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Abstract—In prior work, Grabisch put forth a direct (i.e.,
result of the Extension Principle) generalization of the Sugeno
fuzzy integral (FI) for fuzzy set (FS)-valued normal (height equal
to one) integrands and number-based fuzzy measures (FMs).
Grabisch’s proof is based in large on Dubois and Prade’s analysis
of functions on intervals, fuzzy numbers (thus normal FSs) and
fuzzy arithmetic. However, a case not studied is the extension of
the FI for sub-normal FS integrands. In prior work, we described
a real-world forensic application in anthropology that requires
fusion and has sub-normal FS inputs. We put forth an alternative
non-direct approach for calculating FS results from sub-normal
FS inputs based on the use of the number-valued integrand and
number-valued FM Sugeno FI. In this article, we discuss a direct
generalization of the Sugeno FI for sub-normal FS integrands
and numeric FMs, called the Sub-normal Fuzzy Integral (SuFI).
To no great surprise, it turns out that the SuFI algorithm is
a special case of Grabisch’s generalization. An algorithm for
calculating SuFI and its mathematical properties are compared
to our prior method, the Non-Direct Fuzzy Integral (NDFI). It
turns out that SuFI and NDFI fuse in very different ways. We
assert that in some settings, e.g., skeletal age-at-death estimation,
NDFI is preferred to SuFI. Numeric examples are provided to
stress important inner workings and differences between the FI
generalizations.

Index Terms—Sugeno fuzzy integral; SuFI; NDFI; fuzzy set
valued integrands; extension principle

I. MOTIVATION

To date, the vast majority of research in the field of fuzzy in-
tegrals (FIs) is predominately focused on topics involving nu-
meric integrands and numeric fuzzy measures (FMs). However,
a few works have appeared regarding the generalization of both
the integrand as well as the FM with respect to fuzzy sets (FSs)
[1–9]. While these generalizations can be applied to a variety
of cases, they have not yet been specifically applied to sub-
normal FS integrands. In this work, we discuss an application
for which sub-normal FS-valued inputs exist and need to be
fused. We demonstrate and discuss the impact of using a direct
(i.e., result of the Extension Principle [10]) generalization of
the FI, which we call the Sub-normal Fuzzy Integral (SuFI),

in relation to our prior non-direct approach, the Non-Direct
Fuzzy Integral (NDFI) [11, 12]. While we investigate SuFI
and NDFI in the context of skeletal anthropology, the analysis
and methods put forth herein are not restricted to age-at-death
estimation. One could also imagine many other applications
where fusion of FS inputs is necessary.

Age-at-death estimation of an individual skeleton is impor-
tant to forensic and biological anthropologists for identification
and demographic analysis. It has been shown that current
individual aging methods are often unreliable because of
skeletal variation and taphonomic factors [11]. Previously,
we introduced the NDFI algorithm as an alternative way to
estimate adult skeletal age-at-death [11]. In particular, focus
was placed on the production of numeric [11], graphical
[11, 12] and linguistic descriptions of age-at-death [12]. The
NDFI algorithm takes as input multiple age-range intervals
representing age-at-death estimations from different methods.
It also takes into account the accuracies of these methods as
well as the condition of the bones being examined. Advantages
of NDFI, relative to related work in forensic anthropology, are
that it does not require a skeletal population and it produces
additional information (numeric, graphical and linguistic) that
can assist an investigator. A formal description of NDFI is
included in Section VI.

In [12], we presented a way to measure the uncertainty
present in a FS produced by NDFI. Specifically, we demon-
strated a way to generate linguistic descriptions in order to es-
tablish domain standardization for the goal of assisting foren-
sic and biological anthropologists. To achieve this goal, we
extracted features from FSs, introduced fuzzy class definitions
for age-at-death FSs, and we put forth an ordered weighted
average (OWA) contrast operator to measure specificity in age-
at-death FSs [12].

Before proceeding, it is important to highlight the following.
The NDFI algorithm is not a direct extension in the same
regard as Grabisch’s [1, 2] (or even the SuFI algorithm put
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forth herein). Initially, we were not aware of higher order
extensions to the FI. NDFI was put forth to address a specific
problem in anthropology. Indirectly, it provided a work around
for the lack of a direct extension. Following the publication
of NDFI, we discovered that Grabisch had previously shown
how one can formally extend the FI for FSs, specifically
normal, integrands and numeric FMs. This article is a review
of Grabisch’s work, the NDFI algorithm, development and
demonstration of a direct extension of the FI for the case
of sub-normal FS integrands (SuFI), and most importantly,
discussion and comparison between these approaches.

