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Abstract—In Agronomy and Environment, due to the in-
creasing number of automatic sensors and devices, there is
an emerging need to integrate georeferenced and temporal
data into decision support tools, traditionally based on expert
knowledge. Soft computing techniques and software suited to
these needs may be very useful for modelling and decision
making. This work presents an open source framework designed
for that purpose. It is based upon open source toolboxes, and its
design is inspired by the fuzzy software capabilities developed
in FisPro for ordinary non georeferenced data. A real world
application is included, and some perspectives are given to meet
the challenge of using soft computing for georeferenced data.

I. INTRODUCTION

Management of complex systems, particularly so in Agro-

nomy and Environment, does not generally rely on a thor-

ough mathematical modeling. Nevertheless, decision support

systems are necessary to assist the decision maker, and sys-

tem design should benefit from all the available knowledge,

including expert knowledge and data.

In Agronomy and Environment, the considered data are

more often georeferenced and temporal data. They come

from measurements (satellite or aerial images, embedded

sensors e.g. yield, contents), manual sampling (soil analyzes)

or may be given by experts (flood-risk area). There is a need

for aggregating heterotopic data of various kinds (expert,

measurements), from different sources, with various spatial

resolutions, protocols and assessments. Imprecision, partial

truth, and uncertainty are a recurring characteristic.

Much effort has been made to design dedicated software

for spatial data management, mainly Geographic Information

Systems (GIS) used to handle and display georeferenced

data, and geostatistical methods for data processing and

estimation. Nevertheless, there have been relatively few soft

computing developments to address the specific characteris-

tics of georeferenced data. Even if some GIS propose fuzzy

methods, like the popular fuzzy clustering algorithm, fuzzy

c-means, these methods are not designed specifically for

georeferenced data.

Soft computing techniques, especially fuzzy logic and

fuzzy inference systems, proved to be efficient to cope with

imprecise data and uncertainty attached to expert judgment

and have already been used in Agronomy and Environment

[2], [4], [5], [8], [10], [14], [17]. Spatial data specificities are

likely to open novel research topics in soft computing. For

instance, the notion of zone is not clearly defined in GIS, it is

often mistaken for a projection of a classification achieved in

the attribute space without considering geographic continuity.

This concept is central in spatial reasoning and essential in

decision making, particularly in Agronomy and Environment,

as in practice, decisions need to be applied to management

zones, satisfying geographical contiguity and shape criteria.

For realistic decision support, zones must be defined with

respect to the imprecision and uncertainty of available data

and knowledge.

This work presents the outline of a decision support system

framework for spatial data. It is freely available and based

upon open source toolboxes as well as on the authors’

experience in soft computing software, through the former

development of FisPro1, that offers a high level of semantics

and human-machine interaction. It could be part, as a spatial

package, of a wider project like the GNU Fuzzy one proposed

in the 2007 Fuzz’Ieee Conference [9].

The paper organization is as follows. Next section presents

a state of the art of the available open source software

environments for spatial data. The architecture, including

FisPro and the GeoFIS2 framework, is introduced in Section

III. The framework potential is illustrated with a real world

application in Section IV. Finally, Section V summarizes the

main conclusions and the open challenges.

II. STATE OF THE ART AND NEED FOR SPECIALIZED

SOFTWARE

GIS are powerful systems designed to capture, store,

manipulate, analyze, manage, and display geographically

referenced data. They are used in many application areas,

archaeology, resource management, disease surveillance. . .

The most popular GIS include commercial software such

as ArcGIS, JMap, MapInfo, SmallWorld, or open source

library and software, such as GeoServer, GRASS, gvSIG,

GeoTools3, OpenMap, Quantum GIS or Udig.

GIS use digital data and a spatio-temporal (space-time) lo-

cation as the key index variable for all information, allowing

1http://www.inra.fr/mia/M/fispro/
2https://mulcyber.toulouse.inra.fr/projects/geofis/
3http://geotools.org/
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information from different sources to be related by accurate

spatial information. They include a vast range of spatial anal-

ysis techniques, among them contour lines, topological and

hydrological modelling, map overlay, geocoding, geostatis-

tics and classification. In a GIS, geographical features are

often expressed as vectors, by considering those features as

geometrical shapes: points, lines or polygons. A spatial data

set with a given geometry constitutes a layer. Alternatively,

a layer can also be constituted by a raster data set. Map

overlay uses the combination of several of these layers to

create a new output, visually similar to stacking several maps

of the same region. Elementary operators are available, such

as union, intersection and symmetric difference.

