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Abstract—HPC systems are a critical resource for scientific
research and advanced industries. The increased demand for
computational power and memory ushers in the exascale era,
in which supercomputers are designed to provide enormous
computing power to meet these needs. These complex supercom-
puters consist of numerous compute nodes and are consequently
expected to experience frequent faults and crashes.
Mathematical solvers, in particular, iterative linear solvers are
key building block in numerous large-scale scientific applications.
Consequently, supporting the recovery of distributed solvers is
necessary for scaling scientific applications to exascale platforms.
Previous recovery methods for iterative solvers are based on
Checkpoint-Restart (CR), which incurs high fault tolerance
overhead, or intrinsic fault tolerance, which require extra com-
putation time to converge after failures.
Exact state reconstruction (ESR) was proposed as an alternative
mechanism to alleviate the impact of frequent failures on long-
term computations. ESR has been shown to provide exact
reconstruction of the computation state while avoiding the need
for costly checkpointing. However, ESR currently relies on
volatile memory for fault tolerance, and must therefore maintain
redundancies in the RAM of multiple nodes. This not only incurs
high memory overhead but also prevents ESR from being fully
resilient, that is, resilient against a full system crash.
Recent supercomputer designs feature emerging non-volatile
RAM (NVRAM) technology, for example, the exascale Aurora
that is planned to consist of Intel Optane™ DCPMM. This
paper investigates how NVRAM can be utilized to devise an
enhanced ESR-based recovery mechanism that is more efficient
and provides full resilience. Our mechanism, called in-NVRAM
ESR, provides full resiliency while significantly reducing both
the memory footprint and the time overhead in comparison with
the original ESR design (in-RAM ESR). In-NVRAM ESR is
based on a novel MPI One-Sided Communication (OSC) over
RDMA implementation, which was optimized and applied for
using NVRAM to store recovery data for iterative linear solvers.
The source code used in this work, as well as the benchmarks
and other relevant sources, are available at: https://github.com
/Scientific-Computing-Lab-NRCN/In-NVRAM-ESR.git.
Index Terms—Iterative Solvers, Recovery, HPC, Exascale,
NVRAM, Intel Optane DCPMM, MPI OSC, RDMA, ESR, PCG

I. INTRODUCTION

A. Fault Tolerance in Supercomputing

The past decade has seen a skyrocketing increase in the
demand for high-performance computing (HPC) systems, in
order to meet the computing power needs of resource-hungry
applications in various science domains. This ushered in a new
exascale era of stronger and more complex supercomputers.
For example, the first exascale supercomputer, Frontier [1],
consists of more than 8 million compute cores that provide
peak computing power of 1.102 Exaflop/s. With the increase
in complexity and the number of compute nodes, comes
increased vulnerability to failures. Already for earlier genera-
tions of petascale supercomputers, Schroeder and Gibson [2]
showed that in certain situations, applications are forced into
recovery more than twice a day. It is further anticipated that
exascale systems will experience various kinds of faults every
few hours or even every few minutes, in spite of hardware-
based protection mechanisms [3], [4], leading to a growing
need for mechanisms to ensure efficient recovery from failures.
Mathematical solvers are a key component of scientific ap-
plications, especially in HPC, accounting for 50-90% of their
operations [5]. Efforts were made to develop and maintain
distributed, efficient and scalable libraries for these solvers. A
prominent example is Trilinos [6], a collection of distributed
and parallel reusable scientific software libraries that is widely
used in high-performance scientific computing and includes
linear, non-linear, transient and optimization solvers. Support-
ing the recovery of mathematical solvers is therefore necessary
for scaling scientific applications and performing them on
exascale platforms. Indeed, prior research [7]–[11] studied soft
and hard faults resilience aspects in Trilinos.
Checkpoint-Restart (CR) techniques using non-volatile storage
such as HDDs and SSDs are the most general and direct mech-
anisms to support recovery of scientific applications [12], [13].
Extensive work was done to provide improved CR models in
order to minimize performance loss [14], [15]. However, CR
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has inherent limitations, especially for scientific computations
with large data sets, where checkpointing the partial image
of an application (let alone the full one) requires to transfer
large amounts of data to high-latency devices. Excessive
checkpointing will result in total performance degradation.
Other work investigates fault-tolerance aspects in mathemati-
cal solvers, exploiting intrinsic attributes of solvers to tolerate
faults, alleviating the need for checkpointing [11], [16]–[18].
For example, Sao and Vuduc [18] investigate self-stabilizing
iterative solvers that require only lightweight tests for fault-
detection. However, these solutions typically do not guarantee
correct recovery, or require a significant extra computation
time to converge after recovery.

B. NVRAM in HPC

Next-generation supercomputers are expected to incorporate
novel non-volatile memory (NVM); for example, the flagship
Aurora [19] will integrate NVM devices such as the Intel
Optane™ DCPMM. When configured in App-Direct mode,
these devices are byte-addressable and can be used by pro-
cesses as non-volatile random access memory (NVRAM).1

NVRAM’s ability to retain data even after node failures opens
new possibilities for HPC, most notably, as a medium for data
persistence upon node or process failure and recovery.
Prior work on the use of NVRAM in HPC environments was
confined to three main direct use-cases: (1) memory expansion
to enable larger memory scientific workloads [20], [22]–[24],
(2) fast storage for diagnostics [22], [25], [26], and (3) fast
persistence area for checkpointing [22], [27]. Use cases (2)
and (3) rely on the non-volatility of NVRAM for fast storage
as a substitute for standard storage mediums [22], [25], [26].
For example, the DAOS storage server [25] is one of the
promising storage systems for massively distributed NVM
(NVMeSSD/+NVRAM); it is already in use by supercomput-
ers at the top of IO500 list [28].
In contrast to these use-cases of NVRAM (for diagnos-
tics, checkpointing and memory expansion), recent research
investigates the recovery of concurrent data objects using
NVRAM [29]–[35]. These works focus on achieving correct
recovery with marginal footprint of the recovery data and
minimal time overhead mechanisms. NVRAM has limited
endurance and can tolerate a limited number of writes [36] —
a fact that increases the need for clever recovery models that
emphasize on minimizing memory footprint of the persisted
data. However, all of those works are mostly theoretical and
were not geared towards HPC applications.