The remainder of the article is organized as follows. First,
we review Sugeno’s number-based (integrand and FM) FI.
Grabisch’s generalization is then discussed for interval-valued
as well as normal FS integrands. Next, we investigate a direct
generalization for the case of sub-normal FS integrands (SuFI),
followed by a review of NDFI. In closing, we present and
remark on a few examples and important properties of these
different generalizations.

II. SUGENO’S NUMBER-BASED FUZZY INTEGRAL

The fusion of information using the classical FI (Sugeno or
Choquet) has a rich history. Much of the theory and several
applications can be found in [2, 13]. With respect to this
problem, we consider a finite set of sources of information
X = {x1, ..., xE} and a function that maps X into some
domain (initially [0, 1]) that represents the partial support of a
hypothesis from the standpoint of each source of information.
Depending on the problem domain, X can be a set of experts,
sensors, features, pattern recognition algorithms, etc. In our
prior work [11, 12], X is a set of methods that help determine
the age-at-death of a person from their skeletal remains (e.g.,
Todd’s method for the pubic symphysis [14]). The hypothesis
is usually thought of as an alternative in a decision process or
a class label in pattern recognition. In age-at-death analysis, a
hypothesis is that the individual died at a specific age. Both
Sugeno and Choquet integrals take partial support for the
hypothesis from the standpoint of each source of information
and fuse it with the (perhaps subjective) worth (or reliability)
of each subset of X in a non-linear fashion. This worth is
encoded into a FM [15]. Initially, the function h : X → [0, 1]
and the FM g : 2X → [0, 1] took real number values in [0, 1].
Certainly, the output range for both function and FM can be
(and have been) defined more generally, but it is convenient
to think of them in the unit interval for confidence fusion.

More formally, for a finite set X , a FM is a function g :
2X → [0, 1], such that

1. g(φ) = 0 and g(X) = 1;
2. If A,B ⊆ X with A ⊆ B, then g(A) ≤ g(b).

Note, that if X is an infinite set, a third condition guaranteeing
continuity is required, but this is a moot point for finite X .
Given a finite set X , a FM g and a function h, the (numeric)
Sugeno FI of h with respect to g is∫

S

h ◦ g =
E∨
i=1

(h(x(i)) ∧ g(x(1), ..., x(i))), (1)

where X has been sorted so that

h(x(1)) ≥ h(x(2)) ≥ ... ≥ h(x(E)). (2)

This finite realization of the actual definition highlights that
the Sugeno integral represents the best pessimistic agreement
between the objective evidence in support of a hypothesis
(the h function) and the (perhaps) subjective worth of the
supporting evidence (the FM g). The FM can be specified
using only the densities via the Sugeno λ-FM [15] or it can
be learned from training data, e.g. [16].

III. FS-VALUED NORMAL INTEGRANDS

Sometimes numbers are not sufficient to represent the un-
certainty in a situation. With respect to fusion by fuzzy integra-
tion, this uncertainty can exist in the partial support function
and/or in the FM. Extensions of both Sugeno and Choquet
integrals to the case where the partial support function outputs
are fuzzy numbers (normal convex fuzzy subsets of the reals,
<, called FN(<)) are direct results of the Extension Principle
[10]. They are computable from level set representations using
the Decomposition Theorem and methods from [1, 2]. Interval
logic and arithmetic operations make the extension possible in
a practical sense. This works because the theory that shows
that the level sets of the generalized fuzzy integral reduce to
the fuzzy integrals of the endpoints of the intervals that form
the level cuts of fuzzy numbers.

