
Implicit Actions and Non-blocking Failure
Recovery with MPI

Aurelien Bouteiller
Innovative Computing Laboratory

The University of Tennessee
Knoxville, Tennessee, USA

Orcid: 0000-0001-5108-509X
Email: bouteill@icl.utk.edu

George Bosilca
Innovative Computing Laboratory

The University of Tennessee
Knoxville, Tennessee, USA

Orcid: 0000-0003-2411-8495
Email: bosilca@icl.utk.edu

Abstract—Scientific applications have long embraced the MPI
as the environment of choice to execute on large distributed
systems. The User-Level Failure Mitigation (ULFM) specification
extends the MPI standard to address resilience and enable MPI
applications to restore their communication capability after a
failure. This works builds upon the wide body of experience
gained in the field to eliminate a gap between current practice
and the ideal, more asynchronous, recovery model in which
the fault tolerance activities of multiple components can be
carried out simultaneously and overlap. This work proposes
to: (1) provide the required consistency in fault reporting to
applications (i.e., enable an application to assess the success
of a computational phase without incurring an unacceptable
performance hit); (2) bring forward the building blocks that
permit the effective scoping of fault recovery in an application,
so that independent components in an application can recover
without interfering with each other, and separate groups of
processes in the application can recover independently or in
unison; and (3) overlap recovery activities necessary to restore the
consistency of the system (e.g., eviction of faulty processes from
the communication group) with application recovery activities
(e.g., dataset restoration from checkpoints).

Index Terms—message passing, fault tolerance, high perfor-
mance computing, distributed systems

I. INTRODUCTION

Numerical simulations, data mining, and—most recently—
machine learning have taken on critical roles in all fields
of scientific exploration. High-performance computing (HPC)
systems are specifically designed to provide the cutting-edge
computing capabilities required to obtain timely answers to
the crucial scientific challenges of our time, and—as such—
are routinely breaking new barriers in harnessing a massive
number of computing resources to deliver staggering levels of
performance. Applications have widely embraced the Message
Passing Interface (MPI) [1] to cope with the challenges posed
by the deployment of scientific computation on distributed
systems. That MPI is a standardized and stable specification,
and that all HPC vendors provide an implementation tailored
to deliver performance on their systems, ensures that users
are confident that their application will easily port and achieve
consistently high performance on current and future hardware.

Unfortunately, MPI lacks a comprehensive management
system for failures, and resilience (or lack thereof) could

still pose a significant challenge for next-generation HPC
systems [2], [3]. Since the Petascale era, reliability is already
measured in days (e.g., production runs on Oak Ridge National
Laboratory’s (ORNL’s) Titan system experience close to three
failures per day [4]). The mean time between failures (MTBF)
is dependent on the number of components in the system, and,
despite expected major advances in the reliability of individual
hardware components, and the prevalence of “fat” GPU nodes
in currently deployed exascale systems (putting us in the
optimistic part of pre-exascale predictions [5]), the MTBF for
post-exascale systems could still decline significantly, or at the
minimum, act as an external constraint that restricts machine
design and component choices (and prices) to those that do
can sustain an acceptable MTBF.

The HPC community has already started reacting to this
threat and is actively investigating resilient applications and
mitigation techniques that permit the efficient execution of
scientific computing on machines that may experience multiple
fault events per allocation. To accompany this community
effort, we have designed the User-Level Failure Mitigation
(ULFM) extension to the MPI specification [6] and have pro-
vided a reference implementation [7]. The ULFM specification
provides the basic infrastructure to 1) detect and report failures
of MPI processes; 2) interrupt the flow of the application; and
3) repair the state of MPI communication objects to restore
the full communication capability (e.g., the ability to carry
out collective communication). This early effort has clearly
responded to a need in the community (see Section V and [8]),
with multiple international research teams sustaining a two-
pronged exploratory effort to investigate algorithmic fault
tolerance techniques in fields as varied as physics, chemistry,
and engineering on one hand, and a flurry of fault tolerance
frameworks designed to ease and streamline the expression of
resilience techniques on the other.

This paper explores how to again broaden the realm of
possible methodologies for resilience techniques by exploring
asynchronous and scoped techniques for error reporting and
consistency of state recovery in the message passing layer.
The overarching goal is to enable the concurrent recovery
of multiple components of the software stack. Two major
statements motivate this effort. First, the cost of recovering

ar
X

iv
:2

21
2.

08
75

5v
1

 [
cs

.D
C

]
 1

6
D

ec
 2

02
2

the message passing’s full communication capability can be
significant, and—in some instances—in the same order of
magnitude as the cost of recovering the application state. Given
the appropriate level of asynchrony, these complementary
activities could overlap, thus significantly driving down the
overall cost of recovery. Second, applications are typically
composed of multiple software components in charge of differ-
ent software functional modules. These modules can recover
part of the application state independently, in a completely
scoped insulation from the rest of the application, but may
also require knowledge about a broader scope in order to
trigger the recovery path at the appropriate moment and in the
appropriate order to enable all modules to recover successfully.
To expound further, this work explores how to: (1) provide
the required consistency in fault reporting to applications,
that is, enable an application to assess the potential success
of a computational phase without incurring an unacceptable
performance hit; (2) bring forward the building blocks that
permit the effective scoping of fault recovery in an application
so that independent components in an application can recover
without interfering with each other, and separate groups of
processes in the application can recover independently or
in unison, as needed; (3) overlap recovery activities that
are necessary to restore the consistency of the system (e.g.,
eviction of faulty processes from the communication group)
with application recovery activities (e.g., dataset restoration
from checkpoints); and (4) deliver these novel capabilities in
a mature software environment (Open MPI) to ensure an easy
path forward for application communities interested in fault
tolerance research.

The rest of this paper is organized as follows: in Section II
presents the background for MPI failure recovery and general
ULFM concepts; Section III-A presents a technique to control
the scope, that is, the set of processes and MPI operations, that
get notified when a failure occurs; Section III-B discusses
a new way of reporting errors in collective operations that
simplifies a coordinated response to the failure; Section III-C
presents a non-blocking MPI state rebuilding routing that
enables more asynchrony and ease ordering constraints during
recovery; Section IV presents the experimental results evaluat-
ing these concepts; Section V presents related works for MPI
recovery systems, as well as discuss the applicability of the
proposed ideas to a large set of fault tolerant applications and
frameworks that currently use ULFM; and finally Section VI
concludes.

II. BACKGROUND

Research in fault management techniques has a long and
exceptionally rich history [9]. In some instances, there is a
possibility that a hardware failure could result in drastic, life
or death consequences. In mission-critical applications, when
safety trumps performance, solutions such as duplication,
triplication, were a long time favorite, as they permit detecting
and mitigating faults at a high but predictable production
and/or operation cost. In contrast, HPC considerations often
call for a less drastic skew in the tradeoff between safety

Fig. 1. Major use-cases for the ULFM MPI fault tolerance extension.

and performance. Although scientific computation requires
a high level of confidence in the accuracy of the result
produced, hardware failures (i.e., when a failure results in
some processes of the application terminating unexpectedly)
often manifest by preventing the completion of the application
rather than corrupting the end results. Even for soft errors
(i.e., when a failure results in a corruption of the computation
accuracy or correctness), the problem is often reframed as an
efficiency tradeoff, with the additional constraint that detecting
the error may require periodic and extensive data invariant
verification [10], [11] or an increase in per-operation cost
to provide online error detection [12]. But once the failure
has been asserted, recovery techniques are often very similar
to those deployed in crash-failure scenarios, with restarting
from a known good state (checkpoint) often being an adequate
strategy [13], [14]. Thus, what users are generally seeking
in HPC is the sweet spot where the cost of fault mitigation
is lower than the potential downtime, delay, and duplicate
computation cost incurred by the crash of the application [15].
Historically, global checkpointing [16]–[19] has been the
mitigation technique of choice. However, performance models
predict that we be may on the verge of an era where—despite
its relative simplicity—more advanced techniques (checkpoint
based or otherwise) will yield better efficiency [15], [20], [21].
This fact has steered a significant effort from the HPC com-
munity in exploring tailored techniques for tolerating failures
in applications on one hand, and in exploring abstractions,
runtime systems, and programming models that can effectively
support the execution of fault tolerant applications on the other
hand.