Geostatistics relies on statistical models based on ran-

dom variable theory to produce field estimations from data

points, by modelling the uncertainty associated with spatial

estimation and simulation. It involves interpolation methods

to complete the input data collected at a number of sample

points.

Despite these powerful tools, GIS lack some functionali-

ties for modelling and reasoning using georeferenced data.

Geographic information is displayed for informing decision

making, but there is neither clear definition nor handling of

some concepts, for instance the zone concept, often confused

with the class concept. GIS focus on providing tools for multi

criteria decision making, for instance for site selection and

suitability. However the concept of learning from data is not

explicit. To our knowledge, zone learning, zone operators,

dynamic evolution of zones seem not to be available.

Another notable point is the limited use of soft computing

techniques in GIS, though reasoning about space often has

to deal with some form of uncertainty or imprecision. Recent

add-ons to ArcGIS include fuzzy operators for map overlay

and fuzzy classification. The concept of linguistic variable is

used to model the inaccuracies in attributes and in the geom-

etry of spatial data. Data are fuzzified through membership

functions and overlay operators are applied on membership

values instead of raw data. An add-on to GRASS provides

fuzzy membership functions, fuzzy operators and fuzzy rules

to implement fuzzy inference systems for classification tasks.

Fuzzy c-means clustering may be used for mining GIS

data. In [3] the authors propose an extended fuzzy c-

means method for GIS, that allows cluster centers to be

hyperspheres, and apply it to find fire-point event hotspots

from georeferenced data. Recent publications, for instance

[1] which uses a fuzzy GIS-based spatial multi criteria frame-

work for irrigated agriculture, take place in the application

fields of Agronomy and Environment.

On a different note, several advanced packages (spatial,

geoR, gstat. . . ), are available for the open source R [13]

software. They provide multivariate geostatistical functions

for kriging, analysis and simulation, and often include GIS

support (GRASS for gstat) for querying data and execut-

ing scripts. They are intended for researchers or engineers

having a good background in Statistics. SAGA (System for

Automated Geoscientific Analyses)4 offers an open source

comprehensive set of geoscientific methods.

The need for modelling using georeferenced data is in-

creasing, in many application fields, but particularly so in

Agronomy and Environment. The great amount of available

spatial data has begun to open new avenues of scientific

inquiry into behaviors and patterns of previously considered

unrelated information. However, the software tools presented

above, including GIS and R, are complex and require lengthy

training and specialised skills to be taken over. This is a

limiting factor for the practical use of spatial modelling in

some domains, such as Agronomy and Environment where

the stakeholders are not specialists of spatial data. Moreover,

the available software products lack an easy way to introduce

expert knowledge, and are poor in soft computing tools.

New software, designed to facilitate modelling using ex-

pertise as well as georeferenced data, would be most useful

to stakeholders intervening at different levels of decision.

Ideally it should provide some of the basic viewing func-

tionalities of GIS and interaction with maps. Expertise and

data are available, and Decision Support Systems (DSS)

must integrate them. The software should be easy to use

with a quick and progressive learning, and a friendly in-

terface so that decisions can be made and updated from

map viewing, learning using expert knowledge and data,

and map evolution. The concept of management zones, not

limited to classes, is required. To limit the necessary work,

the DSS software must be open, be based on existing GIS

components through available libraries, include elementary

geostatistical techniques through calls to R. It can then

become an open platform for adding soft computing new

developments, adapted to spatial data. Targeted users include

researchers in modelling tasks, counselors in Agronomy and

Environment and also teachers in those fields.

III. PROPOSED ARCHITECTURE

The DSS architecture is shown in Figure 1.

The figure is divided by a dashed line: the upper part

includes the components involved in the GeoFIS design while

the lower one illustrates how they are used.

The data under consideration are georeferenced data.

Another characteristic of the data available for the deci-

sion maker, especially in life sciences like Agronomy and

Environment, is their uncertainty. This is due to biological

variability but also to the necessity of using not well defined

concepts such as flood-risk area.

Expert knowledge is central in decision making. The DSS

should be oriented towards the service of the decision maker,

his/her knowledge being given the leading part.

In the proposed architecture, various open source tool-

boxes and libraries are used for the cooperation between

expert knowledge and data. Statistical and geostatistical

functions are implemented in the R project [13] and, among

the available GIS libraries, GeoTools is chosen because it

includes all of the necessary concepts and is written in Java,

4http://www.saga-gis.org/









Figure 7 shows the main parameters of the zone learning

algorithm. It presently works on a single dimension in the

attribute space, which is referred to by Attribute column

number. Stop criteria include the number of zones to generate

and a zone spatial heterogeneity based criterion. Intermediate

maps may be required to allow users to see the evolution

of the zone merging process. An auxiliary variable can be

specified to recursively re-run the algorithm on a zone, using

that auxiliary feature to guide the new zoning.