Let I(<+) = {ū ⊂ <+|ū = [ul, ur], ul ≤ ur} be the
set of all closed intervals over the positive reals. Dubois and
Prade showed that if a function ϕ is continuous and non-
decreasing, then when defined on intervals it produces an
interval whose endpoints are equal to the function values on
the lower bound and upper bound of the individual intervals,
i.e., ϕ(ū) = [ϕ(ul), ϕ(ur)] [3]. Dubois and Prade also showed
how ϕ extends to FS inputs, specifically normal, convex FSs
(fuzzy numbers). The Choquet and generalized Sugeno FIs
are continuous, non-decreasing functions. Grabisch leveraged
these properties and Dubois’s and Prade’s work in order to
extend the Choquet and generalized Sugeno integrals as fol-
lows. Let H̄ : X → I(<+) denote the interval-valued partial
support function. Additionally, let H̄i = H̄(xi) = [H̄ l

i , H̄
r
i ]

denote the ith interval (where H̄ l
i and H̄r

i are the left and
right interval endpoints respectively). The generalized interval
Sugeno FI is defined as∫

I

H̄ ◦ g = [

∫
S

H̄ l ◦ g,
∫
S

H̄r ◦ g]. (3)

Now, let H : X → FN(<) denote the FS partial support
function and Hi = H(xi) the ith FS. Additionally, let [Hi]α =
[(Hi)

l
α, (Hi)

r
α] for 0 ≤ α ≤ 1. The generalized Sugeno FI for

normal FS integrands is∫
NFI

H ◦ g =
⋃

α∈[0,1]

α[

∫
NFI

H ◦ g]α (4)

=
⋃

α∈[0,1]

α[

∫
I

Hα ◦ g], (5)



which can be efficiently calculated on a computer in terms of
α-cut interval operations (eq. 3). Algorithm 1 is the computa-
tional method to calculate the FI for FS (normal) integrands
and number-based FMs.

IV. SUFI

Grabisch’s extension covers a wide range of scenarios one
might encounter in practice. However, it does not address the
case of sub-normal FS integrands. Grabisch’s proof is based
on the fuzzy arithmetic for (normal) fuzzy numbers work of
Dubois and Prade. This might explain in part the lack of
formal procedure to date for sub-normal FSs. However, in our
anthropology work we have sub-normal FSs and therefore a
motivation to study such cases.

The purpose of this section is to study the direct extension
of the Sugeno FI for sub-normal FS integrands. Using the
Extension Principle, we see that

(

∫
H ◦ g)(y) = sup(z1,...,zE)∈Sy

{(H1)(z1) ∧ ... ∧ (HE)(zE)},
(6)

Sy = {(z1, ..., zE)|z1, ..., zE ∈ <,
∫
h(z1,...,zE) ◦ g = y},

(7)
where h(z1,...,zE) is the partial support function,

h(x1) = z1, ..., h(xE) = zE . (8)

The first observation is that the extended function is bounded
(the height of the resultant FS) by a constant β,

Height(
∫
H ◦ g) ≤ β, (9)

with respect to

(H1)(z1) ∧ ... ∧ (HE)(zE) ≤ β, (10)

or specifically,

β = min{Height(H1), ...,Height(HE)}, (11)

where, for a fuzzy set A, with membership function µA,

Height(A) = max
xi∈<

(µA(xi)), (12)

and A is called normal if Height(A) = 1.
Equations 9-11 show that the height of the FI result is based

on the t-norm of the heights of the FSs in our partial support
function. Therefore, the result is sub-normal if at least one
input is sub-normal. While this turns out to have a drastic
impact for sub-normal FS integrands (mathematically as well
as conceptually), it is not problematic for normal FS integrands
(i.e., β = 1). In the case of at least one sub-normal FS input,
the level-cuts for all β < α ≤ 1 are the source of the problem.
If one attempts to use the level cut/interval representation and
Decomposition Theorem approach of Grabisch, Dubois and

Fig. 1. Example showing the violation of the vertical line test if one attempts
to use only the non-empty set of information sources at level cuts greater
than β. Example is for H1 = [0, 0.5, 1] with Height(H1) = 1 and H2 =
[0, 0.5, 1] with Height(H2) = 0.5 (two triangular membership functions)
and g1 = g(x1) = g2 = .7, g(X) = 1. The resulting FS is shown in purple.

