it requests service on the I/O unit.
The I/O service times are exponentially distributed with
mean z.

2.1.4. The distribution of processor failures. Processor
failure is a Poisson process with a failure rate of .

2.1.5. The distribution of processor repair time.
Processor repair time is an exponentially distributed
random variable with the mean value of 1/ .

2.2. Scheduling strategies

 We present two well known queuing policies when
gang scheduling is used. A queuing policy is a set of rules
that prioritizes the order with which jobs are selected for
execution. We assume that the scheduler knows the exact
number of processors required by all jobs in the queues.
 Adaptive First-Come-First-Served (AFCFS). This
method attempts to schedule a job whenever processors
assigned to its tasks are available. When there are not
enough processors available for a large job whose tasks
are waiting in the front of the queues, AFCFS policy
schedules smaller jobs whose tasks are behind the tasks of
the large job. One major problem with this scheduling
policy is that it tends to favor those jobs requesting a
smaller number of processors and thus may increase
fragmentation of the system.
 Largest-Gang-First-Served (LGFS). With this policy
tasks are placed in increasing job size order in processor
queues (tasks that belong to larger gangs are placed at the
head of queues). All tasks in queues are searched in order,
and the first jobs whose assigned processors are available
begin execution. This method tends to improve the
performance of large, highly parallel jobs at the expense
of smaller jobs, but in many computing environments this
discrimination is acceptable, if not desirable. For example,
supercomputer centers often run large, highly parallel jobs
that cannot run elsewhere.
 When a processor fails during task execution, all tasks
of the corresponding job are resubmitted for execution as
the leading tasks in the assigned queues. They wait at the
head of these ready queues until the failed processor is
repaired. During that time there are two cases for each of
the AFCFS and LGFS policies:
 Blocking case. The remaining processors assigned to
the interrupted job are blocked and cannot execute other
job tasks. Unfortunately, this case is conservative since
jobs are only retained on processor queues when they
could run on those processors.
 Non-blocking case. Jobs in queues are processed early
instead of requiring them to wait until the blocked job
resumes execution. The remaining processors assigned to
the blocked job execute tasks of other jobs waiting in their
queues. This case incurs additional overhead since it can
examine all jobs in these queues when a processor fails.
 In order to distinguish the scheduling policies in the
two different cases we use the notations AFCFS(B) and
LGFS(B) for the blocking case, while we use the notations
AFCFS and LGFS in the non-blocking cases.
 For the I/O subsystem, the FCFS policy is employed.

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEEAuthorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:22 from IEEE Xplore. Restrictions apply.

2.3. Performance metrics

 We consider the following definitions:
. Response time of a random job is the interval of time
from the dispatching of this job tasks to processor queues
to service completion of this job (time spent in processor
queues plus time spent in service).
. Cycle time of a random job is the time that elapses
between two successive processor service requests of this
job. In our model cycle time is the sum of response time
plus queuing and service time at the I/O unit.
 Parameters used in later simulation computations are
presented in Table 1.

Table 1. Notations
K Mean cycle time
R System throughput
U Mean processor utilization
N Degree of multiprogramming

 Failure rate
1/ Mean repair time

The failure to repair ratio (/)
x Mean processor service time
z Mean I/O service time
d Mean time interval for distribution change
P Number of processors
DR The relative (%) increase in R when policy Y

performs better than policy X
DK The relative (%) decrease in K when policy Y

performs better than policy X

 Overall system performance is determined by R. K
represents program performance.

