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Abstract— Many systems have been implemented towards
achieving effective human-machine interaction, but run the risk
of being ignored if appropriate performance metrics are not
in place. As a result, our goal becomes that of providing a
foundation upon which we can assess how well the human and
the robot perform as a team. Toward the efficient modelling
of such metrics, we attempt to determine the true amount of
time that an operator has to dedicate to the robot. Therefore,
we define the robot attention demand (RAD) as a function of
both direct interaction time (DIT) and indirect interaction time
(IIT), where the IIT is a direct consequence of the human trust
in automation. We propose a two-level fuzzy temporal model
to evaluate the human trust in automation while collaborating
with robots to complete some tasks. The model combines the
advantages of fuzzy logic and finite state machines to best
model this phenomenon, and reduces the system complexity
and the size of the knowledge base by grouping perceptions
into first- and second-order perceptions. The fuzzy knowledge
base is further updated by implementing an application robotic
platform where robots and users interact via natural language
to complete tasks with varying levels of complexity. User
feedback is noted and used to tune the knowledge base where
needed.

Keywords: performance metrics, human-robot interaction,
fuzzy logic, finite state automata

I. INTRODUCTION

Robots have always been touted as powerful tools that
could be used effectively in a number of applications ranging
from automation to human-robot interaction. In order for
such systems to operate adequately and safely in the real
world, they must be able to perceive, and must have abilities
of reasoning up to a certain level. Toward this end, perfor-
mance evaluation metrics are used as important measures.
The idea of developing a common toolkit of performance
metrics has been discussed by many researchers. Olsen and
Goodrich discuss six interrelated performance metrics that
can lead the design of human-robot interaction systems [15],
[3]. The most instrumental one is the robot attention demand
(RAD). RAD is a measure of the fraction of total task time
that a user must spend interacting with a robot. RAD is
defined as a relationship between neglect tolerance (NT) and
interaction effort (IE) as shown in equation 1.

B 1E
~ IE+NT
Doing so, Olsen suggests to approximate the value of the

neglect tolerance (NT) by measuring the time between the
human instruction and either a drop of the robot performance

RAD (1)
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below the effectiveness threshold, or the intervention of the
human with another instruction. Olsen states, however, that
in this scenario, this metric is no more independent from the
user, and hence the operator’s trust in the robot’s autonomous
abilities becomes a critical issue.

Trust in automation has been extensively discussed in the
literature by many researchers, especially in the fields of
human-machine interaction [9], [10], [2], [4]. Lee et al.
[6] examined the relationship between trust in automatic
controllers and user’s self-confidence in manually operating
a simulated semi-automatic pasteurization plant. Muir et
al. [11] present experimental studies of trust and human
intervention in a process control simulation, which demon-
strates that operators’ subjective evaluation of trust in the
machines are based mainly on their perception of the robot’s
competence. There was a high correlation between operators’
trust and the use of automation, where operators chose to rely
on manual operation when the trust in automation was low
[5].

Oleson et al. [14] identify and describe factors that have
significant impact on a human’s level of trust in a robotic
teammate. Such key antecedents of trust can be categorized
as human-related (e.g. expectations about the system), robot-
related (e.g. the presence or absence of system errors),
and environment-related (e.g. more complex and demanding
tasks may have different effects on trust than less demanding
ones). Li et al. [7] suggest that a more human-like robot,
in both appearance and behaviour, can create an emotional
bond with the robot which leads to an increasing trust in
the robotic teammate. Humans, for instance, trust a polite
and friendly automated system. A human user also tends to
trust a robot more when they feel that the robot is highly
predictable [1] [13].

Other researchers also tried to formulate a model for trust
between humans and machines. Lee [6] fitted a time series
model and found relationships for trust in a feedstock pump
as shown in equation 2, where T refers to trust, P to
productivity, F to fault size, C to some weight coefficient,
and v to residual error.