Prade, then different level cuts possess different numbers of
inputs/information sources. For example, consider equation 5
and any α > β. H l

α and Hr
α are number-valued partial support

functions for the left and right endpoints of the intervals of
the FS partial support function H at level cut α. However,
there exists at least one j such that (Hj)α = φ. Additionally,
g is the FM for all X . While it might be natural to attempt to
interpret and perform calculation using only the valid subset
of inputs (whose α-cuts are not φ), such an approach leads to
FSs that fail the vertical line test (see Fig. 1). What one can
extract from the Extension Principle is

[

∫
H ◦ g]α>β = φ. (13)

This leads us to a definition of SuFI,∫
SuFI

H ◦ g =
⋃

α∈[0,1]

α[

∫
SuFI

H ◦ g]α (14)

= (
⋃

a∈[0,β]

a[

∫
SuFI

H ◦ g]a)∪ (
⋃

b∈(β,1]

b[

∫
SuFI

H ◦ g]b), (15)

=
⋃

a∈[0,β]

a[

∫
SuFI

H ◦ g]a, (16)

which, like Grabisch’s NFI, can be efficiently calculated in
terms of interval-valued FI operations,

[

∫
SuFI

H ◦ g]α = [

∫
S

H l
α ◦ g,

∫
S

Hr
α ◦ g]. (17)

In fact, this is what Grabisch showed (equation 4) when β = 1
(i.e., each input FS is normal). Algorithm 2 is the way to
calculate SuFI.



Algorithm 1 Computation of the NFI algorithm
1: Input the fuzzy measure g . use the Sugeno λ-fuzzy measure, learn g from data or manually specify g
2: Input partial support function H . i.e., H(xe) = He and H(xe) ∈ FN(<)
3: Select B α-cuts, A = {α1 = 1/B, α2 = 2/B, ..., αB = 1}
4: for each αi ∈ A do
5: Calculate [

∫
NFI

H ◦ g]αi
= [

∫
S
H l
αi
◦ g,

∫
S
Hr
αi
◦ g] . the number-based (integrand and measure) fuzzy integral

6: end for

Algorithm 2 Computation of the SuFI algorithm
1: Input the fuzzy measure g . use the Sugeno λ-fuzzy measure, learn g from data or manually specify g
2: Input partial support function H . i.e., H(xe) = He and H(xe) is a sub-normal FS
3: Calculate β = minimum{Height(H1), ...,Height(HE))} . Mininum height of partial support FSs
4: Select B α-cuts, A = {α1 = β/B, α2 = (2β)/B, ..., αB = β}
5: for each αi ∈ A do
6: Calculate [

∫
SuFI

H ◦ g]αi
= [

∫
S
H l
αi
◦ g,

∫
S
Hr
αi
◦ g] . the number-based (integrand and measure) fuzzy integral

7: end for

V. INTERPRETATION OF SUFI

We assert that SuFI is an extremely limiting generalization.
Consider a sensor fusion scenario in which three different
sources (e.g., radar, infrared and visual spectrum) are being
aggregated using the FI. Imagine that one of the sources, for
example radar, turns out to very unreliable. Now, consider that
the radar is assigned a very small density, e.g., 0.1, relative
to 1 and 0.8 for the infrared and visual spectrum sources. If
infrared and visual spectrum both have a FS input of near 1
(e.g., a triangular membership function [0.9, 1, 1.1]) and radar
has a FS input near 0 (e.g., [−0.1, 0, 0.1]), the SuFI algorithm
outcome is devastating to the fusion result. Intuitively, we
would expect that because the radar has very little relative
worth, i.e., a density value of 0.1, that the radar decision
would influence the decision result very little. However, the
height of the resultant set is bounded by β, which is 0.1 in
this scenario. The point is, SuFI provides a way to calculate a
result; however, this result is not intuitively pleasing in some
circumstances. For the provided sensor fusion example, one
should intuitively ignore the radar input based on the SuFI
algorithm result. Next, we review the NDFI algorithm.

VI. NDFI

In [11], we present an alternative, non-direct way of gener-
ating FS results from the number-based (integrand and FM) FI
for sub-normal FS inputs (called the NDFI). Our age-at-death
NDFI procedure takes interval-valued inputs, e.g., ’method 1
says that the skeleton is between the ages of 20 to 35 at the
time of death’. We also have information, namely correlation
coefficients, representing the reliability of each aging method.
Lastly, we have a [0, 1] value indicating the quality of each
bone found. Each aging method is based on, and ultimately
bounded by, the quality of these remains. The membership
function for method i with respect to its interval-valued input
and corresponding bone quality value, qi, is

Fig. 2. Example age-at-death skeletal estimation fusion result (skeleton 208
from the Terry Anatomical Collection) for the NDFI algorithm [11, 12]. The
true age-at-death is 30 years. The sex is female. Four different aging methods
were used. Information about the FM, anthropological details and a wider
range of rich examples can be found in [11, 12].