The ULFM specification [6] has recently taken a central
role in this community (see Section V). It permits the contin-
ued execution of MPI programs after a failure by providing
three critical capabilities: (1) the detection of failures and
reporting of errors; (2) the ability to reliably disseminate a
signal to interrupt the communication flow of the application;
and (3) a consensus operation that permits stabilizing the
state of the application and resuming normal operation after

Fig. 2. New uniformity and scope modes in relation to existing ULFM definitions.

MPI internal structures and capabilities have been restored.
In more details, following the diagrams in Figure 1, we can
follow ULFM operating workflow by inspecting use-cases.
Some applications can run-through faults, simply continuing
to execute a point-to-point communication pattern that avoids
communicating with known failed processes; typical for the
class are manager-worker frameworks that simply resubmit
the work delegated to a dead worker to another compute
resource. For such applications, it is important that the effect of
failure is the most localized, and that operation between non-
failed processes continues normally. Some applications are
malleable, that is, they require the full capabilities of MPI after
recovery (e.g., collective communication) but can redistribute
the work to execute on a smaller set of processes; such applica-
tions can use the MPIX_COMM_SHRINK operation to recreate
working communicators that exclude dead processes. Finally,
some applications have an inflexible mapping that requires an
exact number of processes; the ULFM specification can be
used in combination with MPI-2 dynamic operations, such as
MPI_COMM_SPAWN to recreate an isomorphic communicator.
Applications that are not run-through will often require a
collective recovery procedure where all processes join to repair
the MPI state, and the application dataset. New and original
algorithms were developed to ensure the scalability of the
resilience features in ULFM. In [22], we proposed a scalable
and reliable broadcast algorithm to efficiently support the
revoke operation. In [23], we proposed an original consensus
algorithm tailored for HPC systems. In [24], we designed a
scalable failure detector, and in [25], we studied replacement
processes. With these developments, interest swelled among
MPI implementors [26] and scientific communities as they

experimented with these capabilities to design fault tolerant
frameworks and programming language extensions that sup-
port failure recovery, as well as algorithmic resilience methods
over a range of applications. Feedback from early adopters has
identified potential areas of improvement that we have set to
explore in this paper.

III. A NOVEL APPROACH TO MPI RECOVERY

In the following subsections, we will describe the concepts
we introduce to improve the reactivity, expressivity, and po-
tential for overlap of recovery activities in MPI programs.

A. Error Scoping

Failure detection and subsequent error reporting is the
starting point of the entire recovery procedure. In ULFM, the
scope of error reporting is limited to processes that perform a
direct communication operation with a failed process (Figure
2). The rationale is twofold. First, some application use cases
operate under the assumption that as long as a can complete
successfully (i.e., the group of processes participating in the
operation does not contain a failed process) it must proceed
without interruption. This approach is particularly tailored
for job-stealing types of applications, where the failure of
some workers is irrelevant to the operation of the remaining
workers as well as to controller processes that do not manage
these workers. Second, general failure detectors [27]–[30] can
generate a significant number of background control messages,
either when they require the establishment of pervasive heart-
beat monitoring, or when employing gossip techniques. To
preserve performance, the original ULFM specification was
designed to enable an implementation where only in-band

error detection is provided (i.e., errors collected directly from
the transport layer of MPI when the connection to an endpoint
is broken at the network driver level).

However, prior results hint that: (1) the cost of out-of-
band failure detection can be minimal and scalable when
implemented correctly, as demonstrated by the performance of
the failure-detection algorithm we designed for ULFM [31],
and (2) when considering complex applications comprised on
multiple software modules, certain modules may require more
thorough information about errors that happen outside their
direct neighbors in the communication pattern of that module;
for example, it may be required for this component to be
informed of any failure happening at any process on which
this module spans, regardless of whether or not the module is
communicating with this process at the moment.

The first aspect is to define the interface with which the MPI
user can control the scoping behavior of the implementation
to meet the desired criterion. Again, we added a control for
the error-scoping behavior on a per-communicator basis, with
the addition of MPI info keys that permit setting the specific
desired behavior. That way application modules that require
a different error scoping behavior can operate independently
in different modes by posting the communication on different
communicators. The modes we envision will permit: (1) re-
porting only errors when the posted communication operation
cannot be completed, that is one of the peers participating in
the communication has failed, and the resultant non-compliant
behavior of the operation needs to be reported (this represents
the current ULFM mode); (2) reporting an error when any
process in the communicator is detected as failed, even if
the failed process is not participating in reporting the MPI
communication; and (3) reporting an error when any process
failure in the MPI universe is detected. Given that the group
and global reporting mode require a more stringent failure
detector that can obtain out-of-band failure information, we
identify the need to thoroughly investigate and compare the
cost of these operating modes with the in-band only (i.e., from
the network driver) detection cost.

One motivation for the group and global scope of error
reporting is to ease the writing of fault tolerant applications. In
many applications with a collective recovery pattern, ULFM
users have to deploy a two-stage recovery process that first
explicitly propagates the occurrence of a fault event (using
the MPIX_COMM_REVOKE operation) and only then proceeds
to the collective recovery pattern. This explicit management
is very flexible, but we expect the scoped recovery to signif-
icantly improve on the complexity of the error management
code by streamlining multiple error paths (either an error is
directly reported, or it has been triggered from an explicit
propagation) into unified management.

Another critical motivation for the global scoping mode is
enabling the cooperation of independent application modules
or libraries that operate in the application. Although modules
generally operate independently and require their communica-
tion to be segregated (i.e., employ separate communicators),
many recovery techniques are global in nature, and a fault must

Temporal SPMD library composition

App level
commA

Lib1
comm1
(dup A)

Lib2
Comm2
(dup A)

App level
commA

App level
commA
Split A

Lib1 comm1

Lib2
Comm2

App level
commA

Domain SPMD decomposition

App level
commA
Split A

Lib1 comm1

Lib2
Comm2

App level
commA

Nesting (w/o overlap)

Fig. 3. Applications with multiple libraries may have processes using
communicator handles that are not known by one of the libraries, calling
for a method to observe faults at processes that are not part of the local
communication pattern.

trigger a recovery action in all modules of the application—
including in processes that may not be currently involved in
communications for the module. Consider for example the case
of a rank-domain decomposition (Fig. 3) where the application
subdivides some ranks to work with library 1, while the rest
of the ranks work with library 2. If the application requires
a coordinated recovery action, both library modules must be
interrupted; however, the library 1 does not have access to
the handles for the communicators of library 2, and cannot
directly revoke them. A solution is for both libraries to
observe the global scope, which will interrupt implicitly both
libraries when a fault occurs in any of the domains. Listing 1
demonstrates how to setup the library communicator in such a
mode so that the library can detect faults at processes that are
not currently engaged with the library-specific communicator
(i.e., they may communicate in a separate communicator when
the fault manifests).