C. Exact State Reconstruction of Linear Iterative Solvers

Iterative linear solvers, commonly used in HPC, offer inherent
recoverability capabilities. They are mostly suitable for linear
problems involving many variables (sometimes on the order
of millions), where direct methods would be prohibitively
expensive [37]. In Trilinos, these solvers are provided in the

1Alternatively, they may be configured in Memory or Flat mode, in which
case that provide an extension to the volatile memory pool of the application
[20], [21].

Anasazi [38] and Belos [39] libraries, and include CG [40],
GMRES [41], Jacobi [42], SOR [43] and more. Given initial
approximations, such methods converge to the correct result by
improving the quality of their result over time. This provides
intrinsic tolerance to errors, as the solver has the potential to
converge from any initial guess.
The intrinsic fault tolerance to errors of iterative linear solvers
introduces a trade-off with CR mechanisms: Iterative solvers
can inherently tolerate inconsistent data during convergence,
although this might require extra computation time to con-
verge [27], [44]. In contrast, CR mechanisms checkpoint
the exact state of the solver and computation continues in
recovery from the last checkpoint. Calculations performed
after the last checkpoint are lost upon a failure, hence frequent
checkpointing minimizes the rollback cost. However, excessive
checkpointing creates significant storage access overheads and
might double or even triple the memory footprint of the
application. This is a major downside for scientific simulations
with large data sets [27]. The gap between these two recovery
mechanisms and their downsides calls for recovery methods
that reduce the memory overhead without inaccuracies or
imperfections, while crucial data is persisted directly into non-
volatile yet fast memory, for seamless fault tolerance.
Yet another recovery scheme is to design recovery algorithms
that tolerate failures according to the specific characteristics
of an application [45]–[51]. A key example of such a scheme
is exact state reconstruction (ESR). ESR is applicable to
many distributed linear iterative solvers. Introduced by Chen et
al. [46], [52], and refined by Pachajoa et al. [53]–[56], ESR is
a recovery mechanism that achieves exact reconstruction of the
computation state under failures while incurring significantly
lower overhead than CR [53]. ESR provides fault tolerance
by keeping redundancies of chosen process’ state variables in
the memory of other processes in run time; we therefore refer
to it as in-RAM ESR.2. Chen [52] introduced a way to use
the sparse matrix–vector multiplication (SpMV) to redundantly
store the input vector, exploiting the already existing trans-
mission of data between processes. In this manner, redundant
copies of the input vector can be produced with relatively
low memory and runtime overheads. Pachajoa et al. [53]–
[55] extended in-RAM ESR to support multiple node failures.
However, to maximize fault tolerance, processes replicate
their state vectors on each other compute node which comes
with a significant memory expense. Additionally, in this case
redundancies are sent all-to-all after each iteration (or after
a certain period), leading to a surge in network traffic. To
alleviate these problems, ESR can replicate the state at only
a fraction α of the cluster, for example, at half of the nodes
(α = 0.5). It is also possible to use different strategies for se-
lecting the nodes to keep the redundant copies for minimizing

2We use the terminology in-X, where X is the target of the redundancy
needed for the ESR operation. Specifically, in-RAM (as in the original ESR),
in-SSD and in-NVRAM. We note that the target device does not directly imply
the access fashion. Specifically, while RAM will be byte-addressable in the
context of this paper, NVRAM can be either byte- (with DAX and RDMA
operations, or byte-oriented PMFS) or block-addressable (with simple PMFS).
Of course, SSDs and HDDs will be referred as block-oriented only.



(a) CR to Storage (b) Intrinsic Recovery Mechanisms (c) In-RAM ESR (d) In-NVRAM ESR

Fig. 1: Recovery models for iterative solvers: (a) Checkpointing the state of the computation frequently to storage device; when
a failure occurs, reading the complete state back and continuing. (b) fault corrupts parts of the state, accuracy is therefore
lost and recomputation is required. (c) Saving copies of recovery data in other processes’ RAM; when a failure occurs,
collecting recovery data from other survived processes via messages, reconstructing the full state and continuing (d) Exact
state reconstruction with saving recovery data to NVRAM directly; when a failure occurs, reading recovery data from NVRAM,
reconstructing the full state and continuing.

CR to Storage Intrinsic Recovery Mechanisms In-RAM ESR In-NVRAM ESR
direct recovery, no extra calculations minimal memory footprint and exact state reconstruction of failed exact state reconstruction with marginal

Pr
os are needed to reconstruct the manipulation of recovery data processes memory footprint of recovery

computation data
frequent checkpoints to standard reached state is lost, recovery huge memory and networking NVRAM performances are still not

C
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s

SSD or HDD are expensive requires extra calculations to make overheads comparable to RAM performances
(in memory and time) up for the lost accuracy

TABLE I: Prominent Pros and Cons of the various recovery models described in Fig. 1.

communication overheads during SpMV [55]. Nevertheless,
the original problem remains as the scale of computers grows
(see Section III-A), leaving open the challenge of achieving
full resilience while reducing the costs of ESR and improving
its scalability.

D. Our contribution: In-NVRAM ESR

In this work we investigate how to significantly improve the
performance of in-RAM ESR. Specifically, we show how its
extended memory footprint and network traffic can be dra-
matically reduced. Our work rests on three pillars: (1) recently
enabled capabilities of direct access (DAX) to NVRAM, (2) the
access to such memory using MPI One-Sided Communication
(OSC) over RDMA, and (3) the observation that these two
capabilities allow maintaining all of the advantages of the
original in-RAM ESR while persisting only a single copy
of recovery data during each persistence cycle, instead of
maintaining multiple redundancies. This yields the enhanced
in-NVRAM ESR, which instead of relying on and populating
the RAM with many redundancies for fault tolerance, sends
just a single copy DAX-wise through RDMA directly to
the persistent NVRAM. Accessing byte-addressable NVRAM
directly, without incuring the latency of moving data to and
from the I/O bus, with comparable performances to RAM, and
while incurring only a small overhead, yields an enhanced
ESR mechanism, without compromising data and recovery
consistency.
We implement in-NVRAM ESR using the extension of MPI
One-Sided Communication (OSC) over RDMA [57], [58]
under the setting of NVRAM. We study two possible NVRAM
placements architectures:

1) Homogeneous NVRAM cluster, in which each compute
node is equipped with its own NVM module, enabling
the persistence of ESR state variables to local NVRAM
by using either the persistent memory development kit
(PMDK) [59] libraries or a local MPI window.