3. Experimental methodology

 The queuing network model is simulated with discrete
event simulation modelling using the independent
replication method. The system considered is balanced
(refer to Table 1 for notations): x = 1.0, z = 0.531. The
reason z = 0.531 is chosen for balanced program flow is
that there are on average 8.5 tasks per job at the
processors. So, when all processors are busy, an average
of 1.88235 jobs are served each unit of time. This implies
that I/O mean service time must be equal to 1/1.88235 =
0.531 if the I/O unit is to have the same service capacity.
 The system is examined for cases of task execution ti-
me with exponential distribution (C = 1), and Branching
Erlang for C = 2, 4. The degree of multiprogramming N is
16, 24, 32, .., 80. In typical systems, processor failures
and repairs do not occur very frequently. In order to
produce a sufficient number of data points for these rare
events, the simulation program was run for 20,000,000
job services at the processors. A value of = 10-3 is used

(i.e., mean inter-failure time or 1/ = 103). The failure to
repair ratio (or) is set at 0.05, and 0.1, which means
mean repair times (or 1/) are set to 50, and 100.
 In the varying distribution case, the mean time interval
for distribution change is considered to be d = 10, 20, 30.
These are reasonable choices considering that the mean
service time of tasks in equal to one.

4. Performance analysis

 A large number of simulation experiments were
conducted, but to conserve space, only a representative
sampling of the experimental results is presented in this
paper.
 Tables 2 and 3 show the mean processor utilization
range for all N in the = 0.10 case, for C = 1 and C = 4
respectively (see Table 1 for notations).
 The relative increase in R between the non-blocking
case and the blocking case of each method for the time-
varying distribution case is shown in Figures 3, and 4, for

 = 0.10, d = 30, and C = 1, 4 respectively. The relative
increase in R when each of LGFS(B), AFCFS, and LGFS
is employed instead of AFCFS(B) is depicted in Figures
5, 6, and 7, (9, 10, and 11) in the = 0.10, d = 30, and C
= 1, (and C = 4) cases respectively. Figures 8, and 12
show the relative decrease in K in the time-varying
distribution case when each of LGFS(B), AFCFS, and
LGFS is employed instead of AFCFS(B) for = 0.10, d
= 30, and C = 1, and C = 4 respectively. Figures 13, 14,
and 15 represent DR versus N, in the = 0.10, C = 2, and
d = 10, 20, and 30 cases respectively. Figure 16 shows DR

versus N in the = 0.05, C = 2, d = 20 case.
 The following conclusions are drawn from the results.
 With each scheduling method, the mean processor
utilization is slightly higher in the non-blocking case than
in the blocking case (Tables 2, and 3). However, in both
cases part of the processor utilization is repeat work
caused by processor failures rather than useful work.
 In Figures 3 and 4 it is shown that in the varying
distribution case for = 0.10, the difference in perfor-
mance between each one of AFCFS, and LGFS and the
corresponding blocking case is less than 6.5%. The
smallest difference in performance is observed at N = 16
and is less than 4%. In the uniform (normal) distribution
case for the same N the difference is less than 3 (less than
5.5) respectively. The reasons that blocking does not
significantly degrade performance are the following:
Every job which has a task assigned to the failed
processor has to wait until the failed processor recovers,
no matter if a blocking or a non-blocking scheduling
policy is employed. The interrupted job in the blocking
case resumes execution as soon as the failed processor
recovers. However, in the non-blocking case, that job may
have an elongated response time. This is because when
the failed processor recovers, some of the processors as-

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEEAuthorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:22 from IEEE Xplore. Restrictions apply.