Listing 1. Example of a library observing faults at processes that are not
currently communicating on the library-specific communicator.
int lib1_init(MPI_Comm world) {
/* ... */
MPI_Comm_rank(world, &rank);
MPI_Comm_size(world, &size);
/* create a subcommunicator with only 1/4

* the processes */
int color = (rank < size/4)? 1: MPI_UNDEFINED;
MPI_Comm_split(world, color, rank, &subcomm);
if(MPI_UNDEFINED != color) {
MPI_Info_create(&info);
MPI_Info_set(info, "mpix_error_range", "universe");
MPI_Comm_set_info(subcomm, info);
/* From now on, a failure at a process that is **not**
* calling lib1 will still cause communications on

* subcomm to report errors */
/* ... */

B. Error Uniformity

Collective communications in MPI are a powerful tool for
expressing patterns where a group of processes participate
in the same communication operation. By abstracting the
intent of the communication pattern, the operation can then be

optimized by the MPI implementation using communication
topologies that limit the number of active connections between
peers and improve the operation’s latency, and pipelining
techniques that improve the achievable bandwidth. Collective
operations also help structure the code of the application:
operations like the MPI_BARRIER are specifically indented
for separating algorithmic epochs. A simplistic assumption
postulates that such structuring features would translate intact
into a regime where failures may disrupt the execution of
the application. To understand why this usually entails an
unacceptable overhead, consider the case of a typical imple-
mentation of the MPI_BCAST operation over a tree topology.
In the normal, fault-free operation, as processes relay the
message from the root toward the leaf processes, they can
complete the broadcast operation successfully as soon as
they have forwarded the contribution. Thus, if a descendant
process were to fail before forwarding the broadcast message,
its parents would not return an error, yet any process in
the subtree rooted at the failed process would have to do
so, since the message never reached them. Note that this
problem is not specific to one-to-all patterns, but can happen
symmetrically in all-to-one (and all-to-all) patterns. Thus, in
order to return an error at all ranks uniformly, the processes
would have to agree on the outcome of the call, which is an
extra fault tolerant synchronization step that is not required
by the semantic of the underlying communication. Thus, to
protect fault-free performance, in ULFM, the collective com-
munication errors are defined as non-uniform (i.e., processes
may return a different error status for the same operation), and
the MPI_COMM_AGREE operation provides an explicit means
for users to synchronize in a fault tolerant fashion when the
need arises.

We identify the potential for simultaneously improving the
performance and simplifying the expression of common usage
patterns. First, some MPI collective operations often require
a strong validation when deployed in practice. For example,
operations that create new communicators often need to be
validated for global success, or global failure, immediately.
Similarly, in many iterative algorithms, the reduction step that
computes the termination criterion is an excellent verification
and restart point for the application, leading to many users’
employing an allreduce operation immediately followed by an
agreement. Thus, in this work, we propose to provide the user
with a level of control on the uniformity of error reporting.
We propose setting a per-communicator property (practically,
by setting specific MPI Info keys on the communicator) that
lets the user decide whether collective operations on the com-
municator should operate at maximum speed (non-uniform) or
with implicit safety (uniform error reporting at all ranks). This
control enables a distinction between pure communication
operations (which are often critical for performance) and
setup/management operations (like operations that create new
communicators, or operations that change the logical epoch in
the algorithm).

Our implementation of the concept adds an agreement to all
collective operations (an operation that can be performed in

approximately 2× the latency of a small message, non fault–
tolerant allreduce [23]).

C. Asynchronous Recovery

Many applications need to restore the full communication
capability of MPI before they can resume their computational
activity after a failure. The MPI_COMM_SHRINK operation
provides the operational construct that permits recreating a
fully functional communication context in which not only
select point-to-point communication but also collective com-
munication can be carried. The core of the operation relies on
agreeing on the set of failed processes that need to be excluded
from the input communicator and then producing a resultant
communicator with a well-specified membership of processes.
The current definition of the shrink operation is blocking and
synchronous, which limits the opportunity for overlapping its
cost.

We introduce a new non-blocking variant of the shrink oper-
ation, MPIX_COMM_ISHRINK(comm, newcomm, req).
To support this operation, we designed a non-blocking variant
of the consensus-like elimination of failed processes as well
as the selection of the internal context identifier (a unique
number that is used to match MPI messages to the correct
communicator on which the operation was posted).

The expected advantages are multiple. Some applica-
tions may have to recover multiple communicators after
a failure. A common approach is to shrink the largest
communicator (e.g., MPI_COMM_WORLD), and then recre-
ate the damaged communicators with non-fault tolerant con-
structs (e.g., MPI_COMM_DUP, MPI_COMM_SPLIT, etc.),
and then validate the whole set of new communicators with
MPI_COMM_AGREE on the large communicator. This is an
effective approach when the derived communicators have the
same, or similar number of processes in their respective
groups. This can however be sub-optimal in applications that
create small neighbor communicators with orders of magni-
tude fewer processes in their respective groups than in the
overarching communicator. In such a situation, directly shrink-
ing multiple time smaller communicators can be advantageous.
With the availability of the non-blocking shrink, these multiple
shrink operation have an opportunity to overlap one another.

The non-blocking shrink also gives an opportunity for
overlap between the cost of rebuilding communicators with
the cost of restoring the application dataset (e.g., reloading
checkpoints, computing checksum on data, etc.).

D. Implementation

These three ideas are implemented in the ULFM reference
implementation, which is currently integrated into the main
OPEN MPI development branch and slated for distribution
with OPEN MPI version 5.

A major new requirement with the introduction of the error
reporting modes is that the implementation may not only
use in-band error reporting. In-band error reporting (bottom
pathway in Fig. 4 is when the network driver itself reports
fault events, that get propagated through the software stack

BTL/MTL

PMIx client
thread

In-band error
NIC detected
Unreachable peer

Ressource Manager
Daemon

(e.g., PRTED)
PMIx server

Network Driver
(e.g., OFI, UCX, TCP,

etc.)

Out-of-band error
RM Detected failure

OPAL event loop

PML
Error callback

Errhandler
proc_failed_internal

Fault event scheduled

Fault Callback

Event Loop
calls transport
Progress function

PMIx fault notification

PML calls the errhandler

Fault Event Triggerred

opal_proc_table[proc]->proc_active = false
Foreach comm
ompi_comm_set_rank_failed(comm)
revoke (comm, collectives):

interrupt collective ops at remote ranks
wait_sync_global_wakeup():

interrupt requests yielding on a sync
object in ompi_request_wait()

ompi_request_is_failed_fn(req):
recheck if request still valid

(peer failed?)
cancel failed requests
wait for BTL/MTL to complete frags
frags could overwrite user buffers

mpi-complete request
with status.MPI_ERROR set

Ompi_request_wait/test

Wait-sync wakeup

Fig. 4. Implementation of Out-of-band error reporting in Open MPI

(usually through function return codes, and then in the internal
status of the MPI request), until they bubble to the locus of the
main MPI procedure call that completes the associated MPI
operation. Because the group and global error reporting modes
have to produce errors when peers for which there are no active
communication with fail, a purely in-band error reporting
strategy is insufficient, and the implementation must contain
an out-of-band mechanism to observe, and disseminate fault
knowledge so that appropriate MPI errors can be produced.
In our OPEN MPI implementation, the out-of-band error
detection capability is delegated to the PRTE runtime (PMIx
pathway in Fig. 4.) Faults are then bounced from the PRTE
runtime event loop to the MPI event loop, and then produced to
the user from MPI procedures on communicators that have the
appropriate error reporting mode set. The impact of running an
out-of-band failure detector is one of the discussion we focus
on in the performance evaluation section.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We evaluate the performance impact (or lack thereof) of
the proposed new APIs and communication modes on the Phi
cluster, at the University of Tennessee. Each node consists
of a Xeon X5660 12 core CPU, and is connected through a
QDR (40Gb/s) MT26428 Infiniband adapter. In total there are
66 nodes available. Failures are injected by having selected
application processes raise the SIGKILL signal.