T, = Ci T 1 +CoPy+C3 P 1 +C4 B +CyF 1 +v (2)

In our related work [17] [18] [19], we propose a framework
that attempts to determine the true time that an operator has
to dedicate to the robot. Therefore, an alternative definition
of the RAD as a function of both direct interaction time



(DIT) and indirect interaction time (IIT) is presented, where
the IIT is a direct consequence of trust, and can represent
the time being spent when the robot is independent in its
work, but still with much of the user’s attention drawn to
it as a result of the operator’s distrust in the machine. This
relationship is shown in equation 3, where NT represents
the neglect tolerance, and Tr is the human operator’s trust
in the robot. A two-level fuzzy temporal model to estimate
the trust value is proposed [17]. The framework is then
further augmented to propose a generic performance metric
for multi-robot human interaction systems [18]. Sequential
and parallel robot cooperation schemes with varying levels
of task dependency are also addressed [19].

RAD = DIT + IIT = DIT + NT x (1-Tr)  (3)

In this work, we further extend our previous findings by
implementing an application robotic platform where robots
and users interact via natural language to complete tasks with
varying levels of complexity and success. User feedback is
noted and used to tune some rules in the proposed fuzzy
knowledge base. The remainder of the paper is organized as
follows: section II presents a brief overview of our proposed
two-level trust fuzzy temporal model, along with some
preliminary simulation results. Experimental setup along
with the detailed implementation of the application robotic
platform is described in section III. Further discussions and
experimental results are presented in Section IV. Finally,
section V concludes this paper.

II. PROPOSED Fuzzy TEMPORAL MODEL

Previous discussions on trust and its evolution, along with
the attempts to quantify this instrumental phenomenon in
human-robot interaction teams, makes it clear that com-
ing with a unique mathematical formula that governs the
temporal behaviour of trust is going to be unrealistic, and
application specific. Trust phenomenon is fuzzy by nature,
and determining it depends on many factors, including time
and previous state. Modelling this phenomenon using only
fuzzy logic might not give the anticipated results, and
therefore, a state machine is required, in which case a finite
fuzzy state machine (FFSM) that combines both advantages
of fuzzy logic and state machine is proposed. The size
of the knowledge base, however, increases exponentially
with the number of inputs. Consequently, identifying the
crucial factors which contribute largely to building up trust
becomes crucial. This led to the idea of building a two-
level framework, shown in figure 1. Level II is the direct
relation between trust and the most influential second-order
perceptions that contribute to its temporal evolution. A finite
fuzzy temporal inferencing model is used to model such a
relationship since trust highly depends on its previous state.
Second-order perceptions inputted to the FFSM are explained
with lower-order perceptions, and hence should be properly
modeled. In the following, we briefly present the system’s
interconnection and its main building blocks. Further details
can be found in [17].
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Fig. 1. Overall Architecture of the Proposed Trust Model

A. Level Two

Level II is implemented using a finite fuzzy state machine
that takes three inputs (the second-order perceptions): fault
size, productivity, and awareness, and outputs the corre-
sponding level of trust based on the previous state of trust
and the current perceived inputs (inferred from level I).
Fault size, productivity, and awareness are modelled using
three membership functions: low, medium, and high. Five
membership functions are used to model trust, therefore, 5
states are required: very low, low, medium, high, and very
high; and the size of the knowledge base would be: 3*3*3%*5
= 135 rules.

Initially at time zero, when the human starts interacting
with the robot, the trust is thought to be based on both
the intrinsic human trust and reputation. Every human being
has a different level of initial intrinsic trust. This value
varies from one human being to another, depending on many
psychological and sociological factors. People also tend to
be biased with what they hear about machines. Therefore, a
robot’s reputation is very important in determining the basic
initial level of trust it will be granted. Robots with good
reputation will be more trusted when first activated, and vice
versa.

The output function maps the trust states (very low, low,
medium, high, very high) to the following zero-order con-
sequences (0.1,0.3,0.5,0.7,0.9). The crisp overall conse-
quence is then generated by aggregating the qualified crisp
output of each rule using the weighted average method, as
described in equation 4, where w; is the ‘" rule firing
strength, and ¢; is the rule consequent.