2) NVRAM persistent recovery data (PRD) sub-cluster, in
which recovery data is persisted in dedicated PRD sub-
cluster nodes via remote MPI one-sided communication
implemented using RDMA.

In the PRD sub-cluster architecture, we assume RAID between
nodes to provide fault tolerance to errors in the sub-cluster.
Otherwise, each node of the sub-cluster behaves as a single
point of failure. We stress that while in-RAM ESR’s data
transportation increases quadratically with the cluster size (as
explained in Section III-A), increase in writes for RAID is
linear and depends on RAID level.
We note that, to the best of our knowledge, planned exascale
supercomputers are expected to use the remote PRD NVRAM
sub-cluster architecture [60]–[62]. This choice of architecture
is mainly because integrating Optane DCPMM modules in
each compute node would reduce the number of available
DDR DIMM memory slots, thereby reducing the size of
available DRAM, which is one of the crucial resources in HPC
nodes [63]. Hence, future supercomputers integrating Optane
DCPMM modules are designed with remote NVM storage
nodes, e.g., the DAOS storage server [25] in Aurora [19], [60],
[61]. Nevertheless, this work evaluates also the homogeneous
NVRAM cluster architecture, as future systems might include
NVRAM in each compute node, for fast storage or relatively
cheap and fast byte-addressable memory expansion (see [22],
[20]). Specifically, network and remote I/O performance char-



acteristics play a crucial role in the optimization of HPC
applications running in HPC cloud systems (HPCaaS). Thus,
future HPC cloud systems are integrating storage devices such
as NVMe-based SSD locally [64]–[66], and even foundations
for NVRAM integration are already established [67].
Fig. 1 describes the different types of recovery models for
iterative solvers, while Table I summarizes their pros and cons.
In summary, our work incorporates NVRAM recovery with
exact state reconstruction techniques for distributed linear
iterative solvers. We propose, implement and evaluate in-
NVRAM ESR, a novel NVRAM-based mechanism for scalable
and resource-efficient exact state reconstruction techniques.
We implemented in-NVRAM ESR in the PRD sub-cluster
architecture by using MPI one-sided communication over
InfiniBand’s remote direct memory access (RDMA) towards
NVRAM and have optimized its usage by ESR’s persistence
iterations (see Section IV-A).
To the best of our knowledge, our work is the first to report
on a scientific application implementation that accesses remote
NVRAM in this manner.
We conducted a comprehensive performance evaluation, com-
paring in-NVRAM ESR to other implementations that store
recovery data, either in DRAM (in-RAM ESR) or in SSD
storage device (in-SSD ESR). Our evaluation shows that in-
NVRAM ESR is significantly superior to in-RAM ESR in
terms of the size of the memory footprint required for storing
the recovery data. In-NVRAM ESR is also superior to in-
RAM ESR and in-SSD ESR in terms of the time overhead
incurred by writing the recovery data. Based on these results,
we estimate that the small memory and time overheads of in-
NVRAM ESR will allow it, unlike ESR, to be deployed in
future exascale supercomputers for providing high resiliency
to the important class of distributed iterative solver for linear
systems algorithms for which ESR is suitable.
Organization: The rest of the paper is organized as follows.
Section II describes the in-RAM ESR technique and its chal-
lenges for the scalability of linear iterative solvers to exascale
systems. In section III an NVRAM-based solution is described
and the in-NVRAM ESR model is suggested, applicable to
the homogeneous NVRAM cluster architecture and the PRD
sub-cluster architecture. In section III-A we compare the
memory utilization of in-RAM ESR and in-NVRAM ESR and
demonstrate significant savings in memory resources when
persisting data to NVRAM with in-NVRAM ESR. In section
IV we describe the implementation details of in-NVRAM ESR,
focusing on the technologies and software that enable in-
NVRAM ESR to access NVRAM locally and remotely. Section
V presents the evaluation results of in-NVRAM ESR in a key
example of the widely used PCG solver for sparse systems.

II. In-RAM ESR AND ITS CHALLENGES

Exact state reconstruction (ESR) is a technique for recovering
the state of a linear algebra iterative solver after a failure,
avoiding the checkpointing of the entire state of the com-
putation. ESR takes advantage of concurrent data distributed

between nodes to reconstruct the state [55], [68]. Specifi-
cally, it exploits sparse matrix-vector multiplication (SpMV)
operations to produce redundant copies to vectors with low
memory and runtime overheads. Therefore, ESR is applicable
to iterative solvers that involve SpMV and perform a finite-
term recurrence (hence the state can be reconstructed from a
bounded amount of previously calculated data).
ESR first identifies the state of the solver. Upon recovery, the
redundancy of vectors participating in the SpMV operations
is used to reconstruct the other state vectors, by solving local
equations on a replacement node. When the full state of the
failed process is reconstructed, the computation can proceed on
the replacement node. In ESR, whenever the SpMV operation
is applied, i.e., Av(j) is computed for some state variable v at
iteration j, the transition of v-values is augmented to create
redundancy for all its entries. This augmented SpMV operation
is denoted by ASpMV [54]. Redundancies are created on other
processes’ RAM, hence this model is referred to as in-RAM
ESR (see Fig. 2a).
A generic method for this state identification for iterative
solvers is described in by Pachajoa et al. [56]. This meta-
algorithm uses the dependency graph of an iterative algorithm
to decide which variables have to be saved and which can be
reconstructed by using other variables. Two main examples
demonstrated are the PCG [40] and the BiCGStab [69]
solvers. We stress that these two solvers are examples of
a larger class of iterative solvers that can be adjusted to
ESR. For example, in Jacobi, SOR and Gauss-Seidel the
solution approximation variable will keep redundancies, and
in MINRES and GMRES it will be the Arnoldi vectors [41].
For a given distributed linear iterative solver produced with
an ESR algorithm, we denote the variables of the full state
by the set V, and the subset of ESR variables that participate
in SpMV operations and create redundancies by VSpMV

(VSpMV ⊆ V ). We denote by n the size of each global
vector of the solver. We refer to the set of all indices as
I = {1 . . . n}. The indices corresponding to a certain process
p are denoted by Ip. Specifically, f denotes a failed process,
and its indices are denoted If . The value of variable v at the
jth iteration is denoted by vj .