The implementation of the new capabilities forks from the
ULFM integrated in the OPEN MPI main branch (at commit
hash 437d70d4). The assets used to produce the results are
available from the public ULFM testings repository from the
tag ftxs22 1.

We use the OPEN MPI components OB1/UCT combination
to drive the Infiniband network over the UCX 1.11.2, rdma-
core 33.1 drivers.

B. Benchmarks

We have produced a number of specific benchmarks to
help investigate the performance impact of the proposed

1https://github.com/ICLDisco/ulfm-testing/tree/ftxs22

new operations. First we have a modified version of the
OSU MPI benchmarks (forked from OSU 5.7.1) in which
the user can select on the command line if error reporting
must be local, group-based, or global, on one hand, and if
error uniformity must be local or group based. Second, we
produced a new micro-benchmark that can investigate the
use of multiple ISHRINK operations running concurrently.
Third, we produced a new micro-benchmark that mimics a
buddy-checkpointing application, and employs ISHRINK to
overlap the cost of restoring the checkpoint dataset with the
cost of reconstructing communicators. A buddy checkpointing
application stores a copy of its dataset on another process
(its buddy), so that the lost data can be recovered in the
event that this process fails. In this test, the repaired (shrunk)
communicator is not yet available to exchange the dataset
during recovery, thus the benchmark employs point-to-point
communication between the buddy and the process assigned
to take on the work of the failed process. When the recov-
ery procedure is complete, the shrunk communicator can be
used by the recovered processes to resume using collective
communication.

C. Effect of in-band versus out-of-band Error Reporting on
Micro-Benchmarks

Fig. 5 presents the results comparing the cost of using
the in-band versus out-of-band error detection capabilities, as
required to support the local, versus group error reporting
modes respectively. When fault tolerance is “off”, the out-
of-band error detection subsystem in Open MPI is disabled
and only in-band errors are produced (from the Infiniband
transport). In contrast, when we enable fault tolerance, and
set the communicator on which the test operates in the
“group” error reporting range, Open MPI is forced to enable
the out-of-band error detection subsystem. We compare the
performance in both bandwidth and latency for a number of
OSU micro benchmarks, without faults. The benchmarks are
run with a large number of iterations to increase runtime,
and thus increase the number of heartbeat events produced
during each run (heartbeat is set to every 5s). One can
observe that the performance in both collectives is completely
unchanged, and point-to-point microbenchmarks show only
a very slight latency degradation (from 2.22µs to 2.45µs)
with no bandwidth impact, illustrating that the addition and
use of the new reporting modes does not impact performance
significantly.

D. Effect of Uniform Mode on Collective Communication
Performance

Fig. 6 presents the results comparing the cost of using the
uniform error reporting in a set of collective communication
patterns in OSU micro benchmarks. Time reported in the figure
are the “maximum” report from OSU, that is, the time to com-
plete the operation at all ranks (the default “average” report
computes the average of the completion time at each rank,
per operation, a measure of how synchronizing the operation

Comparison between Open MPI (FT off) and ULFM with Group error reporting in OSU (UTK Phi, np=768, ib40g/CMA)

T
IM
E

 (
u
s
)

MESSAGE SIZE (Bytes)

AllReduce w/group detector
AllReduce

 10

 100

 1000

 10000

4 16 64 256 1K 4K 16K 64K256K 1M

T
IM
E

 (
u
s
)

MESSAGE SIZE (Bytes)

Reduce w/group detector
Reduce

 10

 100

 1000

 10000

4 16 64 256 1K 4K 16K 64K256K 1M

T
IM
E

 (
u
s
)

MESSAGE SIZE (Bytes)

Broadcast w/group detector
Broadcast

 10

 100

 1000

 10000

1 4 16 64 256 1K 4K 16K64K256K1M

T
IM
E

 (
u
s
)

MESSAGE SIZE (Bytes)

Pingpong w/group detector
Pingpong

 1

 10

 100

 1000

 10000

1 4 16 64 256 1K 4K 16K64K256K1M 4M

Fig. 5. Performance comparison between in-band only (Local scope) and out-of-band (Group scope) failure detection (768 MPI ranks)

Comparison between ULFM Local and Uniform error reporting with OSU Collective (UTK Phi, np=768, ib40g/CMA)

T
IM
E

 (
u
s
)

MESSAGE SIZE (Bytes)

Uniform AllReduce
AllReduce

 10

 100

 1000

 10000

4 16 64 256 1K 4K 16K 64K 256K 1M

T
IM
E

 (
u
s
)

MESSAGE SIZE (Bytes)

Uniform Reduce
Reduce

 10

 100

 1000

 10000

4 16 64 256 1K 4K 16K 64K 256K 1M

T
IM
E

 (
u
s
)

MESSAGE SIZE (Bytes)

Uniform Broadcast
Broadcast

 10

 100

 1000

 10000

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Fig. 6. Performance comparison between Local and Uniform collective communication (768 MPI ranks)

is). The benchmarks are selected to cover one-to-many, many-
to-one, and many-to-many communication patterns. One can
observe that in all cases, the addition of the verification step
to enforce uniform error reporting has a significant impact on
small message latency. In addition, in one-to-many and many-
to-one operations, there is a significant departure in the inter-
rank distribution of completion times: when the error reporting
is local, some processes (presumably close to the root of the
broadcast topology) complete the broadcast operation much
more quickly than other processes (presumably leaves); in
the uniform mode, the operation becomes synchronizing in
a strong sense and all ranks experience a similar wait time for
the broadcast operation to complete. In terms of bandwidth,
the difference between the local and uniform modes decreases
with message size, because the fixed cost of the verification
step can be amortized with the increased cost of the commu-
nication itself.

E. Concurrent Shrinks Overlap

Fig. 7 presents the performance observed when rebuilding
multiple communicators after a single rank process fault.

180

200

220

240

260

280

300

0 2 4 6 8 10 12 14 16

C
o
s
t
p
e
r
c
o
m
m

 (
u
s
:
la
te
n
c
y
/#
re
p
a
ir
e
d
)

Number of Communicators Repaired

SHRINK
ISHRINK

Multiple Comms Repair Overlap (UTK Phi, np=768, ib40g+CMA)

Fig. 7. Overlap between multiple concurrent ISHRINK operations (768 MPI
ranks)

When using the non-blocking shrink operation, multiple com-
municators can be repaired concurrently. We present the per
communicator cost, that is, the time it takes to repair the set
of communicators, divided by the number of communicators.

