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Abstract—k-Anonymity is a privacy property used to limit the
risk of re-identification in a microdata set. A data set satisfying
k-anonymity consists of groups of k records which are indistin-
guishable as far as their quasi-identifier attributes are concerned.
Hence, the probability of re-identifying a record within a group is
1/k. We introduce the probabilistic k-anonymity property, which
relaxes the indistinguishability requirement of k-anonymity and
only requires that the probability of re-identification be the
same as in k-anonymity. Two computational heuristics to achieve
probabilistic k-anonymity based on data swapping are proposed:
MDAV microaggregation on the quasi-identifiers plus swapping,
and individual ranking microaggregation on individual confiden-
tial attributes plus swapping. We report experimental results,
where we compare the utility of original, k-anonymous and
probabilistically k-anonymous data.

Index Terms—Computational intelligence; anonymization;
clustering; microaggregation; swapping; statistical disclosure
control; k-anonymity; differential privacy.

I. INTRODUCTION

A microdata file is composed of records that contain
information specific to individuals (who may be citizens,
companies, etc.) in the data set. These records contain, for
each specific individual, the values corresponding to a list
of attributes. Microdata files are the result of data collection
processes carried out by national statistical offices, health-
care systems, electronic commerce, etc. They are a valuable
resource for analysts and researchers, but also a threat to
the individuals’ privacy. Direct publication of microdata files
results in an unacceptable privacy breach for the individuals
therein contained. Therefore, before being released, microdata
files must undergo a process of anonymization that dissociates
the identity of the individuals from specific records.

The two main aspects that any anonymization method must
address are disclosure risk and information loss. There is an
extensive literature about methods used to provide anonymity
for microdata releases. Some good surveys on microdata
anonymization are [1], [2], [3].

Among the several approaches to disclosure risk limitation
for microdata files, we focus on k-anonymity. This is not
really an anonymization method, but a privacy property that
the published data set must satisfy. If k-anonymity is judged
to be a sufficient guarantee for the privacy of the individuals
in the data set, then the focus goes to the selection of a method

that produces a data set satifying k-anonymity with minimal
information loss.

In a k-anonymous microdata set, for each combination of
values of the quasi-identifier attributes present in the data set,
there must be at least k records sharing that combination.
In other words, a record must be indistinguishable within a
set of k records as far as their quasi-identifier attributes are
concerned. To fulfill this requirement, the data granularity of
the quasi-identifiers is reduced, usually by generalization, sup-
pression or micro-aggregation. The strict indistinguishability
requirement of k-anonymity may lead to a substantial amount
of information loss, especially if there is a large number of
quasi-identifiers [4].

Our goal is to achieve the same level of disclosure risk
limitation that k-anonymity provides, while improving the
data quality of the released data set. Our proposal is based
on a relaxation of the indistinguishability requirement of k-
anonymity. Instead of requiring records to be indistinguishable
within sets of k records in terms of the quasi-identifiers, we
focus on the probability of re-identification. By requiring this
probability to be at most 1/k, we achieve the same level of
protection against re-identification provided by k-anonymity,
but the range of applicable methods is wider and hence the
information loss can be reduced.

A. Contribution and plan of this paper

We introduce in this paper the concept of probabilistic k-
anonymity, which like k-anonymity yields a re-identification
probability at most 1/k but with much better data quality
preservation. This is especially relevant when dealing with a
data set that contains many quasi-identifier attributes.

Section II introduces some background concepts that are
required for later sections. Section III presents probabilistic
k-anonymity. Section IV describes a computational procedure
based on microaggregation and swapping to achieve proba-
bilistic k-anonymity. Experimental results comparing the data
quality loss caused by standard k-anonymity and probabilistic
k-anonymity are reported in Section V. Conclusions and future
research are summarized in Section VI.
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II. BACKGROUND

A microdata set can be modeled as a table where each
row refers to a different individual and each column contains
information regarding one of the attributes collected. We use
the notation T (A1, . . . , An) to denote a microdata set with
information about attributes A1, . . . , An.