=1 =1

B. Level One

Each of the second-order perceptions is fuzzy in nature.
Those factors, however, are not temporal, thus no FFSM is
needed. As a result, a fuzzy Mamdani inferencing model is
dedicated for this purpose. Three membership functions are
chosen to represent each of these factors: low, medium, and
high. More membership functions could be used but at the
expense of a more complex fuzzy inferencing system. Further



details can be found in [17]. Fault size is thought to be highly
determined by three lower-order factors: fault frequency
(FF), fault cruciality (FC), and the ability of the robot to
recover from its faults (FR). Each is represented by three
membership functions, therefore, 27 rules are needed. The
same applies to awareness. Three inputs mainly determine
the value of this factor: machine awareness of its capabilities
(MA), context awareness of the task (CA), and machine
awareness of the human operator’s availability and cognitive
and physical abilities and limitations (HA). Another 27
rules are needed to represent this model. Finally, as for
productivity, two inputs mainly determine the value of this
factor: task/goal successfulness and completion (TC), and
task complexity and sophistication (TS); therefore, 9 rules
are required.

The two-level architecture to estimate the trust factor is
crucial as it dramatically decreases the complexity of the
system and the size of the knowledge base. If only a FFSM
were used to model this trust factor, 5 = 3% = 32,805 rules
would have been needed, which is impractical and almost
impossible to accurately implement.

C. Preliminary Simulations Results

In the following, we briefly present some simulation
results that intuitively support our proposed trust model.
Figure 2 shows the trust evolution in accordance with the

Fig. 2. Level II Trust Simulation Results -1-

temporal change of the three inferred second-order percep-
tions discussed earlier. Results show that at ¢ = 0 (time at
which the human-robot interaction starts taking place), the
human trust in automation is assumed to be neutral, and
the trust factor varies according to new perceptions. Results
show the smoothness of change in the trust factor value,
which is observed by the incremental decrease and increase
in its value, rather than an abrupt change. Human trust is a
step-by-step process, and strongly depends on its previous
state. Results also show that when the fault size is low, and
both awareness and productivity are high, the human trust
in automation increases, and vice versa. Another scenario
is shown in figure 3, where most extreme conditions are
taken into account. Initially at ¢ = 0, trust is assumed to
be medium. From t = 1 to t = 3, fault size is assumed to
be low, and both productivity and awareness are assumed
to be high. Results show that trust only increased smoothly

Fig. 3. Level II Trust Simulation Results -2-

in a step-by-step process, which reflects the most intuitive
trust characteristics. Confirming this phenomenon, Sisodia
et al. [20], and Notter et al. [12], state that building trust
is a slow process, and sustaining it is always a challenge.
Then, starting from t = 4 to t = 7, fault size is assumed to
be high, where productivity and awareness are assumed to
be low. Trust evolution shows a relatively faster decrease in
trust compared to when trust was building up. The reason
for this is intuitive and rooted in human psychology. People
tend to lose trust much faster than they can build it. Seeing
something that conflicts with our faith and beliefs makes us
suspicious and cautious. Trust is hard to earn, yet so easy to
lose [8].

Figure 4 shows the implications of the human trust in
automation factor on both interaction time (IT) and free time
(FT). DIT is assumed to be 25% of the overall task time,
during which time the human user instructs and informs
the robot about the task to be completed. Figure 4 shows
that when the human trust in automation increases, the IIT
spent monitoring the robot and interfering when needed,
decreases. Results show that at time t = 2, when the human
trust in automation is very high, the IIT is almost negligible.
Therefore, the practical free time (during which the human
operator can neglect the robot and conduct another task or
instruct another robot) becomes closer to the ideal free time
(obtained using only the DIT). Results also show that at time
t = 4, when the human trust in automation becomes really
low, the IIT becomes significantly high, and the human user
is assumed to have too little time to spend on other tasks.
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Fig. 4. True Interaction Time and Practical Free Time



III. EXPERIMENTAL SETUP

The knowledge bases presented in levels I and II are
based on a human expert’s knowledge, and the most recent
work in the area of cognitive human-machine interaction and
performance evaluation metrics. However, and in order to
enrich our proposed system, an application robotic platform
that enables human-machine interaction is implemented, and
users’ feedback while interacting with the system was noted.
The knowledge base was then fine-tuned to better reflect the
user’s knowledge.