T
IM
E

 (
m
s
)

CHECKPOINT SIZE (Bytes)

Combined Checkpoint Reload + IShrink
Checkpoint Reload Only

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M 64M256M

Overlap Between Reloading Buddy Checkpointing and MPI IShrink Recovery

Fig. 8. Overlap between ISHRINK and Buddy Checkpointing Reload (768
MPI ranks)

The first observation is that using the blocking or non-blocking
variants of the shrink operation takes approximately the same
time to repair a single communicator; we observe only a small
overhead from the split between initiation and completion in
the non-blocking variant. When we increase the number of
communicators that are repaired simultaneously (a pattern that
can only be achieved using the non-blocking shrink variant),
we observe that the cost per communicator decreases, up to
approximately 8 communicators repaired simultaneously. This
indicates that applications can reduce the time to recovery
by overlapping the repair of multiple communicators with
concurrent non-blocking shrink calls.

F. Shrink and Checkpoint Reload Overlap

Fig. 8 presents the time to recovery after a single rank
failure when the application overlaps the time to reload a
buddy checkpoint with the cost of repairing the communicators
(as is needed when the application is intent on using collective
communication after the recovery completed). We vary the size
of the checkpoint dataset from very small (1 Byte) to large
(1GB). At the scale of our experiments, the cost of performing
a single shrink operation is very small (around 800µs). The
cost of repairing a communicator after a fault (thus including
fault detection inside a shrink operation) is 10ms. On this
system, the cost of reloading the buddy checkpoint is equal
to the cost of performing the shrink communicator repair
operation between checkpoint sizes 1MB to 4MB. Of note, for
the 4MB checkpoint, the time to reload a checkpoint is in the
same order of magnitude as the cost of a shrink operation, yet
the combined time is in-trend hinting that for this checkpoint
size, the cost of the shrink is completely overlapped. The
checkpoint sizes for which we achieve overlap without the
sheer cost of the checkpoint amortizing the cost of a serial
shrink are rather small on this system. However, larger scale

experiments carried in the past with ULFM show that, while
the cost of buddy checkpointing is constant with the number
of nodes (it varies with the per-node dataset size), the cost
of performing a shrink operation increases with scale, which
increases the importance of overlapping the shrink cost at
scale, even for larger checkpoint loads.

V. RELATED WORKS

Other models of fault tolerance in MPI have also been
researched. A number of projects deploy masking fault tol-
erance (i.e., failures are automatically handled by the en-
vironment, and MPI processes are replaced implicitly from
replicates or checkpoints [16]–[19]). One detriment to masking
fault tolerance is the typically high cost incurred on failure-
free operation. FT-MPI [32] presented an earlier attempt at
enabling fault management in MPI applications. FT-MPI au-
tomatically repairs the predefined MPI_COMM_WORLD com-
municator based on a replace, shrink, or blank policy. The
shrink and replace modes are synchronous, and the approach
is global in nature. MPI Reinit [33], [34] proposes a rollback
model in which faulty processes are replaced automatically,
all processes restart after the MPI initialization, and data
restoration remains under the user’s control. By definition
this approach is global and is fully synchronous. FMI [35]
introduces a comprehensive model that handles fault tolerance,
including checkpointing the application state, restarting failed
processes and automatically reallocating additional nodes.
Compared to ULFM—which proposes a flexible low-level
API that supports a variety of fault tolerance models—these
alternatives propose embracing a monolithic recovery model
that supports a single mode of recovery, one that is always
operating at a global scope.

For fault tolerance frameworks and languages, multi-
ple frameworks that simplify checkpoint-restart, and user-
controlled, in-place, global restart have been implemented on
top of ULFM. For example, Fenix [4], [36] captures errors
reported from ULFM, and rollback the application to the
exit of the initialization function with repaired communicators
(in shrink or replace mode). An explicit data management
interface permits saving and restoring application data there-
after. In NR-MPI [37], failures are detected from the resource
manager rather than from MPI operations, and NR-MPI takes
care of replacing failed processes (using ULFM) and triggers
data recovery procedures at the application level. In [38], the
authors propose an alternative error reporting model based on
operational timeouts and employ the ULFM implementation
to prototype their effort. In the X10 language, an exception-
based management of process failures is implemented on
top of ULFM [39]. In the Co-Array Fortran language, the
concept of “failed images” abstracts the detection and elimi-
nation of failed processes and is implemented using ULFM
shrink operations [40]. In the Local Failure Local Recovery
(LFLR) [41] framework, failure management is inserted in
the application through C++ inheritance of recoverable data
structures that require protection. The ULFM-based imple-
mentation captures MPI errors and substitutes spare processes

on which recoverable data is re-instantiated. In [42] the author
provided a framework for placing checkpoints at semantic
synchronization points. In [43], the authors survey different
fault tolerance techniques in MPI and their applicability to
the Fortran language. In [44], the authors study the cost of
re-spawning processes and identify it as one of the largest
overheads left standing on the recovery path. Some of these
framework developers have expressed interest in the addition
of asynchronous recovery of communicators as an important
use-case for their workflow (e.g., Fenix, LFLR), and this
emerging need has motivated the work presented in this paper.

On the application side, in [45], the authors study a fault
tolerant algorithm for the resolution of 2-D stochastic Euler
equations of gas dynamics with a monte-carlo method; in [46],
the authors study numerical recovery strategies for Krylov
solvers; in [47], the authors study sender-based message
logging deployed at the application level; in [48], the authors
study the requirements for deploying deep learning fault
tolerance; and in [49], the authors present an application-based
checkpoint compression strategy for finite-element multi-grid
algorithms. Many of these Applications demonstrate usage
patterns that recover multiple communicators, and recover
small group communicators in isolation from one-another, a
good fit for the group and local scoping, as well as non-
blocking shrink overlap between communicator repairs.

Nontraditional HPC workloads (e.g., distributed database
management systems [DDBMS] [50]) and big data analytics
on the cloud [51]–[53] have also expressed interest in using
MPI but had been deterred by its lack of resilience support. Us-
ing ULFM, they have obtained very impressive performance
speedup and demonstrated that a fault-tolerant MPI can clearly
serve some of their needs. In [54], the authors evaluated an
MPI-based implementation of Hadoop and Map-Reduce with
fault tolerance; in [55], the authors port the SAP database
system over ULFM and demonstrate an impressive speedup
when compared to system-level checkpoint and restart; the
usage pattern would particularly benefit from the uniform
collective mode of operation proposed in this paper. In [56],
the authors consider a wish list of features required to execute
cloud compute services over MPI and consider how to match
their needs with ULFM features.

VI. CONCLUDING REMARKS

In the past, MPI fault recovery has considered only mono-
lithic solutions, where either the entire application restarts,
or the management of failures is totally transactional and
contingent on the messaging pattern. In contrast, this work
enable new patterns for fault tolerance—patterns that do not
rely on a blocking, serialized, chain of parallel steps but
instead enable merging and overlapping multiple steps of the
recovery.

We have performed an evaluation of the proposed ideas in
a practical setting using a mature software environment. The
performance demonstrate that enabling a flexible scoping in
error reporting and asynchronous, implicit recovery actions
does have the potential to reduce the cost, while at the same

time maintaining a level of performance indistinguishable from
the non fault-tolerant implementation.

Although our proposal and evaluation is in the context of
MPI, the concepts and designs are expected to carry over to
other programming models (e.g., partitioned global address
space models [57]) beyond a narrow message-passing classi-
fication. These new capabilities form a new basis upon which
application researchers and system designers can investigate
how asynchronous recovery can be deployed in their own
application domain.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1664142 SI2-
SSI: EVOLVE: Enhancing the Open MPI Software for Next
Generation Architectures and Applications.