The attributes in a microdata set are usually classified
in the following non-exclusive categories according to the
sensitiveness of the information they convey and the risk of
record re-identification they imply:
• Identifiers. An attribute is an identifier if it provides

unambiguous re-identification of the individual to which
the record refers. Some examples of identifier attributes
are the social security number, the passport number, etc. If
a record contains an identifier, any sensitive information
contained in other attributes may immediately be linked
to a specific individual. To avoid direct re-identification
of an individual, identifier attributes are usually removed
or encrypted. We assume in the rest of this paper that
the microdata set T (A1, . . . , An) does not contain any
identifier attribute.

• Quasi-identifiers. Unlike an identifier, a quasi-identifier
attribute alone does not lead to record re-identification.
However, in combination with other quasi-identifier at-
tributes, it may allow unambiguous re-identification of
some individuals. For example, [5] shows that 87% of the
population in the U.S. can be unambiguously identified
by combining a 5-digit ZIP code, birth date and sex.
Removing quasi-identifier attributes, as proposed for the
identifiers, is not possible, because quasi-identifiers are
required to perform any useful analysis on the data.
Moreover, any attribute is potentially a quasi-identifier,
depending on the external information available to the
intruder; hence, to make sure all quasi-identifiers have
been removed, one should remove all attributes (!).

• Confidential attributes. Confidential attributes hold sen-
sitive information on the individuals that took part in
the data collection process (e.g. salary, health condition,
sex orientation, etc.). The primary goal of microdata
protection techniques is to prevent intruders from learning
confidential information about a specific individual. This
goal involves not only preventing the intruder from deter-
mining the exact value a confidential attribute takes for
some individual, but preventing inferences on the value
of that attribute (like bounding it).

• Non-confidential attributes. Non-confidential attributes
are those that do not belong to any of the previous
categories. As they do not contain sensitive information
about individuals and cannot be used for record re-
identification, they do not affect our discussion on disclo-
sure limitation for microdata sets. We assume for the rest
of the paper that none of the attributes in T (A1, . . . , An)
belongs to this category.

When publishing a microdata file, the data collector must guar-
antee that no sensitive information about specific individuals

is disclosed. To do so, the data collector does not publish
the original microdata set T (A1, . . . , An), but a modified
version T ′(A1, . . . , An) where the quasi-identifiers and/or the
confidential attributes have been masked. Disclosure can be
classified in two categories [6]:

• Identity disclosure. The intruder is able to determine the
true identity of the individual to which a record in the
microdata file corresponds; the intruder can subsequently
associate to this individual the values of the confidential
attributes for that record.

• Attribute disclosure. Even if identity disclosure does not
happen, it may be possible for an intruder to infer some
information for a specific individual based on the pub-
lished microdata set. For example, imagine that the salary
is one of the confidential attributes and the job is a quasi-
identifier attribute; if an intruder is interested in a specific
individual whose job he knows to be “accountant” and
there are several accountants in the data set (including
the target individual), the intruder will be unable to re-
identify the individual’s record based only on her job,
but he will be able to lower-bound and upper-bound the
individual’s salary (which lies between the minimum and
the maximum salary of accountants in the data set).

An intruder who wants to re-identify an individual usually
exploits some external information to perform a record linkage
attack. A record linkage attack tries to link the records in an
external non-anonymous data set back to the records in the
published data set, thereby associating an identity to them.
Assume that the intruder knows that some individual is in
the published microdata set, and also knows a set of quasi-
identifier attributes regarding this individual. To perform the
record linkage attack, the intruder tries to match the quasi-
identifier attributes he knows to some record in the published
data set. If the intruder performs the right linkage to the
published data set, the attack succeeds, and the intruder learns
the confidential attribute values associated to that individual.