As all segmentation or classification methods, the algo-

rithm is sensitive to the choice of the distance in the attribute

space. Options include the Euclidean distance, as well as a

fuzzy partition based distance, allowing to introduce expert

knowledge in the algorithm [7]. The latter distance combines

numerical and symbolic elements. Its numerical part allows

to handle multiple membership in transition zones, while

the symbolic one takes into account the granularity of the

concepts associated to the fuzzy sets (see [7] for details).

Figure 8 shows an example of rank inversion of the fuzzy

partition based distance results compared with the Euclidean

distance ones. With the univariate fuzzy partition based

distance dP , x and y are further apart than y and z, while they

would be closer than y and z, were the Euclidean distance

used. This rank inversion is due to the fact that all elements

within a given fuzzy set kernel have a null distance.

dP dP

0 1

x y z

0.2 0.50.3

(y,z)=0.067

U

(x,y)=0.133

Fig. 8. Example of fuzzy partition based distance (dP ) behavior

More sophisticated methods can be added for zoning, in

particular soft computing new developments. The concept of

fuzzy zone needs to be developed and proper visualization

tools are required to display fuzzy zones.

IV. CASE STUDY

This section presents a real world wine growing applica-

tion involving spatial data and expert knowledge.

The georeferenced data are yield data [16], coming from

an embedded sensor on a grape-harvesting machine. The

1.4 ha field is planted with the Bourboulenc variety and

was harvested in 2001 in Provence (France). The average

sampling rate is about 2400 measurements per ha. But, due

to a data acquisition problem, some records are missing.

The objective of the study is to find suitable management

zones from the information found in the yield data and

the domain knowledge. Several operations could then be

adapted including, for example, fertilization, winter pruning

and grassing. In this case, the grower was considering the

establishment of grass on the rows located in zones of high

production to introduce a competition with the vines and

reduce their vigour and the resulting yield.

Let us discuss the different modelling steps made possible

by the software framework.

The first stage is to view the spatial distribution of the

yield attribute, by splitting it into classes, and projecting it

into a two dimensional map. Various methods can be used:

expert definition of classes or automatic definition from data.

We present here three different choices for clustering in the

attribute space: a) crisp clustering using expert bounds, b)

automatic k-means with three groups, and c) clustering into

three equi populated groups. Figure 9 shows the correspond-

ing respective maps at left, middle and right.

The interpolation is used to represent a continuous map,

so even if the sampling is irregular, it is possible to vi-

sualize the main spatial patterns of the field. Each of the

different types of maps presented in Figure 9 is important

for operational data analysis. The map displayed at left

provides expert classes. It allows to view the response of

the field in relation with technical goals of the grower. The

central class corresponds to yield target, the lower and upper

classes are the yields for which the vineyard operations

(pruning, fertilization, etc.) are probably not appropriate.

Figure 9-left shows a northern zone that matches the yield

goal and a southern zone for which the vine management

does not seem appropriate because the yield is too high.

Other representations are however necessary for operational

purposes. The k-means classification (Figure 9-middle) helps

to identify whether there is a particular distribution of data on

the plot. Equiprobable classification (Figure 9-right) allows

to visualize the data variability, showing for example that

the northern zone consists of medium and very low yields.

This map may be useful to highlight the effects of the

environment factors (soil, altitude, etc..) which explain the

observed spatial variability. In all examples, regardless of the

classification methods used, the maps show discontinuous

spatial patterns. Although classification is interesting for

analysis purposes, the resulting maps can hardly be taken

into account to propose site specific management of the field.

The second stage consists in a spatial zoning of the yield

data, using a Euclidean distance in the attribute space. The

merging algorithm mentioned in section III-B is used. It

yields a series of maps with a decreasing number of zones.

The six zone map is presented in Figure 10, that highlights

the usefulness of zoning. It shows zones where site specific

management may be considered. However, from a practical

point of view, that map remains difficult to use. Indeed, the

high yield zone located in the southern part of the field

(zone 5 in dark grey) is limited to very high yield values

while medium-high yield sites have been associated with a

low yield zone (zone 6 in light grey). This zoning method

yields zones with complex borders and does not allow a

simple view of the field. The third stage improves the spatial

zoning of the yield data by incorporating expert knowledge

through a fuzzy partition based distance (see section III-B).

The fuzzy set breakpoints are 7,9,11, which are related to the