In the reconstruction phase of failed process f , the redun-
dancies of (VSpMV )If are collected to a replacement node,
together with the values of VI\If and VI\If that are needed
for reconstruction from the surviving nodes. For some multi-
term recurrence solvers, reconstruction requires k successive
values of (VSpMV )If , and therefore redundancies for such
variables are kept for k iterations. For example, in the ESR
algorithm for the Preconditioned Conjugate Gradient (PCG)
solver, presented in [52], k = 2 as it stores the last two search
directions via ASpMV (the PCG solver is a two-term recur-
rence). Solving some local linear equations, (V \VSpMV )If is
reconstructed, ending up with the full state of the process,
which enables to continue the computation.
To tolerate multiple node failures, the redundancy should be
saved in multiple copies. Thus, even when several nodes



crash together, values can still be recovered from the RAM
of processes on the surviving nodes. If c nodes may fail
simultaneously, c redundant copies should be made. Copies
should be saved on different nodes, since if a node crashes,
all of its processes fail together. In this case, If represents the
indices of all the failed processes together, and the reconstruc-
tion algorithm is executed on several nodes, solving the local
equation systems together distributively. The reconstruction
effort depends on the number of failed processes. As the
number of processes that fail simultaneously increases, the
size of the equations that must be solved for reconstructing
the lost data grows.
There is a delicate balance between the runtime overhead
required to save the recovery data of the application securely,
and the time it takes to recover after a failure. ESRP [54] is
a modification of ESR, where redundant copies are created
periodically to alleviate the networking overhead for each
iteration. ESRP demonstrates a trade-off, where increasing the
period of ESR decreases the runtime overhead, but increases
the cost of discarding the iterations performed since the last
copies were made when recovery is required.
ESR aims to minimize the amount of data being persisted, by
a careful analysis of the application that identifies a minimum-
sized set of variables whose state should be made persistent.
These variables must be chosen such that all other significant
variables can be reconstructed from their values. A generic
method for this state identification for iterative solvers is
described in [56]. This generic meta-algorithm produces ESR
algorithms for various solvers. Two main examples demon-
strated by Pachajoa are the PCG [40] and the BiCGStab [69]
solvers. We stress that these two solvers are examples of
a larger class of iterative solvers that can be adjusted to
ESR. For example, in Jacobi, SOR and Gauss-Seidel the
solution approximation variable will keep redundancies, and
in MINRES and GMRES it will be the Arnoldi vectors [41].
In-RAM ESR has three main limitations. First, a large number
of copies should be made to redundant data to ensure the
recovery when a large number of nodes fail simultaneously.
This creates a dramatic increase in memory overhead, and
therefore effectively reduces the size of the problems that
can be solved. Second, In-RAM ESR suffers from networking
and time overheads, as the redundancies are sent between
nodes simultaneously — leading to a surge in network traffic.
Finally, In-RAM does not rely on NVRAM, which is a main
disadvantage for future supercomputers that are planned to
integrate NVRAM. NVRAM-based systems offer an attractive
alternative solution to these challenges, as we describe next.

III. In-NVRAM ESR: OVERVIEW

To exploit NVRAM for ESR recovery, we use it for persisting
the redundant data required for it instead of keeping it in the
memory of other nodes. We name this mechanism in-NVRAM
ESR. In NVM-based systems, processes have access to persis-
tent memory space, in addition to a unique volatile memory
space available for every process. Nodes crash arbitrarily and
independently of each other. Upon a crash of a certain node,

the content of its volatile memory is lost, and the data in its
persistent memory (if it includes NVM) becomes inaccessible
until the node recovers.
There are two key possible ways to integrate NVRAM devices
into a cluster architecture. In the first, more traditional archi-
tecture, called homogeneous NVRAM cluster, each node has
an NVRAM device attached to it (see Fig. 2b). Each node’s
state is saved into its local NVRAM whose coherency should
be ensured by the application. If a node fails, the persisted data
can be recovered from the NVM once it recovers. Therefore
the reconstruction algorithm for failed process f is executed
on the same node that f executed on before the failure, and
only after it recovers.
In the second architecture, there is a sub-cluster of one or
more persistent recovery data (PRD) nodes, each containing
NVRAM modules, which stores recovery data for the rest of
the cluster’s compute nodes (see Fig. 2c). In this architecture,
recovery data is saved via RDMA operations with the remote
memory MPI’s One-sided API (to reduce overheads). (The
details of how this is done are explained in Section IV-A.)
When a process f fails, its recovery data is accessible on the
NVRAM sub-cluster and can be retrieved by a replacement
node. For each of the failed processes, the reconstruction
can be executed on every compute node that has access to
the NVRAM sub-cluster. A failure of a PRD node renders
its memory inaccessible, which may make it a single point
of failure. This type of failure can be addressed by adding
redundancy within the PRD sub-cluster itself (for example
using RAID), but this is outside the scope of this paper.
The in-NVRAM ESR persistence stage, as well as the in-
NVRAM ESR reconstruction phase for both these architectures,
appear in Algorithm 1 and Algorithm 2, respectively. We do
not deal here with the trade-off between the ESR period and
the number of “wasted” iterations upon a failure demonstrated
in ESRP [54] and simply assume that this period is chosen
optimally according to the problem and the cluster character-
istics. We focus instead on a single persistence iteration during
the calculation.

A. Comparing in-RAM ESR and in-NVRAM ESR

Let N denote the number of compute nodes; The number of
the actual compute processes used by the solver is proc ≤ t·N .
MR(n, proc, φ) denotes the amount of memory overhead
required by a recovery method R to support the recoverability
of up to φ simultaneous node failures. We assume that the

Algorithm 1 In-NVRAM ESR for a persistence iteration j of
process p

Compute jth iteration of the solver
...

if HOMOGENEOUS CLUSTER then
persist (VSpMV )jIp to local NVM

if PRD SUB-CLUSTER then
persist (VSpMV )jIp to remote NVM



(a) Volatile memory architecture. (b) Homogeneous NVRAM cluster. (c) Persistent recovery data (PRD) sub-cluster.
Fig. 2: Cluster architectures with and without the usage of NVRAM.