A possible approach towards avoiding identity disclosure
is the one taken by k-anonymity, where each record in the
published microdata set is made indistinguishable within a
set of k records based on the quasi-identifiers. This way an
intruder with access to an external non-anonymous data set
that contains the quasi-identifiers in T (A1, . . . , An) is unable
to perform a re-identification of the records in the published
data set. Given a specific individual in the external data set,
the intruder can at most determine a set of k records in
the published data set that must contain that individual. The
original proposal to achieve k-anonymity [7] was based on
generalization and suppression of the information contained
in the quasi-identifier attributes. Another proposal is based on
micro-aggregation ([8], [9]).
k-Anonymity does not in general protect against attribute

disclosure. If all the individuals within a group of indistin-
guishable records have the same value for a confidential at-
tribute, then an intruder will learn the value of that confidential
attribute for those individuals, even without re-identification.



Further refinements on k-anonymity that try to address at-
tribute disclosure have been proposed: l-diversity [10] requires
the presence of l different values for the confidential attribute
in every group of records sharing the same quasi-identifier
values; t-closeness [11] requires the distribution of the con-
fidential attribute in any group of records sharing the same
quasi-identifier values to be close to its distribution in the
overall data set.

To provide an accurate definition of k-anonymity, we first
formalize and slightly generalize the definition of quasi-
identifier. Usually a quasi-identifier is said to be a group of
attributes that can be employed to unambiguously identify an
individual. We note that any combination of attributes that may
provide a level of re-identification beyond the admissible limits
set by the data collector should also be treated as a quasi-
identifier. For example, if we want to guarantee k-anonymity,
any combination of externally available attributes that may be
used to refer to a set containing less than k records must be
considered as a quasi-identifier.

Definition 1 (Quasi-identifier). A quasi-identifier QI of T is
a subset of the set of attributes {A1, . . . , An} that satisfy the
following two conditions: (i) the attributes in QI are available
in an external, non-anonymous data set; (ii) the values of
the attributes in QI may allow an intruder to determine the
identity corresponding to a record in the published microdata
set beyond an admissible level.

The goal of k-anonymity is to cloak the identity corre-
sponding to a record by making each record indistinguishable
within a set of k records. In other words, given a record in an
external non-anonymous data set, an intruder must not be able
to link it with certainty to a set of records in the published data
set with cardinality less than k. This determines the criterion
used by k-anonymity to define what is an admissible level
of re-identification, and hence what is a k-anonymous quasi-
identifier.

For k-anonymity to provide the desired level of protection,
an intruder must not be able to link an external record in a
non-anonymous data set to a group of less than k records
in the published data set, no matter the quasi-identifier used.
Note that, by adding more attributes to a quasi-identifier, we
increase the level of certainty that the intruder may get. There-
fore, to achieve protection against all possible quasi-identifiers
QI1, . . . , QIm, it suffices to achieve k-anonymity for the
quasi-identifier that results from the union QI1 ∪ . . . ∪QIm.

Definition 2 (k-Anonymity [7]). A microdata set
T ′(A1, . . . , An) is said to satisfy k-anonymity if, for
each record t ∈ T ′, there are at least k − 1 other records
sharing the same values for all the quasi-identifier attributes.

In order to apply the previous definition of k-anonymity,
the data collector needs to know which attributes are available
externally in a non-anonymous data set. Since assuming such
knowledge by the data collector is a strong assumption, we
will consider only two scenarios:

1) Uninformed intruder scenario. The intruder does not

know the value that any confidential attribute takes for
any individual in the data set.

2) Informed intruder scenario. An informed intruder may
know some of the confidential attributes for some of
the individuals. This may happen, for example, if the
intruder is acquainted with an individual that is included
in the microdata set. If the confidential attributes known
by the intruder were not deemed quasi-identifiers, the
intruder might exploit his knowledge to obtain a more
accurate re-identification.

There may be multiple informed intruders, each of them
knowing a different subset of confidential attributes over a dif-
ferent subset of records. For the informed intruder scenario we
assume that the number of intruders and confidential attributes
is the same, and that each of the intruders knows the values
of all confidential attributes for all individuals, except for one
confidential attribute whose values are completely unknown
to the intruder for all individuals. We also assume that the
intruders do not collude, as in that case they would be able
to learn all the confidential attributes for all individuals even
without seeing the published microdata set. Our intruders are
not the strongest possible ones: a stronger intruder would be
one with total knowledge of all confidential attributes except
one, and partial knowledge of the remaining confidential
attribute (whose values would be known to the intruder for
some individuals). However, we judge the proposed intruders
to be reasonably strong.