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration.

REFERENCES

[1] M. P. I. Forum, “MPI: A Message-Passing Interface Standard,”
http://www.mpi-forum.org/, September 2012.

[2] P. Beckman, R. Brightwell, B. R. de Supinski, M. Gokhale,
S. Hofmeyr, S. Krishnamoorthy, M. Lang, B. Maccabe, J. Shalf,
and M. Snir, “Exascale Operating Systems and Runtime Software
Report,” US Department of Energy, Technical Report, December
2012. [Online]. Available: http://science.energy.gov/∼/media/ascr/pdf/
research/cs/Exascale%20Workshop/ExaOSR-Report-Final.pdf

[3] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. Chien, P. Coteus,
N. Debardeleben, P. Diniz, C. Engelmann, M. Erez, S. Fazzari, A. Geist,
R. Gupta, F. Johnson, S. Krishnamoorthy, S. Leyffer, D. Liberty,
S. Mitra, T. Munson, R. Schreiber, J. Stearley, and E. Hensbergen,
Addressing Failures in Exascale Computing. U.S. DoE, 2013. [Online].
Available: http://www.osti.gov/scitech/servlets/purl/1078029

[4] M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar,
“Exploring Automatic, Online Failure Recovery for Scientific Applica-
tions at Extreme Scales,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, ser.
SC ’14, 2014.

[5] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre,
D. Barkai, J.-Y. Berthou, T. Boku, B. Braunschweig, F. Cappello,
B. Chapman, X. Chi, A. Choudhary, S. Dosanjh, T. Dunning, S. Fiore,
A. Geist, B. Gropp, R. Harrison, M. Hereld, M. Heroux, A. Hoisie,
K. Hotta, Z. Jin, Y. Ishikawa, F. Johnson, S. Kale, R. Kenway,
D. Keyes, B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas,
B. Maccabe, S. Matsuoka, P. Messina, P. Michielse, B. Mohr, M. S.
Mueller, W. E. Nagel, H. Nakashima, M. E. Papka, D. Reed, M. Sato,
E. Seidel, J. Shalf, D. Skinner, M. Snir, T. Sterling, R. Stevens, F. Streitz,
B. Sugar, S. Sumimoto, W. Tang, J. Taylor, R. Thakur, A. Trefethen,
M. Valero, A. Van Der Steen, J. Vetter, P. Williams, R. Wisniewski,
and K. Yelick, “The International Exascale Software Project roadmap,”
Int. J. High Perform. Comput. Appl., vol. 25, no. 1, pp. 3–60, Feb.
2011. [Online]. Available: http://dx.doi.org/10.1177/1094342010391989

[6] W. Bland, A. Bouteiller, T. Hérault, G. Bosilca, and J. Dongarra,
“Post-failure recovery of MPI communication capability: Design and
rationale,” IJHPCA, vol. 27, no. 3, pp. 244–254, 2013.

[7] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J.
Dongarra, “An Evaluation of User-Level Failure Mitigation Support in
MPI,” in 19th EuroMPI, J. L. Träff, S. Benkner, and J. Dongarra, Eds.
Vienna, Austria: Springer, Sep. 2012.

[8] N. Losada, P. González, M. J. Martı́n, G. Bosilca, A. Bouteiller, and
K. Teranishi, “Fault tolerance of mpi applications in exascale systems:
The ulfm solution,” Future Generation Computer Systems, vol. 106, pp.
467–481, 2020.

http://science.energy.gov/~/media/ascr/pdf/research/cs/Exascale%20Workshop/ExaOSR-Report-Final.pdf
http://science.energy.gov/~/media/ascr/pdf/research/cs/Exascale%20Workshop/ExaOSR-Report-Final.pdf
http://www.osti.gov/scitech/servlets/purl/1078029
http://dx.doi.org/10.1177/1094342010391989

[9] F. Cappello, “Fault tolerance in petascale/exascale systems: Current
knowledge, challenges and research opportunities,” International Jour-
nal of High Performance Computing Applications, vol. 23, no. 3, p. 212,
2009.

[10] M. Fasi, J. Langou, Y. Robert, and B. Uçar, “A backward/forward recov-
ery approach for the preconditioned conjugate gradient method,” Journal
of Computational Science, vol. 17, pp. 522 – 534, 2016, recent Advances
in Parallel Techniques for Scientific Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877750316300461

[11] A. Schöll, C. Braun, M. A. Kochte, and H. Wunderlich, “Low-overhead
fault-tolerance for the preconditioned conjugate gradient solver,” in 2015
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFTS), Oct 2015, pp. 60–65.

[12] D. Li, Z. Chen, P. Wu, and J. S. Vetter, “Rethinking algorithm-based
fault tolerance with a cooperative software-hardware approach,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13. New
York, NY, USA: ACM, 2013, pp. 44:1–44:12. [Online]. Available:
http://doi.acm.org/10.1145/2503210.2503226

[13] G. Bosilca, A. Bouteiller, T. Herault, Y. Robert, and J. Dongarra,
“Composing resilience techniques: ABFT, periodic and incremental
checkpointing,” International Journal of Networking and Computing,
vol. 5, no. 1, pp. 2–25, 2015.

[14] M. Fasi, Y. Robert, and B. Uçar, “Combining backward and forward
recovery to cope with silent errors in iterative solvers,” in 2015 IEEE
International Parallel and Distributed Processing Symposium Workshop,
May 2015, pp. 980–989.

[15] G. Bosilca, A. Bouteiller, E. Brunet, F. Cappello, J. J. Dongarra,
A. Guermouche, T. Hérault, Y. Robert, F. Vivien, and D. Zaidouni,
“Unified model for assessing checkpointing protocols at extreme-
scale,” Concurrency and Computation: Practice and Experience,
vol. 26, no. 17, pp. 2772–2791, 2014. [Online]. Available: https:
//doi.org/10.1002/cpe.3173

[16] J. Hursey, J. Squyres, T. Mattox, and A. Lumsdaine, “The Design
and Implementation of Checkpoint/Restart Process Fault Tolerance for
Open MPI,” in IEEE International Parallel and Distributed Processing
Symposium, 2007, pp. 1–8.

[17] A. Bouteiler, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello,
“MPICH-V project: a multiprotocol automatic fault tolerant MPI,”
vol. 20. SAGE Publications, Summer 2006, pp. 319–333.

[18] K. M. Chandy and L. Lamport, “Distributed snapshots : Determining
global states of distributed systems,” in Transactions on Computer
Systems, vol. 3(1). ACM, February 1985, pp. 63–75.

[19] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P. Har-
grove, and E. Roman, “The LAM/MPI checkpoint/restart framework:
System-initiated checkpointing,” in Proceedings, LACSI Symposium,
Sante Fe, New Mexico, USA, October 2003.

[20] T. Davies, C. Karlsson, H. Liu, C. Ding, , and Z. Chen, “High
Performance Linpack Benchmark: A Fault Tolerant Implementation
without Checkpointing,” in Proceedings of the 25th ACM International
Conference on Supercomputing (ICS 2011). ACM.