Algorithm 2 In-NVRAM ESR Reconstruction phase of itera-
tion j of failed process f

if HOMOGENEOUS CLUSTER then
Wait for failed nodes to recover and have access to local

NVM
if PRD SUB-CLUSTER then

Run reconstruction from any spare nodes that have access
to remote NVRAM Sub-Cluster

Retrieve the static data of the solver
Gather required variables from V

(j)
I\If

if HOMOGENEOUS CLUSTER then
Read {(VSpMV )iIf }

j
i=j−k+1 from local NVM

if PRD SUB-CLUSTER then
Read {(VSpMV )iIf }

j
i=j−k+1 from remote NVM

...
Solve local linear systems to reconstruct (V \VSpMV )jIf

vulnerability of the system is proportional to the number of
nodes, hence φ = α ·N for some constant α < 1. In the fol-
lowing, we estimate MR(n, proc, φ), where R={in-RAM ESR,
in-NVRAM ESR}. In the in-RAM ESR mode, redundancies for
the variables in VSpMV are saved for successive k iterations
in φ nodes, therefore

Min-RAM ESR(n, proc, φ) = Σpk · |(VSpMV )Ip | · φ
= k · |VSpMV | · φ = O(|VSpMV | · φ)

elements in memory. In the in-NVRAM ESR mode, a single
copy (up to certain RAID level) is saved in NVRAM for the
variables in VSpMV , therefore

Min-NVRAM ESR(n, proc, φ) = O(Σpk · |(VSpMV )Ip |)
= O(|VSpMV |)

elements in persistent area (where the O() notation hides the
constant of RAID level).

For sparse linear problems of matrices of size n × n, the
representation of the problem is linear in n. In addition, the
size of the problem is estimated to be proportional to N (as
more nodes add more RAM). Moreover, |VSpMV | is propor-
tional to n as VSpMV consists of global vectors of size n.
Therefore we conclude that |VSpMV |=O(N). Remember that
typically φ is chosen in proportion to N (φ = α ·N ). Finally,
we write Min-RAM ESR(n, proc, φ) = O(N · N) = O(N2),
while Min-NVRAM ESR(n, proc, φ) = O(N). These estimations
demonstrate that in-NVRAM ESR is much more scalable than
in-RAM ESR as the former incurs fault tolerance overheads
in memory that increase linearly with the cluster size, while
the latter incurs memory overheads that increase quadratically.
Moreover, while in-RAM ESR uses the RAM to save the
huge amount of recovery data, in-NVRAM ESR uses persistent
memory for its recovery data, leaving more space in RAM for
larger computations.

B. Comparing In-NVRAM ESR and In-SSD ESR

Checkpointing scientific applications, either transparently (for
example with DMTCP [13]) or explicitly (for example with
SCR [12]), persists all the data allocated by the application to
a block device, so restarting is enabled by reading the last
available checkpoint into the application’s buffers. Usually,
and especially for distributed linear iterative solvers, not all
the data is necessary for exact reconstruction, as the exact
state can be reconstructed from only a partial checkpoint. ESR
alleviates the full state’s checkpoint by persisting only a subset
of the state and computationally reconstructing the rest of the
state upon recovery.
In-SSD ESR uses a block SSD device to persist recovery data.
This includes all the I/O stages, from system call invocation,
block granularity writes, and data transferring via the I/O bus.
All these add additional overhead to the high latency of block
SSD devices. In contrast, the in-NVRAM ESR mechanism
persists the recovery data to the NVRAM directly, either
locally via the memory bus or remotely via RDMA. Unlike



block-based systems, this eliminates the intervention of the
operating system by directly accessing the byte-addressable
NVRAM. Accessing the NVRAM in this manner is much
faster and, in fact, persistence operation only access the
application’s address space, unlike when accessing SSD.

IV. THE IMPLEMENTATION IN DETAIL

This section describes the various ways in which in-NVRAM
ESR can use the system’s capabilities to persist data to
NVRAM.

A. MPI One-Sided Communication (OSC) over RDMA

Remote direct memory access (RDMA) support in networks
became mainstream, particularly through the widespread adop-
tion of InfiniBand as a commodity network fabric [70]. MPI-1
provides a powerful and complete interface for the message-
passing approach. MPI-2 added (and MPI-3 greatly extended)
remote memory operations that provide a way to access
the memory of remote processes directly, through operations
that put data to, get data from, or update data at a remote
process. Unlike message passing (using standard send and
receive operations), the program running on the remote process
does not need to call any routines to match the put or
get operations. Thus, remote memory operations can provide
better performance for distributed and parallel programs. This
functionality of remote memory access is implemented via
memory windows. The term window is used since MPI limits
what part of a process’s address space is accessible to other
processes.
Several works [57], [71], [72] present different persis-
tence schemes to correctly utilize RDMA over NVRAM.
Dorożyński et al. [57] incorporate non-volatile RAM into
wrappers over MPI One-Sided API, in order to provide persis-
tence of data stored in MPI windows. They extend the RDMA
MPI One-Sided Communication (OSC) to persist the data
stored in windows to NVRAM. Data consistency is ensured
by copying necessary data into a separate location. More
specifically, the data is saved into two locations alternately in
order to have at least one proper ”checkpoint” even if a failure
occurs during checkpointing creation. An implementation of
this method [58] provides a new programming model by
allowing processes to communicate freely using standard OSC
functions and fall back to a state saved during synchronization.
It supports synchronization calls of OSC, as explained next.
RMA communication calls of the MPI ISC API must occur
in the invoking process only within an access epoch for the
window. The transferred data is available only when exiting
the access epoch. Such an epoch starts with an RMA synchro-
nization call on the window; it then proceeds with zero or more
RMA communication calls (e.g., MPI_PUT or MPI_GET) on
the window; it completes with another synchronization call on
the window [73]. RMA communications fall in two categories:
active and passive target communication.
In active target communication, the data is moved from one
process to another, and both processes are explicitly involved
in the communication. In contrast to standard message passing,

in active target communication RMA operations are controlled
only by the invoking process, and the target process only
participates in the synchronization. In active target communi-
cation, a target window can be accessed by RMA operations
only within an exposure epoch. Distinct exposure epochs at
a process on the same window must be disjoint, but such
an exposure epoch may overlap with multiple access epochs
for the same window. MPI provides two synchronization
mechanisms for active target communication:

1) A general collective RMA synchronization, in which an
access epoch at an origin process or an exposure epoch
at a target process are started and completed by calls to
MPI_Win_fence.