µAi(x) =

{
qi, if vi,l ≤ x ≤ vi,r
0, otherwise,

(18)

where µAi
is the membership function and [vi,l, vi,r] are the

first/left (l) and last/right age (r) in the age interval for aging
method i (e.g., the interval [10, 15] years). This is the sub-
normal FS input we have been discussing. It is worth noting
here that we are exploring ways to fuzzify the individual aging
methods. At the moment, the fuzzy sets have only 0 and qi
membership values. The NDFI algorithm is formally described
in Algorithm 3. Figure 2 is a result of the NDFI algorithm for
skeleton 208 from the Terry Anatomical Collection [11, 12].

NDFI is based on the idea of multiple hypothesis testing.
A single hypothesis is: ‘the skeleton was age k at death
(a specific age, not range)’. The (classical) Sugeno integral
is repeatedly applied, once for each possible age using the
respective accuracy, range and quality information. Every age,



Algorithm 3 NDFI algorithm in the context of skeletal age-at-death estimation for forensic anthropology [11, 12]
1: Input fuzzy measure g . use the Sugeno λ-fuzzy measure, learn g from data or manually specify g
2: Input bone quality weathering values, {q1, ..., qE} . Where qe ∈ [0, 1]
3: Input age-at-death intervals for each aging method, {v̄1, ..., v̄E} . Where v̄e is an age interval, e.g., v̄e = [5, 20] years
4: Discretized the output domain, D = {d1, ..., d|D|} . e.g., D = {1, 2, ..., 110}
5: Initialize the (FS) result to R(di) = 0
6: for each di ∈ D (i.e., each discrete age) do
7: for each hi,e ∈ {hi,1, ..., hi,E} do . Calculate the partial support function hi at di
8: if di ≥ ve,l and di ≤ ve,r then . Where l and r are the left and right endpoints, e.g., [ve,l, ve,r]
9: hi,e = qi . Age method e indicates possible age-at-death, use bone quality qe

10: else
11: hi,e = 0 . Age method e indicates not a possible age-at-death, so no support in the hypothesis
12: end if
13: end for
14: Set R(di) =

∫
S
hi ◦ g . Fuzzy membership at di is the number-valued (integrand and measure) FI of hi with g

15: end for

in discrete one year increments from 1 to 110 is tested. The
age indicators provide input based on if the age tested is in
their respective interval. The h values are a function (t-norm)
of the quality, a [0, 1] value, and if the aging method indicates
that the age tested falls in the age interval, either a 0 for false
or 1 for true. Again, the result of this procedure is a collection
of (age tested, FI result) pairs, which is a FS defined over the
age domain. In this respect, we were able to address sub-
normal FSs. Refer to [11, 12] for more details regarding the
application of NDFI to skeletal age-at-death estimation.

It is trivial to verify that NDFI results in FS outputs that pass
the vertical line test. The NDFI algorithm generally produces
sub-normal and non-convex results, Grabisch’s extension (for
the case of normal FSs) produces normal, convex results, and
SuFI produces sub-normal, convex results. Additionally, both
Grabisch’s extension and SuFI produce FSs between the min
and max with respect to the partial support function. The
NDFI algorithm also generates FSs between the min and max,
however only in regions between the min and max that are
covered by at least one of the inputs.

The difference between NDFI and SuFI is apparent with
respect to (

∫
H ◦ g)(y). At y, the SuFI calculation is

sup(z1,...,zE)∈Sy
{(H1)(z1) ∧ ... ∧ (HE)(zE)}, (19)

while NDFI is ∫
hy ◦ g. (20)

The Extension Principle route is all number-based FIs whose
result is y and a t-norm of the membership degrees of
the FS inputs at those locations. The NDFI algorithm is a
number-based FI at y. The NDFI and SuFI approaches fuse
the information in very different ways. The NDFI algorithm
integrates vertically while SuFI integrates horizontally. In the
next section, we look at numeric examples and argue that
both methods have utility. Namely, the “correct approach” is
problem dependent.

VII. COMPARISON OF SUFI AND NDFI
Upon beginning this investigation, the underlying question

was: what is the direct method of extending the FI for sub-
normal FS integrands and does it produce a better or the same
result as NDFI? The short answer is no, SuFI does not produce
the same result as NDFI. Also, we assert that it is unfortunately
not simple to declare one approach as definitively better than
the other. Each approach has its own respective advantages and
disadvantages. These pros and cons are illustrated through the
following numeric examples.