A. Experimental System

In the following, we discuss the main software and hard-
ware components of the robotic platform. The proposed
platform design and implementation will follow in the sub-
sequent subsection.
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Fig. 5. PeopleBot Robotic System

1) PeopleBot: PeopleBot [16], shown in figure 5 is a
differential-drive robot that is well known for human-robot
interaction projects. PeopleBot is equipped with infrared
table sensors and a gripper with sensors which allow the
robot to pick up an object from one location and place it
at another. PeopleBot features come with a laser naviga-
tion package with an autonomous robotic navigation and
localization (ARNL) software that uses Monte Carlo/Markov
based techniques for localization and navigation, which al-
lows the PeopleBot to safely navigate autonomously while
avoiding obstacles with great precision. It also comes with
pan/tilt/zoom camera that can be used for object and people
recognition, color tracking, or other robot vision tasks. This
can be accomplished using the advanced color tracking
(ACT) software that comes with the system. PeopleBot
comes with an advanced robotics interface for applications
(ARIA), which offers an API to communicate with all the
robot components, control the robot’s parameters, and also
provide tools to integrate input/output with other custom
hardware. PeopleBot SDK package also provides some tools
for creating maps of a robot’s operating environment, for
autonomous localization and navigation.

2) Verbal Interaction: Vestec’s automatic speech recog-
nition engine (VASRE) was used in this work [21]. It is a
speaker independent speech recognition engine that supports
a distributed architecture of servers and clients. VASRE sup-
ports multiple languages, large vocabulary, and continuous
speech recognition. Its acoustic models were trained based
on continuous hidden Markov modelling. Equipped with
noise reduction techniques and voice detection algorithms, it
ensures smooth data input and more accurate speech recog-
nition. The output of the engine contains such information
as the raw recognized text, confidence scores, and logical
parsing for generating semantic results.

B. Platform Design and Implementation

The framework supports a distributed architecture for
reliable and scalable operation of clients and robot servers.
The proposed distributed architecture comprises three com-
ponents: the robot server, the client, and the resource man-
ager (RM). The RM is the control tower of the distributed
architecture. It manages one or more robot servers and
coordinates communication sessions between servers and
clients. The robot server has two states: busy or idle. A server
is busy if it is executing an action upon receiving a client
command. A server is idle if it is not busy. Under the idle
state, the robot server periodically communicates with the
RM to report its status. The RM balances server loads over
different machines. For example, if a robot server A is loaded
with several queued commands, the RM will guide the next
client request to robot server B that has similar capabilities,
if available.

The resource manager is the central entity of the framework
that connects the various components to one another. As
each of the robotics entities turn on, it contacts the RM
registering itself along with its capabilities. In this way, the
RM keeps a record of all active robots and their states,
and this information can then become available to other
clients and interfaces by request. The RM is also the main
entity that communicates with the client. The recognition
client initiates a communication session with the RM. It
contacts the RM registering itself and receiving a client ID.
In this way the RM keeps a record of all active clients.
Then after a command is ready on the client side, the client
contacts the RM asking for a command dispatch. The client
might specifically ask for a specific robot, or might send a
generic command that is to be executed by the first available
server robot with such ability to perform the task. The RM
keeps a queue of instructions for each robot. This allows
multiple robots to be controlled simultaneously. Figure 6
illustrates a simplified data flow view of the RM. The robot
store contains records of all currently connected robots, their
actions, and locations. The task queue contains sequences
of tasks that need to be executed. It consists of a list of
parallel tasks, where each parallel task is a collection of tasks
that need to be executed in series. The scheduler, on the
other hand, is responsible for receiving task requests from
clients and loading them into the task queue in order. The
dispatcher loads tasks out of the task queue and sends them
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to individual robots as they become available. The dispatcher
can handle numerous parallel tasks simultaneously. Finally,
the monitor is a separate thread that runs in the background
and periodically checks with every robot to make sure it is
still connected and if any information has been updated. If
a change has happened, the robot store will be updated on
the RM.