2) Synchronization in which only pairs of communi-
cating processes synchronize using the Post-Start-
Complete-Wait (PSCW) protocol. In PSCW, an ac-
cess epoch is started at the origin process by a call
to MPI_Win_Start and is terminated by a call to
MPI_Win_Complete. An exposure epoch is started
at the target process by a call to MPI_Win_Post and
is completed by a call to MPI_Win_Wait. The post-
call has a group argument that specifies the set of origin
processes for that epoch.

In passive target communication, the target process does not
execute RMA synchronization calls, and there is no notion
of an exposure epoch. Instead, passive target synchronization
is accomplished by using MPI locks at the origin process
with MPI_Win_Lock and MPI_Win_Unlock. It is used
to ensure that RMA operations from other processes do not
modify the data unexpectedly.
Dorożyński et al. [58] support both communication mech-
anisms in their extension of MPI OSC over NVRAM. For
the active target synchronization, exposure epochs are closed
with MPI_Win_Fence_persist (for active target commu-
nication) or MPI_Win_Wait_persist (for passive target
communication), to ensure that data reaches NVRAM before
exiting the exposure epoch.
To implement in-NVRAM ESR in the NVRAM PRD sub-
cluster architecture, it is necessary to ensure that data is
persisted successfully to the NVRAM in the PRD node after
each persistence iteration and before the successive persistence
iteration attempts to access the window. Since the target
process must know when the exposure epoch is closed, an
active target mechanism is more suitable for in-NVRAM ESR.
Since a persistence iteration usually requires a significant
period of time, we can optimize by releasing the access epochs
of the compute processes while the target process is still
persisting the data in its exposure epoch. This allows compute
processes to proceed to the next compute iteration. For this
reason, we choose the PSCW mechanism to be applied in in-
NVRAM ESR. Within the access epoch, a process executes a
MPI_Win_Put_pmem to transmit data to the remote process,
and MPI_Win_Get_pmem to read the data when recovery
is needed. Whenever a compute process completes its RMA
operations with MPI_Win_Complete, it exits the access



Fig. 3: Persisting ESR data using MPI OSC epoch over RDMA
to a remote NVRAM node, using PSCW.

Fig. 4: Persisting data with libpmemobj directly to local
NVRAM in the homogeneous NVRAM cluster architecture.

epoch and proceeds. Fig. 3 illustrates a PSCW epoch for the
MPI OSC to an NVRAM PRD node in a persistence iteration.
A similar implementation for the homogeneous NVRAM clus-
ter architecture, which we also consider, uses a separate local
window for each process. In this architecture, each process
accesses its own local window and persists its data locally.

B. Persistent Memory Development Kit (PMDK)

PDMK [59] offers a set of user-space APIs and interfaces to
interact with non-volatile memory, with support for multiple
abstraction layers, over Linux and Windows. PMDK libraries
are designed to leverage the direct access allowed by per-
sistent memory as much as possible. Persistent libraries in
PMDK help applications maintain data structure consistency
in the presence of failures. One such library is libpmemobj,
which helps the programmer manage persistent memory arrays
and data structures. We implement in-NVRAM ESR using
the libpmemobj library to persist ESR data directly to local
NVRAM in the homogeneous NVRAM cluster architecture.
Each process first creates a persistent memory pool using
a call to pmemobj_create and then, at each persistence
iteration, persists ESR data using pmemobj_persist. Fig. 4
illustrates a persistence iteration using libpmemobj in the
homogeneous NVRAM cluster architecture.
PMDK also provides librpmem, a remote RDMA access
library, which supports remote access to persistent memory,
with a synchronous write model: The local initiator writes
and all of the remotely replicated writes must complete before
the local write returns to the application. This library can be
useful in the implementation of in-NVRAM ESR in the PRD
architecture, although this is out of the scope of this paper.

C. Persistent Memory File Systems (PMFSs)

We also consider persisting data to NVRAM using PMFSs,
which can be either local or distributed. PMFSs often exploit
the byte-addressability of NVRAM, and support a special
Direct Access (DAX) mode, which enables memory mapping
directly from the NVRAM to the application memory space.
DAX bypasses the kernel, page cache, and I/O subsystem,
avoids interrupts and context switching, and allows the appli-
cation to perform byte-addressable load/store operations [74].
Fridman et al. [22] present an evaluation of local PMFSs (e.g.,
ext4-DAX and SplitFS [75]) for writing and reading diagnos-
tics of scientific applications, as well as for performing C/R of
these applications using transparent or explicit checkpointing.
While these local PMFSs are good choices for single-node
workloads, scientific computing applications typically require
a distributed PMFS operating on multiple nodes. in-NVRAM
ESR can utilize local PMFSs in the homogeneous NVRAM
cluster architecture to persist the recovery data of each process
locally in its node. Distributed PMFSs, however, control how
data is stored and retrieved from NVM when accessed by more
than one node, using network communication. Distributed
PMFSs can be utilized by in-NVRAM ESR in the PRD sub-
cluster architecture to persist recovery data remotely on the
NVRAM present on PRD nodes.
In this work, we implement in-NVRAM ESR for the homoge-
neous NVRAM cluster architecture by using ext4-DAX as a
local PMFS over the local NVRAM.