signed to that job may work on other jobs already. Those
jobs will not finish at the same time and therefore, their
assigned processors will not be used efficiently.
 In all cases, the LGFS method performs better than the
other methods, while the worst performance is
encountered with the AFCFS(B) policy. This is because
the mean response time of jobs is lower (higher) in the
LGFS (AFCFS(B)) policy case than in the other methods
cases. This results in a lower (higher) mean cycle time
respectively, and therefore in better (worst) overall
performance.
 The relative performance of LGFS(B) and AFCFS
depends on the workload. In some cases the second best
method after LGFS is LGFS(B) while in other cases
AFCFS is the second best method. For example, Figures
5-7, and 9-11 show that: In the uniform distribution case,
for C = 1 LGFS(B) outperforms AFCFS, while for C = 4,
AFCFS outperforms LGFS(B). In the normal distribution
case, for C = 1 and for small N AFCFS outperforms
LGFS(B) but as N increases the superiority of AFCFS
over LGFS(B) is decreasing and LGFS(B) tends to
outperform AFCFS. For C = 4 in the same distribution
case AFCFS outperforms LGFS(B) but the difference in
performance is decreasing with increasing N. In the time-
varying distribution case AFCFS outperforms LGFS(B),
but the difference in performance decreases as N
increases. This relative difference in performance is
smaller in the C = 1 case than in the C = 4 case.
 With regard to mean cycle time, the relative difference
in performance of the scheduling policies for the time-
varying distribution case is depicted in Figures 8 and 12.
The conclusions are similar to those derived from the
values of DR.
 Generally, the superiority of LGFS(B), LGFS, and
AFCFS over AFCFS(B) is increasing with increasing N.
This is due to the fact that the advantages of these policies
as compared to AFCFS(B) are better exploited in the
cases of larger queues than in the cases of smaller queues.
 In the results presented in Figures 13, 14, and 15 for
the time-varying distribution case, we observe that the
relative performance of the different policies is not
significantly affected by the size of the mean time interval
for distribution change. Also, simulation results presented
in Figures 14 and 16 show that the relative performance
of LGFS(B) and AFCFS depends on .
 When we compare a blocking policy with the
respective non-blocking policy we should take into
account that the non-blocking policy incurs an additional
overhead as all jobs in the queues may be examined when
a processor fails. This overhead has not been modelled in
this paper. Therefore, in the cases where non-blocking
gang scheduling does not perform significantly better than
blocking scheduling, the blocking case should be prefer-
red since it is easier to be implemented.

Table 2. U range, C = 1, = 0.10, d = 30
 Uniform Normal Time-

varying
AFCFS(B) 0.623-0.678 0.543-0.571 0.586-0.629
LGFS(B) 0.645-0.721 0.552-0.604 0.600-0.664
AFCFS 0.638-0.716 0.571-0.603 0.607-0.665
LGFS 0.663-0.768 0.581-0.639 0.623-0.705

Table 3. U range, C = 4, = 0.10, d = 30
 Uniform Normal Time-

varying
AFCFS(B) 0.562-0.640 0.530-0.562 0.548-0.606
LGFS(B) 0.567-0.669 0.531-0.581 0.551-0.628
AFCFS 0.575-0.673 0.554-0.591 0.567-0.639
LGFS 0.579-0.706 0.556-0.613 0.570-0.663

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

AFCFS versus AFCFS(B)
LGFS versus LGFS(B)

DR

Figure 3. DR versus N, d = 30, C = 1, = 0.10,
Time-varying distribution

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

AFCFS versus AFCFS(B)
LGFS versus LGFS(B)

DR

Figure 4. DR versus N, d = 30, C = 4, = 0.10,
Time-varying distribution

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)

LGFS versus AFCFS(B)

DR

Figure 5. DR versus N, C = 1, = 0.10, Uniform
distribution

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEEAuthorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:22 from IEEE Xplore. Restrictions apply.

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Figure 6. DR versus N, C = 1, = 0.10, Normal
distribution

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Figure 7. DR versus N, d = 30, C = 1, = 0.10,
Time-varying distribution

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

LGFS(B) versus AFCFS(B)

AFCFS versus AFCFS(B)

LGFS versus AFCFS(B)

DK

Figure 8. DK versus N, d = 30, C = 1, = 0.10,
Time-varying distribution

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)

AFCFS versus AFCFS(B)

LGFS versus AFCFS(B)

DR

Figure 9. DR versus N, C = 4, = 0.10,
Uniform distribution

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)

AFCFS versus AFCFS(B)

LGFS versus AFCFS(B)

DR

Figure 10. DR versus N, C = 4, = 0.10,
Normal distribution

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)

AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Figure 11. DR versus N, d = 30, C = 4, = 0.10,
Time-varying distribution

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)

LGFS versus AFCFS(B)

DK

Figure 12. DK versus N, d = 30, C = 4, = 0.10,
Time-varying distribution

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Figure 13. DR versus N, d = 10, C = 2, = 0.10,
Time-varying distribution

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEEAuthorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:22 from IEEE Xplore. Restrictions apply.