[21] A. Bouteiller, T. Herault, G. Bosilca, P. Du, and J. Dongarra,
“Algorithm-based fault tolerance for dense matrix factorizations,
multiple failures and accuracy,” ACM Trans. Parallel Comput.,
vol. 1, no. 2, pp. 10:1–10:28, Feb. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2686892

[22] A. Bouteiller, G. Bosilca, and J. J. Dongarra, “Plan B: interruption of
ongoing MPI operations to support failure recovery,” in Proceedings
of the 22nd European MPI Users’ Group Meeting, EuroMPI 2015,
Bordeaux, France, September 21-23, 2015, 2015, pp. 11:1–11:9.

[23] T. Hérault, A. Bouteiller, G. Bosilca, M. Gamell, K. Teranishi,
M. Parashar, and J. Dongarra, “Practical scalable consensus for pseudo-
synchronous distributed systems,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2015, Austin, TX, USA, November 15-20, 2015, 2015, pp.
31:1–31:12.

[24] G. Bosilca, A. Bouteiller, A. Guermouche, T. Hérault, Y. Robert,
P. Sens, and J. J. Dongarra, “Failure detection and propagation in HPC
systems,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2016,
Salt Lake City, UT, USA, November 13-18, 2016, J. West and C. M.
Pancake, Eds. IEEE Computer Society, 2016, pp. 312–322. [Online].
Available: https://doi.org/10.1109/SC.2016.26

[25] A. Hori, K. Yoshinaga, T. Hérault, A. Bouteiller, G. Bosilca, and
Y. Ishikawa, “Sliding substitution of failed nodes,” in Proceedings of the
22nd European MPI Users’ Group Meeting, EuroMPI 2015, Bordeaux,
France, September 21-23, 2015, 2015, pp. 14:1–14:10.

[26] W. Bland, H. Lu, S. Seo, and P. Balaji, “Lessons learned
implementing user-level failure mitigation in MPICH,” in 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2015, Shenzhen, China, May 4-7, 2015. IEEE
Computer Society, 2015, pp. 1123–1126. [Online]. Available: https:
//doi.org/10.1109/CCGrid.2015.51

[27] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM (JACM), vol. 43, no. 2, Mar.
1996.

[28] C. Leangsuksun, T. Rao, A. Tikotekar, S. Scott, R. Libby, J. Vetter, Y.-
C. Fang, and H. Ong, “Ipmi-based efficient notification framework for
large scale cluster computing,” in Cluster Computing and the Grid, 2006.
CCGRID 06. Sixth IEEE International Symposium on, vol. 2, May, pp.
23–23.

[29] R. van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure
detection service,” in Proceedings of the IFIP International Conference
on Distributed Systems Platforms and Open Distributed Processing, ser.
Middleware ’98. London, UK, UK: Springer-Verlag, 1998, pp. 55–70.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1659232.1659238

[30] A. Das, I. Gupta, and A. Motivala, “Swim: Scalable weakly-consistent
infection-style process group membership protocol,” in International
Conference on Dependable Systems and Networks, Washington, DC,
USA, 2002, pp. 303–312.

[31] G. Bosilca, A. Bouteiller, A. Guermouche, T. Hérault, Y. Robert,
P. Sens, and J. J. Dongarra, “A failure detector for HPC platforms,”
IJHPCA, vol. 32, no. 1, pp. 139–158, 2018. [Online]. Available:
https://doi.org/10.1177/1094342017711505

[32] Graham E. Fagg and Edgar Gabriel and George Bosilca and Thara
Angskun and Zhizhong Chen and Jelena Pjesivac-Grbovic and Kevin
London and Jack J. Dongarra, “Extending the MPI specification for
process fault tolerance on high performance computing systems,”
in Proceedings of the International Supercomputer Conference (ICS)
2004. Primeur, 2004. [Online]. Available: http://www.netlib.org/utk/
people/JackDongarra/PAPERS/isc2004-FT-MPI.pdf

[33] S. Chakraborty, I. Laguna, M. Emani, K. Mohror, D. K. Panda,
M. Schulz, and H. Subramoni, “Ereinit: Scalable and efficient fault-
tolerance for bulk-synchronous mpi applications,” Concurrency and
Computation: Practice and Experience, vol. 0, no. 0, p. e4863, e4863
cpe.4863. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/cpe.4863

[34] I. Laguna, D. F. Richards, T. Gamblin, M. Schulz, B. R. de Supinski,
K. Mohror, and H. Pritchard, “Evaluating and extending user-level
fault tolerance in mpi applications,” The International Journal of High
Performance Computing Applications, vol. 30, no. 3, pp. 305–319,
2016. [Online]. Available: https://doi.org/10.1177/1094342015623623

[35] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R. d. Supinski,
N. Maruyama, and S. Matsuoka, “Fmi: Fault tolerant messaging
interface for fast and transparent recovery,” in Proceedings of the
2014 IEEE 28th International Parallel and Distributed Processing
Symposium, ser. IPDPS ’14. Washington, DC, USA: IEEE Computer
Society, 2014, pp. 1225–1234. [Online]. Available: http://dx.doi.org/10.
1109/IPDPS.2014.126

[36] M. Gamell, R. F. Van der Wijngaart, K. Teranishi, and M. Parashar,
“Specification of the Fenix MPI Fault Tolerance library, version 1.0.1,”
Sandia National Laboratories, Livermore, CA, Tech. Rep. SAND2016-
10522, October 2016.

[37] G. Suo, Y. Lu, X. Liao, M. Xie, and H. Cao, “Nr-mpi: A non-stop and
fault resilient mpi,” in 2013 International Conference on Parallel and
Distributed Systems, Dec 2013, pp. 190–199.

[38] A. Hassani, A. Skjellum, R. Brightwell, and P. V. Bangalore,
“Comparing, contrasting, generalizing, and integrating two current
designs for fault-tolerant MPI,” in Proceedings of the 21st European
MPI Users’ Group Meeting, ser. EuroMPI/ASIA ’14. New York,
NY, USA: ACM, 2014, pp. 63:63–63:68. [Online]. Available:
http://doi.acm.org/10.1145/2642769.2642776

[39] S. S. Hamouda, J. Milthorpe, P. E. Strazdins, and V. Saraswat, “A
resilient framework for iterative linear algebra applications in X10,”
in 2015 IEEE International Parallel and Distributed Processing Sym-
posium Workshop, IPDPS 2015, Hyderabad, India, May 25-29, 2015,
2015, pp. 970–979.

http://www.sciencedirect.com/science/article/pii/S1877750316300461
http://doi.acm.org/10.1145/2503210.2503226
https://doi.org/10.1002/cpe.3173
https://doi.org/10.1002/cpe.3173
http://doi.acm.org/10.1145/2686892
https://doi.org/10.1109/SC.2016.26
https://doi.org/10.1109/CCGrid.2015.51
https://doi.org/10.1109/CCGrid.2015.51
http://dl.acm.org/citation.cfm?id=1659232.1659238
https://doi.org/10.1177/1094342017711505
http://www.netlib.org/utk/people/JackDongarra/PAPERS/isc2004-FT-MPI.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/isc2004-FT-MPI.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4863
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4863
https://doi.org/10.1177/1094342015623623
http://dx.doi.org/10.1109/IPDPS.2014.126
http://dx.doi.org/10.1109/IPDPS.2014.126
http://doi.acm.org/10.1145/2642769.2642776

[40] J. Reid, “Additional CoArray features in Fortran,” in Proceedings of
the 7th International Conference on PGAS Programming Models. The
University of Edinburgh, 2013, pp. 104–110.