III. PROBABILISTIC k-ANONYMITY

k-Anonymity guarantees that, for any combination of values
of quasi-identifier attributes in the published microdata set
T ′(A1, . . . , An), there are at least k records sharing that
combination of values. Therefore, given an individual in an
external non-anonymous data set, the probability of perform-
ing the right linkage back to the corresponding record in the
published microdata set, and thus the probability of learning
its confidential attributes, is at most 1/k. It is in this sense that
probabilistic k-anonymity is defined.

A similar relaxation on the notion of k-anonymity was
presented in [12], which partitioned the dataset and applied
a permutation inside each of the partition components. We do
the same in Section IV to achieve probabilistic k-anonymity.
However, ours is a more general framework, not limited to
permutations (even if permutations are convenient choice to
simplify probability calculations). Moreover [12] was limited
to a single confidential attribute, whereas we handle multiple
confidential attributes that can also be quasi-identifiers.

Definition 3 (Probabilistic k-anonymity). Let T ′(A1, . . . , An)
be a published data set generated from an original data set
T (A1, . . . , An) using an anonymization mechanism M . The
data set T ′ is said to satisfy probabilistic k-anonymity if, for
any non-anonymous external data set E, the probability for an
intruder I knowing T ′, M and E to correctly link any record
x ∈ E and its corresponding record (if any) in T ′ is at most
1/k.



Note than any method used to achieve k-anonymity also
leads to probabilistic k-anonymity. In this sense, it may be
said that k-anonymity provides a stronger guarantee. However,
from the point of view of the probability of re-identification,
both provide the same level of protection.

The advantage of probabilistic k-anonymity in comparison
to k-anonymity is that, by relaxing the requirements on the
indistinguishability within groups of k records, the range of
eligible methods to enforce it is wider, and therefore we may
expect a reduction in the information loss.

As probabilistic k-anonymity is expressed in terms of prob-
ability of re-identification, it is natural to think of the released
data set T ′(A1, . . . , An) as a perturbation of T (A1, . . . , An).
We use the notations in Figure 1. The records xi in T have
been split in two parts: the quasi-identifier attributes qii, and
the confidential attributes ci. The records in T ′ are obtained
by applying a random perturbation to the corresponding record
in T : x′i = X(xi). This perturbation affects only the quasi-
identifier attributes. For the sake of simplicity, we assume that
the released records in T ′ correspond to the first |T ′| records
in T . If |T | = |T ′|, then all the records are released. The data
set E links the quasi-identifiers qii to the identifier idi. The
functions Id and Rid assign a record in T ′ to the records in
E, thus performing the re-identification of the records in T ′.
The function Rid is the re-identification function used by the
intruder, while Id is assumed to be the correct re-identification
function. If there is no record in T ′ corresponding to the
identity (i.e. the identified record) ei ∈ E, then Id returns
the empty set.

The goal of probabilistic k-anonymity is to limit the prob-
ability of performing the right linkage to at most 1/k. With
the above notations this requirement can be stated as: for all
ei ∈ E and for all Rid()

P (Rid(ei) = Id(ei)) ≤
1

k

This formula catches the essence of the definition of proba-
bilistic k-anonymity: the probability of performing the right
re-identification is not greater than 1/k. However, by having
the intruder use any possible function Rid() to perform the
re-identification, the details on how a rational intruder will
proceed are hidden. Given a record ei, a rational intruder
selects the record xr in T ′ that has the greatest probability
given the knowledge of T ′, E and M . The following examples
will clarify how a rational intruder acts. All examples assume
that E contains identities for all records in T , which is the
best possible knowledge that an intruder can have.

Example 4. Let us assume that T contains two records, and
that only the first one is included in the anonymized data set.
This situation is shown in Table I. From the intruder’s point
of view, x′1 corresponds to either the individual in e1 or e2.
The best the intruder can do is to select the one that has the
greatest probability given the knowledge of T ′, E, and the
mechanism M used to generate T ′ from T .