A. Example 1: Normal FSs

Consider the example in Fig. 3. This scenario contains two
inputs X = {x1, x2} with partial support function H . The
two FS inputs are characterized by the triangular membership
functions µH1

= [0, 0.2, 0.4] and µH2
= [0.6, 0.8, 1]. The

reliability of these sources is given by the fuzzy measure, g1 =
g(x1) = 0.5, g2 = g(x2) = 0.5, g({x1, x2}) = g(X) = 1.

SuFI produces a result which, although technically a FS,
is the singleton 0.5, with a membership of 1. If the fuzzy
measure is changed to g1 = 1, g2 = 1, g(X) = 1, then SuFI
produces the triangular FS [0.6, 0.8, 1] with height of 1 as the
result. Note that this is exactly equal to µH2 .

NDFI produces very different results, shown in Fig. 4(a).
View (a) shows the NDFI algorithm result for FM 1. The result
is two triangles, [0, 0.2, 0.4] and [0.6, 0.8, 1], both with heights
of 0.5. For FM2, shown in view (b), the result is the same;
however, each triangle has a height of 1. A possible downside
of NDFI is that for this very straight-forward example, the
result is a non-convex (and for FM1, sub-normal) FS.

This example could be considered as the combination (e.g.,
average and maximum) of two FNs, with linguistic represen-
tations of ‘about 0.2’ and ‘about 0.8’. If the Choquet FI was
employed, then one could more easily interpret the aggregation
for a given FM (e.g., OWA if sets of information sources
of equal cardinality have equal measure value, average if all
densities sum to one and are equal, etc.) [13]. Intuitively,
we expect the output to look like the inputs: in this case,



Fig. 3. Illustration of a FS integrand and interval endpoints used to compute
SuFI at α = 0.5. The results for two FMs are provided, red (g1 = 0.5, g2 =
0.5, g(X) = g({x1, x2}) = 1) and green (g1 = 1, g2 = 1, g(X) = 1).
The two FS are characterized by the triangular membership functions µH1

=
[0, 0.2, 0.4] and µH2 = [0.6, 0.8, 1].

(a) (b)

Fig. 4. Illustration of a FS integrand and interval endpoints used to compute
NDFI at α = 0.5. Case (a) is for FM 1 (g1 = 0.5, g2 = 0.5, g(X) = 1)
while case (b) is for FM 2 (g1 = 1, g2 = 1, g(X) = 1). The results for
these FMs is shown in red. The two FS are characterized by the triangular
membership functions µH1 = [0, 0.2, 0.4] and µH2 = [0.6, 0.8, 1].

a triangular FS with the linguistic interpretation of something
like ‘about 0.5’ or ‘about 0.8’ (depending on the FM). The
NDFI algorithm, again depending on the selection of FM,
produces a result that is differently shaped from each of the
inputs. In contrast, SuFI produces outputs that look very much
like the inputs, namely triangular FSs, which would be easily
interpreted. However, the downfall of SuFI is that if any of
the inputs are sub-normal FSs then the output will have a
maximum membership of the minimum-height sub-normal FS,
even if the respective reliability (g) of that sub-normal input is
0-valued (which intuitively means that we should ignore that
input; it has no worth in the solution to the FI). Hence, both
GAFI and SuFI have their respective drawbacks.

In contrast, for age-at-death estimation in anthropology, we
desire a restricted result. That is, Anthropologists indicate that
one should be careful to not produce ages outside of intervals
indicated by the individual aging methods. For example, if one
method reports [10, 20] and another method reports [60, 100]
(which, for most practical cases is unlikely), we do not want
to produce an age interval such as [40, 50]. In addition to
fusing the inputs, we would like to have a way to discover
that there is disagreement among the sources and we would
like to find the age(s) that are the most confident. That is,
we would like to take into account the agreement between
sources, the method’s confidences and our confidences in the
sources. If one input has a low height, we do not want the

(a) (b)

(c) (d)

Fig. 5. Interpretation of resultant FS in age-at-death estimation using NDFI
[11, 12]. Categories identified by Anthropologists include: (a) specific age
(aging method have come together and agree on a single age-at-death), (b)
age interval (there is agreement between the sources but no single definitive
age), (c) disagreement (there is disagreement between the methods, thus
multiple plateus) and (d) inconclusive (so much disagreement or general lack
of confidence that it is difficult to conclude anything).