V. KEY EXAMPLE: PCG SOLVER

We focus on the preconditioned conjugate gradient (PCG)
iterative solver also studied in prior ESR research, because
it is commonly used for solving sparse linear systems and
employed by the representative HPCG scientific benchmark
[76]. PCG solves the linear equation Ax = b for a symmetric
positive definite matrix An×n. An ESR algorithm for PCG has
been derived by the generic meta-algorithm described in [56].
To recover from node failures, PCG saves redundancies for
the search direction variable. (see Appendix A for more
details). We use our experimental cluster (which contains 8
nodes), described in Table II, to simulate the recovery patterns
in a larger cluster of 256 nodes, as each core acts as a
difference compute node. Hence, to support full fault tolerance
(φ = #processes), each process sends redundancies to all
other processes. To support the recovery in more reliable
systems, each process sends redundancies to a certain fraction
of the processes (φ = α · #processes). In our experiments
we examine half fault tolerance, when recovery data is copied
to half of the processes (α = 0.5). Fig. 5 depicts the memory
usage of PCG for the 7-point stencil of a 3-D Poisson equation.
RAM utilization is fixed per process, so the total memory
usage increases linearly with the number of processes. The
figure shows that the size of problems that can be handled
using in-RAM ESR decreases because recovery data occupy a
significant part of the node DRAM.



Compute Nodes NVRAM Storage Node
#Nodes 8 1

#Sockets 2 (per node) 2
CPU Spec. 16 Cores × Intel(R) 10 Cores × Intel(R)

Xeon(R) Gold 6130 CPU Xeon(R) Gold 5215 CPU
@ 2.10GHz (per socket) @ 2.50GHz (per socket)

L1 Cache 32KB i-Cache 32KB d-Cache (per core)
L2 Cache 1024KB (per core)
L3 Cache 22528KB (shared, per socket) 14080KB (shared, per socket)

DRAM Spec. 32GB DDR4 DRAM 2666 MT/s 16GB DDR4 DRAM 2933 MT/s
Total DRAM 128GB (per node) 192GB
NVM Spec. none 256GB Intel Optane™ DCPMM

2666 MT/s Apache Pass
Total NVM none 1024GB [(2 sockets)×

(2 channels)×256GB]
SSD Spec. none 240GB 6GB/s Intel SATA 2.5” SSD
Network 56Gb/s Mellanox Infiniband FDR

HT disabled
OS Linux CentOS 7 Linux CentOS 7.9

TABLE II: Experimental cluster specifications.
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Fig. 5: RAM usage for calculation and recoverability PCG for
a 7-point stencil of a 3-D Poisson equation.

Extrapolation to Aurora: Aurora [77] will consist of 9000
compute nodes, each with 112 CPU cores (∼ 106 cores total).
Total system memory is estimated at 10PB. It is expected to
have over 230PB of high-performance storage, including Intel
Optane™ DC SSDs and DCPMMs (with DAOS). For a PCG
7-point stencil of a 3-D Poisson equation, extrapolating the in-
RAM ESR PCG RAM consumption presented in Fig. 5 into
Aurora scale, we estimate in-RAM full fault tolerance ESR
RAM consumption to be ∼30% of the system memory, hence
≥ 3PB. In-NVRAM ESR suggests eliminating this memory
overhead at the expense of only 3PB ÷9000 =∼ 0.3TB usage
of NVRAM because every value that resides in the RAM of
∼ 9000 nodes can now be persisted to NVRAM only once (or
with certain RAID level).

A. Evaluation

To evaluate in-NVRAM ESR’s performance, we employed it
for the PCG solver and compared it with the fully fault
tolerant ESR. Our experimental cluster specifications are listed
in Table II. Our cluster consists of 8 compute nodes (each with
32 compute cores and 128GB DRAM) and a single NVRAM
node (with 20 compute cores, 192GB DRAM, and 1TB Intel
Optane™ DCPMM, populated as depicted by Fig. 6).

Fig. 6: DCPMM population configuration of the NVRAM
Storage Node, with two sockets (SO) connected via an
interconnect. Each CPU has two memory controllers (MC),
each providing three memory channels (CH); each memory
channel contains two DIMM slots. D (red) denotes DCPMM,
R (blue) denotes DRAM (RDIMM); white denotes vacancy.
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Fig. 7: NVRAM usage by in-NVRAM ESR as a function of
the number of processes in a node (left) and as a function of
the problem’s vector size (right).

We evaluated both the homogeneous NVRAM cluster and
the NVRAM PRD sub-cluster architectures. As our cluster
contains only a single NVRAM node, our evaluation of
the homogeneous NVRAM cluster architecture is limited to
20 processes. Nevertheless, this evaluation can be reliably
extrapolated to a multi-node homogeneous NVRAM cluster
architecture, since persisting data from each process to its local
node is an embarrassingly parallel workload at the node level.
To evaluate in-NVRAM ESR/PRD, we use the NVRAM node
in our experimental cluster as a single PRD node. Multiple
NVRAM nodes can serve as the PRD sub-cluster, distributing
the persistent data to eliminate bandwidth bottlenecks or
creating RAID over the sub-cluster to increase fault tolerance.
Fig. 7 shows an estimate of NVRAM utilization of in-NVRAM
ESR on our cluster. The graph on the left shows the amount
of NVRAM required for different numbers of processes when
a fixed amount of RAM is available to each process, and the
size of the problem grows to fit available RAM. The graph on
the right shows the NVRAM utilization for different sizes of
the global input vector of the problem. As the global vector
is split between the processes and each process persists its
local parts to the NVRAM, the total number of values that are
persisted to NVRAM is equal to the global vector size.
We next present the time overheads of a single persistence
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Fig. 8: (a) Time overhead (in log-scale) for in-NVRAM ESR and in-RAM ESR for single persistence/redundancy iteration in
crash-free CG computation in the homogeneous cluster architecture. (b) Time overhead for in-NVRAM ESR and in-RAM ESR
for single persistence/redundancy iteration in crash-free CG computation in the PRD sub-cluster architecture. (c) Zoom in (in
log-scale) on chart 8b with ≤ 32 processes.