IV. EXPERIMENTAL RESULTS

The set of experiments conducted in this work involves
two Peoplebot robots, working singularly or together toward
independent tasks, and a human operator. The purpose of
these experiments is to support the correctness and validity
of the proposed fuzzy knowledge base, and tune rules where
needed to best represent the human expert’s knowledge. Nine
users were chosen for this purpose, and each was exposed
to a set of five to six scenarios where the robot attempts
to complete a set of different tasks, with varying levels of
complexity, under the command and operation of the human
user. Human trust in automation, along with other first- and
second-order perceptions, are marked at different time units
and compared to those obtained/inferred using our proposed
framework. The scenarios emphasize how the human trust
in automation varies with time, according to the system’s
success fulfilling the required tasks. The tasks vary from
simple to more complex. In some scenarios, the robot is
instructed to perform a series of simple tasks of moving a
certain distance forward or backward, turning left or right at
a certain angle, and/or controlling its gripper. More complex
tasks require the robot to pick an object from a certain
location and place it at a goal location. Other scenarios
require the robot to locate, grab, or follow a predefined
coloured object in a room, etc.

Users’ perceptions were helpful to enrich the expert’s knowl-
edge base. Several rules were tuned after receiving feedback
from users. For instance, some rules belonging to the pro-
ductivity knowledge base were tuned when feedback showed
that users tend to give more weight toward task completion

than task complexity and sophistication. Figure 7 shows a
sample simulation for one user, and the implication of this
rule tuning on the overall percent estimation error between
the practical feedback and those inferred using the Mamdani
fuzzy inference model for the productivity factor. Table
I shows the implication of such tuning on the remaining
users. Results show some overall significant reduction of
error when tuned rules are put in place. Similar findings
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TABLE I
PRODUCTIVITY % ERROR REDUCTION

Subject Old Rules  New Rules % Error Reduction
Subject#1 2.28 2.28 0.00
Subject#2 11.40 9.27 2.13
Subject#3 5.05 3.90 1.15
Subject#4 6.03 6.03 0.00
Subject#5 9.92 5.36 4.56
Subject#6 11.59 4.45 7.14
Subject#7 5.02 5.02 0.00
Subject#8 8.14 8.14 0.00
Subject#9 9.40 9.67 -0.27

were also reported for trust inference at level II of the
proposed framework. Users feedback showed that users tend
to generally build trust rather slower than earning it, but
when the trust is already at a very low state, this build
up process becomes even a bit slower. The implication of
such observation is reported in table II. Results also show
some overall significant gain in approximation accuracy.

Figure 8 shows a comparison between the theoretical results
obtained using our proposed framework, and the practical
ones obtained from one sample user. Two independent sets of
three scenarios each took place. The sets are independent and
separate which explains the discontinuity at time stamp ¢ =
3, which represents time stamp ¢ = 0 for the second set. The
first set focused on good robot performance, and successful
task completion. The user’s trust evolution was noted. In the
second set, the user is asked to start interacting (starting with
the same initial human trust in automation at ¢ = 0) with
the robot with a different set of scenarios, which focused
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TABLE I
TRUST % ERROR REDUCTION

% Subject  Old Rules  New Rules % Error Reduction
Subject #1 6.43 8.49 -2.06
Subject #2 6.38 3.04 3.34
Subject #3 7.83 4.16 3.67
Subject #4 5.33 2.00 3.33
Subject #5 6.40 6.40 0.00
Subject #6 10.60 10.60 0.00
Subject #7 8.86 8.86 0.00
Subject #8 5.29 5.29 0.00
Subject #9 15.14 9.14 6.00

on poor robot performance. The user’s trust in the system
automation was also noted. Figure 8(a) shows the user’s
first-order perceptions of fault frequency, fault cruciality, and
fault recovery, along with the overall fault size. The latter
value is compared to that obtained using our fault size fuzzy
inference model. Figures 8(b) and 8(c) address the same
manner for both the awareness and the productivity factors.
Finally figure 8(d) compares the trust value as noted from the
user and generated using our proposed fuzzy level II. Results
show accurate trust approximation and good inferences in
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both levels I and II, which reflects proper and representative
knowledge bases design. Similar results are also shown in
figure 9, where five continuous scenarios took place with
varying levels of success and completion. User feedback was
noted and compared to the inferred values. Results also show
that the proposed system, with its set of modified rules,
is representative and within estimated accuracy. Table III
shows the results for all the nine users selected in this work.
The table shows the approximation errors for all inferred
values, starting from fault size, to awareness, productivity,
and finally human trust in automation. The results are very
encouraging for the correctness of the knowledge base.
Future work will further include more users to take part in
this work, interacting with different types of other robots.