FI result to be ultimately limited by this amount. In [11], our
objective was to find a way to fuse the various information (FS
inputs, bone quality values and numeric values representing
the ’worth’ of the information sources) and then analyze the
result. The result was the introduction of NDFI. In [11],
we calculated a single age-at-death number (e.g., died at
age 20). We identified FS features and created fuzzy class
definitions to assist with interpreting the FS results [12]. We
also measured the confidence and specificity of the resultant
FSs. The four anthropological FS categories are shown in Fig.
5. These categories represent: specific age (aging method have
come together and agree on a single age-at-death), age range
(agreement between the sources but no single definitive age),
disagreement (there is disagreement between the methods, thus
multiple plateus) and inconclusive (so much disagreement or
lack of confidence that it is difficult to conclude anything).

B. Example 2: Sub-Normal FSs

Consider the example in Fig. 6(a). This scenario contains
two inputs X = {x1, x2} with partial support function H. The
two FS inputs are characterized by the triangular membership
functions µH1

= [0, 0.2, 0.4] and µH2
= [0.6, 0.8, 1], and the

FM is g1 = 1, g2 = 0, g(X) = 1 (i.e., no worth is assigned to
the second information source). However, in this example let
the height of µH2 be 0.01 (sub-normal FS).

The SuFI algorithm results in the trapezoidal membership
function [0, 0.002, 0.398, 0.4] with height 0.01. Note, this
result is different in shape than the input. That is, the inputs
are triangular while the result is a trapezoid. While the
second source is completely un-trustworthy (g2 = 0), it has
substantially impacted the result. The resultant height is so
low that intuitively one should ignore the result. However,
for this second experiment NDFI produces a more pleasing



(a) (b)

Fig. 6. Results for the FM g1 = 1, g2 = 0, g(X) = 1. Case (a) is for
SuFI and (b) is for NDFI. The two FS are characterized by the triangular
membership functions µH1

= [0, 0.2, 0.4] and µH2
= [0.6, 0.8, 1], with

Height(H1) = 1 and Height(H2) = 0.01.

result. That is, a single triangle of height 1 at [0, 0.2, 0.4] and
no support (height 0.01) in [0.6, 0.8, 1] (shown in Fig. 6(b)).

C. Example 3: Age-at-Death Estimation

Next, we consider a case from our prior skeletal age-at-
death estimation work [11]. This example (Table I) consists
of eight aging methods. Each remain (bone) is associated with
a skeletal quality value of less than one, i.e., Height(Hi) ≤ 1.
From an Anthropological standpoint, looking at the agreement
between these aging methods, we would expect a result close
to the true age-at-death (which is 38). Specifically, we expect
a narrow interval (not a single age-at-death because the inputs
are all interval-valued with width greater than 1) that includes
the age 38. The input FSs have heights (their confidence) equal
to their respective quality of bone. Additionally, the fusion pro-
cedure (SuFI and NDFI) is expected to fuse this information
with respect to the reliability of the aging methods. In this
work, as well as in our previous work, the Sugeno λ-FM is
used to build the entire FM from the densities. Figure 7 is the
result of SuFI and NDFI. Note, with respect to the SuFI, the
inputs are first scaled from [0, 110] to [0, 1] (division by 110),
the SuFI algorithm is run and the results are then scaled back
to [0, 110] (multiplication by 110).

The following observations are made with respect to SuFI
and NDFI. First, the inputs are trapezoids and the output of
SuFI is a trapezoid. Specifically, the output is sub-normal and
convex and its shape is that of the inputs. In comparison, the
output of NDFI is sub-normal and non-convex and its shape
does not resemble that of the individual inputs. Second, the
interval [37, 39] has the most agreement among the inputs.
That is, each age method reports these ages. However, we
do not desire an overly simple procedure that just counts the
number of times that an age is agreed upon by the aging
methods followed by a selection of an interval that has a
maximum score. It is very likely that multiple intervals could
exist. Additionally, we would like to take into consideration
the reliability of each aging method. This is the motivation
for taking a generalized Sugeno FI approach. That said, SuFI
returns a single (and very wide or non-specific at that) interval,
[37, 76]. While the SuFI algorithm output does include the
true age-at-death, it includes to many other ages as well.