iteration in in-NVRAM ESR PCG for a 7-point stencil of
a 3-D Poisson equation (with a fixed size for local vectors
of 176,400 entries each). The time overheads of a single
redundancy iteration of in-RAM ESR with full fault tolerance
are presented as well. We focus on the time overhead of a
single persistence iteration. We do not show time overheads
for the reconstruction phase because the number of recon-
struction phases throughout the execution can be assumed to
be much smaller than that of persistence iterations. Moreover,
the reconstruction phase is heavily governed by the full-state
reconstruction calculations, as explained in [52].
Fig. 8a presents the time overheads of ESR and in-NVRAM
ESR in the homogeneous cluster architecture. We have imple-
mented persistence to the local NVRAM using the ext4-dax
local PMFS, PMDK, and MPI local windows over NVRAM.
For reference, we also measured the time overhead of per-
sisting the ESR data to a local SATA-SSD device. Dashed
lines refer to a natural extrapolation of the results beyond
a single NVRAM node3, based on the simple observation
that local persistence operations in different nodes proceed in
parallel. Above 32 processes, ESR’s time overhead increases
significantly since persistence data must be sent to the RAM
of processes in remote nodes.
Fig. 8b presents the evaluation of a single persistence iteration
of in-NVRAM ESR in the PRD sub-cluster architecture imple-
mented with MPI OSC over RDMA to NVRAM. To show
the cost of implementing MPI OSC over NVRAM, we also
present the time overhead of MPI OSC over RDMA when
the windows are on RAM without persistent operations. For
reference, we measure the time overhead of persisting the ESR
data to a remote SATA-SSD device via SSH-FS. It can be
seen that the overhead of ensuring persistence is relatively

3We remind the reader that our single NVRAM node contains 20 cores.

small. It can also be seen that MPI-OSC over RDMA access
to NVRAM is faster than accessing a remote SSD storage
device, especially at high process counts.
These results show that in-NVRAM ESR/PRD is significantly
superior to ESR in terms of the time overhead incurred
by writing the recovery data, except when the number of
processes is small, and they all fit inside a single node.
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APPENDIX A
In-NVRAM ESR FOR PCG SOLVER

Preconditioned Conjugate Gradient (PCG) is a main example
of linear iterative solver, as it is commonly used to solve linear
systems for a wide range of applications including computa-
tional fluid dynamics, wind energy, and particle physics [79].
PCG solves the linear equation Ax = b for a symmetric
positive definite matrix An×n (see Algorithm 3). The depen-
dency graph of PCG is shown in Fig. 9. An ESR algorithm
for PCG has been derived by the generic meta-algorithm
described in [56], from PCG’s dependency graph. To recover
from node failures, PCG saves redundancies for the search
direction variable, i.e., the variable p (hence VSpMV = {p}).
To reconstruct the complete state of a failed process f , two
successive values of pIf are required. Therefore, the redun-
dancy of p is saved for two successive iterations (hence k = 2).
Algorithm 4 describes a persistence iteration of in-RAM ESR
for PCG (Algorithm 3), where SpMV operations with p are
augmented to ASpMV operations to create p’s redundancies.
Algorithm 5 shows the reconstruction stage of in-RAM ESR,
where redundancies of p are collected from the RAM of the
surviving nodes to reconstruct the failed processes.

With in-NVRAM ESR the redundancies of p are saved for
each process in the NVRAM. Algorithm 6 shows a persistence
iteration of PCG, in which values of p are saved in NVRAM
(locally or remotely). Algorithm 7 shows the reconstruction
stage of PCG under in-NVRAM ESR, collecting p’s redundan-
cies by accessing the NVRAM.

Algorithm 3 PCG solver for Ax = b.

1: r(0) ← b−Ax(0) , z(0) ← Pr(0) , p(0) ← z(0)

2: for j = 0, 1, ... until convergence do
3: α(j) ← r(j)T z(j)/r(j)TAp(j)

4: x(j+1) ← x(j) + α(j)p(j)

5: r(j+1) ← r(j) − α(j)Ap(j)

6: z(j+1) ← Pr(j+1)

7: β(j) ← r(j+1)T z(j+1)/r(j)T z(j)

8: p(j+1) ← z(j+1) + β(j)p(j)

9: end for

Fig. 9: PCG Dependency Graph.

Algorithm 4 in-RAM ESR for each iteration j of two succes-
sive redundancy iterations of PCG. Line numbering refers to
the lines of Algorithm 3.

3: α(j) ← r(j)T z(j)/r(j)TASpMV (A, p(j))
...

8: p(j+1) ← z(j+1) + β(j)p(j)

Algorithm 5 In-RAM ESR Reconstruction phase of PCG.

1: Retrieve the static data AIf ,I , PIf ,I and bIf
2: Gather r(j)I\If and x(j)I\If
3: Retrieve the redundant copies of β(j−1), p

(j−1)
If

and p(j)If
from the RAM of other processes

4: Compute z(j)If
← p

(j)
If
− β(j−1)p

(j−1)
If

5: Compute v ← z
(j)
If
− PIf ,I\If r

(j)
I\If

6: Solve PIf ,If r
(j)
If

= v for r(j)If

7: Compute w ← bIf − r
(j)
If
−AIf ,I\Ifx

(j)
I\If

8: Solve AIf ,If r
(j)
If

= w for x(j)If

Algorithm 6 In-NVRAM ESR for a persistence iteration j of
PCG. Line numbering refers to the lines of Algorithm 3.

3: α(j) ← r(j)T z(j)/r(j)TAp(j)
...

8: p(j+1) ← z(j+1) + β(j)p(j)

if HOMOGENEOUS CLUSTER then
persist p(j+1) to local NVM

if PRD SUB-CLUSTER then
persist p(j+1) to remote NVM

Algorithm 7 In-NVRAM ESR Reconstruction phase of PCG.
Line numbering refers to the lines of Algorithm 5.

if HOMOGENEOUS CLUSTER then
Wait for failed nodes to recover and have access to local
NVM

if PRD SUB-CLUSTER then
Run reconstruction from any spare nodes that have access
to the

remote NVRAM Sub-Cluster

Retrieve the static data AIf ,I , PIf ,I and bIf
Gather r(j)I\If and x(j)I\If
if HOMOGENEOUS CLUSTER then

3: Read β(j−1), p
(j−1)
If

and p(j)If
from local NVM

if PRD SUB-CLUSTER then
3: Read β(j−1), p

(j−1)
If

and p(j)If
from remote NVM

...
8: Solve AIf ,If r

(j)
If

= w for x(j)If
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