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Figure 14. DR versus N, d = 20, C = 2, = 0.10,
Time-varying distribution

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)
AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Figure 15. DR versus N, d = 30, C = 2, = 0.10,
Time-varying distribution

16 24 32 40 48 56 64 72 80
0

2

4

6

8

10

12

14

LGFS(B) versus AFCFS(B)

AFCFS versus AFCFS(B)
LGFS versus AFCFS(B)

DR

Figure 16. DR versus N, d = 20, C = 2, = 0.05,
Time-varying distribution

5. Conclusions and further research

 The simulation results reveal that in all cases of gang
size distribution that we examine, time-varying, uniform,
and normal, the LGFS method outperforms the other
methods. Furthermore, the simulation results show that
the relative performance of the scheduling policies
depends on the workload. We also conclude that in the
cases where non-blocking gang scheduling does not
significantly outperform blocking scheduling, the
blocking case should be preferred as it does not incur the
additional overhead associated with the non-blocking
gang scheduling.

 In this paper we consider a time-varying distribution
only for gang size. A logical extension is to also examine
the case of a time-varying distribution for task service
demand.

6. References

[1] D.G. Feitelson, and R. Rudolph, “Parallel Job Scheduling:
Issues and Approaches”, In Job Scheduling Strategies for
Parallel Processing, Lecture Notes in Computer Science,
Springer-Verlang, Berlin, Germany, 1995, Vol. 949, pp. 1-18.

[2] D.G. Feitelson, and L. Rudolph, “Evaluation of Design
Choices for Gang Scheduling Using Distributed Hierarchical
Control”, Journal of Parallel and Distributed Computing,
Academic Press, New York, USA, 1996, Vol. 35, pp. 18-34.

[3] D.G. Feitelson, and M.A. Jette, “Improved Utilisation and
Responsiveness with Gang Scheduling”, In Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer
Science, Springer-Verlang, Berlin, Germany, 1997, Vol. 1291,
pp. 238-261.

[4] H.D. Karatza, “Gang Scheduling in a Distributed System
with Processor Failures”, In Proceedings of the UK
Performance Engineering Workshop, University of Bristol,
Bristol, UK, July 22-23, 1999, pp. 199-208.

[5] H.D. Karatza, “Performance Analysis of Gang Scheduling in
a Distributed System Under Processor Failures”, International
Journal of Simulation: Systems, Science & Technology, UK Si-
mulation Society, Nottingham, UK, 2001, Vol. 2(1), pp. 14-23.

[6] H.D. Karatza, “Gang Scheduling Performance under
Different Distributions of Gang Size”, Parallel and Distributed
Computing Practices, Nova Science Publishers, Hauppauge,
NY, USA, to appear.

[7] P.G. Sobalvarro, and W.E. Weihl, “Demand-based
Coscheduling of Parallel Jobs on Multiprogrammed
Multiprocessors”, In Job Scheduling Strategies for Parallel
Processing, Lecture Notes in Computer Science, Springer-
Verlang, Berlin, Germany, 1995, Vol. 949, pp. 106-126.

[8] M.S. Squillante, F. Wang, and M. Papaefthymioy,
“Stochastic Analysis of Gang Scheduling in Parallel and
Distributed Systems”, Performance Evaluation, Elsevier,
Amsterdam, Holland, 1996, Vol. 27&28 (4), pp. 273-296.

[9] F. Wang, M. Papaefthymiou, and M.S. Squillante,
“Performance Evaluation of Gang Scheduling for Parallel and
Distributed Systems”, In Job Scheduling Strategies for Parallel
Processing, Lecture Notes in Computer Science, Springer-
Verlang, Berlin, Germany, 1997, Vol. 1291, pp. 184-195.

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEEAuthorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on February 28, 2009 at 07:22 from IEEE Xplore. Restrictions apply.