TABLE I
INPUT FOR EXAMPLE 3 FROM OUR PRIOR AGE-AT-DEATH WORK [11]

Aging Method Quality Age Range gi

Pubic Symphysis 0.6 35-39 .57
Auricular Surface 0.8 35-39 .72
Ectocranial Sutures - vault 0.2 24-75 .59
Ectocranial Sutures - lateral 0.5 23-63 .59
Sternal Rib Ends 0.5 33-42 .75
Endocranial Sutures 0.4 35-39 .51
Proximal Humerus 0.3 37-86 .44
Proximal Femur 0.7 25-76 .56

In comparison, the NDFI algorithm result indicates a single
maximum plateau of [35, 39], which for example 3 is a single
interval associated with the highest membership degree (see
[11] and [12] for a formal definition of maximum plateau).
However, in some cases, such as those discussed in [11, 12],
multiple plateau’s can exist. To summarize example 3, both
NDFI and SuFI include the true age in their result, however
NDFI indicates a fewer number of possible ages. The SuFI
result is a wide (that is, non-specific) interval that is of little-
to-no use for age-at-death estimation. It reports that the true
age-at-death is one of 40 possible ages. However, the NDFI
algorithm result is more specific, i.e., the true age-at-death is
one of 5 possible ages (according to the maximum plateau).

As discussed in our prior work [11, 12], NDFI is loaded with
a wealth of additional information. Using our FS approach
to linguistically describe generalized FI produced FSs, the
following can be concluded (which is not available in the
SuFI algorithm output). First, the shape of the resultant FS
informs us about the nature of the agreement. That is, the
result is of type interval (one of many possible ages), however
it is not very wide and could potentially be considered as
type specific (a single age-at-death). Additionally, in [12] we
defined a linguistic variable to interpret the confidence of the
output decision. For example 3, NDFI reports that the fused
result is of moderate confidence (the maximum plateau has
a height of 0.72), while SuFI (of height 0.2) is of very low
confidence (and most likely should be ignored).

VIII. CONCLUSION

In closing, we investigated different generalizations of the
Sugeno fuzzy integral (FI). We reviewed existing number,
interval, and fuzzy set (FS)-valued integrand extensions to the
Sugeno FI. One problem is that current FS-valued solutions
require normality. However, we highlight an age-at-death
application from anthropology that has sub-normal FS inputs.
To address this problem, we proposed a generalization for
sub-normal FS integrands (the SuFI). The advantages and
shortcomings (summarized in Table II) of SuFI and our prior
approach, NDFI, are discussed and shown using numeric
examples and cases from skeletal age-at-death estimation.

Our general goal is to develop a solid understanding of the
unrestricted extension of FIs with respect to both the integrand
and FMs. This article is a first step in that line of work. On
a final note, we will explore a quality definition of a type-2



TABLE II
IMPORTANT PROPERTIES OF SUFI AND NDFI.

Property SuFI NDFI
Height(

∫
H ◦ g) Height of lowest FS (i.e., minimum of Height(H1), ...,

Height(HE))
Depending on the FM, anywhere between 0 and the maximum
FS Height

Range of∫
H ◦ g

∫
H ◦ g can be between the minimum and maximum of input

FSs (the integrand)

∫
H ◦ g can be between the minimum and maximum of the

input FSs, however the result is restricted to regions between
the minimum and maximum that are covered by at least one of
the inputs

Approach to
(
∫
H ◦ g)(y)

Extension Principle (Equation 18) (Sugeno) FI at y (Equation 19)

Resulting shape
of
∫
H ◦ g

Can be different from that of the inputs, e.g., for triangular
shaped sub-normal FS inputs can obtain a trapezoidal shaped
output. In general, sub-normal (if any input is sub-normal) and
convex

In general, will be sub-normal and non-convex

(a)

(b)

(c)

Fig. 7. Results found for the inputs, bone quality values and Sugeno λ-FM
for the densities reported in Table I. In (a), the input FSs are shown. In (b),
the NDFI algorithm result is shown. The x-axis is the range [0, 110]. In (c),
the SuFI algorithm result is shown for 11 α-cuts.

fuzzy measure (FM). One of the motivating reasons for this
article was a better understanding of the behavior of the FI
for the case of sub-normal FS integrands as it relates to type-
2 extensions if one approached it from the standpoint of the
FI with respect to a collection of embedded type-1 FSs.
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