[41] K. Teranishi and M. A. Heroux, “Toward local failure local recovery
resilience model using MPI-ULFM,” in 21st European MPI Users’
Group Meeting, EuroMPI/ASIA ’14, Kyoto, Japan - September 09 - 12,
2014, 2014, p. 51.

[42] N. Losada, I. Cores, M. J. Martı́n, and P. González, “Resilient MPI
applications using an application-level checkpointing framework and
ULFM,” The Journal of Supercomputing, vol. 73, no. 1, pp. 100–113,
2017. [Online]. Available: https://doi.org/10.1007/s11227-016-1629-7

[43] N. Weeks, G. Luecke, P. Maris, and J. Vary, “Challenges in developing
mpi fault-tolerant fortran applications,” in 2018 IEEE International
Conference on Cluster Computing (CLUSTER), Sept 2018, pp. 524–531.

[44] M. Szpindler, “Enabling adaptive, fault-tolerant MPI applications with
dynamic resource allocation,” in Proceedings of the 3rd International
Conference on Exascale Applications and Software, ser. EASC ’15.
Edinburgh, Scotland, UK: University of Edinburgh, 2015, pp. 53–57.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2820083.2820094

[45] S. Pauli, P. Arbenz, and C. Schwab, “Intrinsic fault tolerance
of multilevel monte carlo methods,” Journal of Parallel and
Distributed Computing, vol. 84, pp. 24–36, 2015. [Online]. Available:
http://www.scopus.com/inward/record.url?eid=2-s2.0-84938393594&
partnerID=40&md5=ec6d7d72b0aafb8b91c50d239b937639

[46] E. Agullo, L. Giraud, A. Guermouche, J. Roman, and M. Zounon,
“Numerical recovery strategies for parallel resilient Krylov linear
solvers,” Numerical Linear Algebra with Applications, vol. 23,
no. 5, pp. 888–905, 2016, nla.2059. [Online]. Available: http:
//dx.doi.org/10.1002/nla.2059

[47] J. Ahn, “N fault-tolerant sender-based message
logging for group communication-based message passing
systems,” 2015, pp. 1296–1301. [Online]. Available:
http://www.scopus.com/inward/record.url?eid=2-s2.0-84925238874&
partnerID=40&md5=8fdaad1dff202068f593e87bf10e75a1

[48] V. Amatya, A. Vishnu, C. Siegel, and J. Daily, “What does fault
tolerant deep learning need from mpi?” in Proceedings of the 24th
European MPI Users’ Group Meeting, ser. EuroMPI ’17. New
York, NY, USA: ACM, 2017, pp. 13:1–13:11. [Online]. Available:

[57] A. Bouteiller, G. Bosilca, and M. G. Venkata, “Surviving errors with
openshmem,” in OpenSHMEM and Related Technologies. Enhancing

http://doi.acm.org/10.1145/3127024.3127037
[49] D. Göddeke, M. Altenbernd, and D. Ribbrock, “Fault-tolerant

finite-element multigrid algorithms with hierarchically compressed
asynchronous checkpointing,” Parallel Comput., vol. 49, no. C, pp.
117–135, Nov. 2015. [Online]. Available: https://doi.org/10.1016/j.
parco.2015.07.003

[50] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zamanian, “The
end of slow networks: It’s time for a redesign,” Proc. VLDB Endow.,
vol. 9, no. 7, pp. 528–539, Mar. 2016.

[51] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, “Big data analytics in
the cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf,” Procedia
Computer Science, vol. 53, pp. 121 – 130, 2015.

[52] T. Hoefler, A. Lumsdaine, and J. Dongarra, “Towards efficient
MapReduce using MPI,” in Proceedings of the 16th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing Interface. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 240–249. [Online]. Available: http://dx.doi.
org/10.1007/978-3-642-03770-2 30

[53] X. Lu, F. Liang, B. Wang, L. Zha, and Z. Xu, “DataMPI: Extending
MPI to Hadoop-like big data computing,” in Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International, May 2014, pp.
829–838.

[54] Y. Guo, W. Bland, P. Balaji, and X. Zhou, “Fault tolerant mapreduce-
mpi for hpc clusters,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’15. New York, NY, USA: ACM, 2015, pp. 34:1–34:12.
[Online]. Available: http://doi.acm.org/10.1145/2807591.2807617

[55] J. Stengler, “Fault tolerant collective communication algorithms for
distributed database systems,” Ph.D. dissertation, Technische Universitat
Darmstadt, 2017.

[56] J. Zounmevo, D. Kimpe, R. Ross, and A. Afsahi, “Using MPI in high-
performance computing services,” 2013, pp. 43–48. [Online]. Available:
http://www.scopus.com/inward/record.url?eid=2-s2.0-84886302666&
partnerID=40&md5=fd4e8f2c423525ab5e3b2bf630e67cb2
OpenSHMEM for Hybrid Environments - Third Workshop, OpenSHMEM
2016, Baltimore, MD, USA, August 2-4, 2016, Revised Selected Papers,
ser. Lecture Notes in Computer Science, M. G. Venkata, N. Imam,
S. Pophale, and T. M. Mintz, Eds., vol. 10007. Springer, 2016, pp. 66–
81. [Online]. Available: https://doi.org/10.1007/978-3-319-50995-2 5

https://doi.org/10.1007/s11227-016-1629-7
http://dl.acm.org/citation.cfm?id=2820083.2820094
http://www.scopus.com/inward/record.url?eid=2-s2.0-84938393594&partnerID=40&md5=ec6d7d72b0aafb8b91c50d239b937639
http://www.scopus.com/inward/record.url?eid=2-s2.0-84938393594&partnerID=40&md5=ec6d7d72b0aafb8b91c50d239b937639
http://dx.doi.org/10.1002/nla.2059
http://dx.doi.org/10.1002/nla.2059
http://www.scopus.com/inward/record.url?eid=2-s2.0-84925238874&partnerID=40&md5=8fdaad1dff202068f593e87bf10e75a1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84925238874&partnerID=40&md5=8fdaad1dff202068f593e87bf10e75a1
http://doi.acm.org/10.1145/3127024.3127037
https://doi.org/10.1016/j.parco.2015.07.003
https://doi.org/10.1016/j.parco.2015.07.003
http://dx.doi.org/10.1007/978-3-642-03770-2_30
http://dx.doi.org/10.1007/978-3-642-03770-2_30
http://doi.acm.org/10.1145/2807591.2807617
http://www.scopus.com/inward/record.url?eid=2-s2.0-84886302666&partnerID=40&md5=fd4e8f2c423525ab5e3b2bf630e67cb2
http://www.scopus.com/inward/record.url?eid=2-s2.0-84886302666&partnerID=40&md5=fd4e8f2c423525ab5e3b2bf630e67cb2
https://doi.org/10.1007/978-3-319-50995-2_5

	I Introduction
	II Background
	III A Novel Approach to MPI Recovery
	III-A Error Scoping
	III-B Error Uniformity
	III-C Asynchronous Recovery
	III-D Implementation

	IV Performance Evaluation
	IV-A Experimental Setup
	IV-B Benchmarks
	IV-C Effect of in-band versus out-of-band Error Reporting on Micro-Benchmarks
	IV-D Effect of Uniform Mode on Collective Communication Performance
	IV-E Concurrent Shrinks Overlap
	IV-F Shrink and Checkpoint Reload Overlap

	V Related Works
	VI Concluding Remarks
	References