A. Experienced vs Inexperienced Users

In this part, we address another observation made when
users with different expertise interacted with the robotic
system. It was noted that inexperienced users with no experi-
ence working with sophisticated machines or robots provided
feedback that tends to show some slight differences when
compared to those obtained from more experienced users in
the same experimental scenarios. Inexperienced users tend to
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TABLE III
INFERENCE % APPROXIMATION ERRORS

% Error Fault Size  Awareness  Productivity =~ Trust
Subject#1 8.13 8.12 2.28 8.49
Subject#2 9.32 5.27 9.27 3.04
Subject#3 6.50 4.83 3.90 4.16
Subject#4 3.50 391 6.03 2.00
Subject#5 9.73 5.03 5.36 6.40
Subject#6 4.61 8.90 445 10.60
Subject#7 10.72 9.84 5.02 8.86
Subject#8 7.48 7.62 8.14 5.29
Subject#9 9.18 7.31 9.67 9.14
Avg Error 7.69 6.76 6.01 6.44

Std Dev 2.28 1.94 2.37 2.84

show signs of being over impressed with the system when it
shows successful task completion, without paying attention
to minor mistakes that did not affect the overall system task
completion. They also get more frustrated with the system
when it shows strong signs of incompetence. Toward this
end, special considerations had to be taken into account to
further accommodate this category of users to preserve the
generic aspect of the proposed trust evaluation metric that
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is fed on its lowest level with first-order perceptions from
the user. One solution would be to build another knowledge
base to accommodate such an audience. This, however,
adds further complexity to the system. This problem could
be easily avoided with the use of some variation of the
original membership functions for those inexperienced users,
as shown in figure 10(b). In doing so, a total of 70 feedbacks
obtained from both experienced and inexperienced users for
the same scenarios are recorded and used to optimize the
support set and the height of the membership functions. Four
parameters are used in the optimization process: a, b, hl,
and h2, as shown in figure 10(a). The optimization process
is to search for an optimal combination as to minimize
the total error between both experienced and inexperienced
user perceptions. This is achieved by reducing the overall
fuzzification error between the two set of users. Value of 10,
14, 1, and 1 were found to achieve such minimal error. This
is shown in figure 10(b).

Although this preliminary suggested solution helps reducing
the fuzzification error between the two set of users, this,
however, does not solve the problem that users in general
tend to provide subjective perceptions based on personal
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complete some tasks. The fuzzy knowledge base is further
updated by implementing an application robotic platform
where robots and users interact naturally to complete tasks
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Fig. 10. Experienced Vs Inexperienced MFs

and relative judgements that are highly related to factors
such as experience, confidence, and level of expertise. Such
perceptions vary from one person to another, thus introducing
further fuzziness into the system. This observation further
motivated our work to address interval fuzzy type II sets in
our future related work to accommodate for further fuzziness
in the proposed fuzzy sets. Future work shall address such
extension.

V. CONCLUSION

Human-robot performance evaluation metrics have been
receiving a large deal of the researchers’ attention, especially
with the fast growth in the fields of robotics and human-robot
interaction systems, and the emergence of higher order func-
tions. Robots are becoming more involved in increasingly
more complex and less structured tasks and activities that
require indispensable interaction with people to complete the
required tasks. Therefore, designing a performance metric
that can assess this effectiveness of such performance is
crucial. Toward the efficient modelling of such a metric, we
attempt to determine the true time that an operator has to
dedicate to the robot. Therefore, we define the robot attention
demand (RAD) as a function of both direct interaction time
(DIT) and indirect interaction time (IIT), where the IIT is a
direct consequence of the human trust in automation. Then,
we propose a two-level fuzzy temporal model to evaluate the
human trust in automation while collaborating with robots to

with varying levels of complexity. User feedback is recorded
and used to tune the knowledge base where needed.
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