The probability that x′1 corresponds to ei equals the proba-
bility of obtaining qi′1 from qiEi , over the total probability of

TABLE I
DATA SETS IN EXAMPLE 4

T T ′ E

x1 = (qi1, c1) x′1 = (qi′1, c1) e1 = (qiE1 , id1)
x2 = (qi2, c2) e2 = (qiE2 , id2)

TABLE II
DATA SETS IN EXAMPLE 5

T T ′ E

x1 = (qi1, c1) x′1 = (qi′1, c1) e1 = (qiE1 , id1)
x2 = (qi2, c2) x′2 = (qi′2, c2) e2 = (qiE2 , id2)

obtaining qi′1 from any other record in E:

P (X ′(qiEi ) = qi′1|T ′, E,M)

=
P (X ′(qiEi ) = qi′1|M)∑

(qiEj ,idj)∈E P (X
′(qiEj ) = qi′1|M)

The intruder selects e1 as his guess if P (X ′(qiE1 ) =
qi′1|T ′, E,M) ≥ P (X ′(qiE2 ) = qi′1|T ′, E,M), and e2 oth-
erwise.

In the previous example we have seen that, given a record
in E, the linkage is performed to the record in T ′ that has
greatest probability. If that probability is smaller than 1/k, then
the probability of performing the right linkage will also be
smaller than 1/k, as any other linkage will indeed result in
a yet smaller probability. Therefore, to achieve probabilistic
k-anonymity, we must have for all qiE ∈ E and all qi′ ∈ T ′

P (X ′(qiE) = qi′|T ′, E,M) ≤ 1

k
(1)

Example 5. In this example the amount of information in
T ′ has been increased, by adding the record x′2. The new
data sets are shown in Table II. As E is assumed to exactly
contain the identities for the individuals in T , the intruder
knows that if one identity in E corresponds to a specific
record in T ′, the other identity in E must correspond to
the other record in T ′. This must be taken into account
when computing the probabilities. For example, the probability
P (X ′(qiE1 ) = qi′1|T ′, E,M) that qiE1 corresponds to qi′1
equals P (X ′(qiE1 ) = qi′1, X

′(qiE2 ) = qi′2|T ′, E,M), which
can be computed as

P (X ′(qiE1 ) = qi′1, X
′(qiE2 ) = qi′2|M)∑

{i,j}={1,2} P (X
′(qiEi ) = qi′1, X

′(qiEj ) = qi′2|M)

The next example shows how the correct re-identification
probability would be computed in the most general case.

Example 6. Assume data sets T , T ′ and E as in
Table III. Contrary to Example 5, fixing a correspon-
dence between a record in T ′ and a record in E does
not completely fix the rest of the correspondences. We
still have to consider all the possible combinations. The
probability P (X ′(qiE1 ) = qi′1|T ′, E,M) that qiE1 corre-
sponds to qi′1 equals

∑
P (X ′(qiE1 ) = qi′1, X

′(qiEi2) =



T (A1, . . . , An)
X ′

−→ T ′(A1, . . . , An)
Id, Rid
←− E

x1 = (qi1, c1) x′1 = (qi′1, c1) e1 = (qi1, id1)
...

...
...

x|T | = (qi|T |, c|T |) x′|T ′| = (qi′|T ′|, c|T ′|) e|E| = (qi|E|, id|E|)

Fig. 1. Notations for probabilistic k-anonymity

TABLE III
DATA SETS IN EXAMPLE 6

T T ′ E

x1 = (qi1, c1) x′1 = (qi′1, c1) e1 = (qiE1 , id1)
...

...
...

xN = (qiN , cN ) x′M = (qi′M , cM ) eN = (qiEN , idN )

qi′j2 , . . . , X
′(qiEiM ) = qi′jm |T

′, E,M), where 1 < i2 < . . . <
iM ≤ N , and {j2, · · · , jM} = {2, · · · ,M}. This probability
can be computed as∑

P (X ′(qiE1 ) = qi′1, X
′(qii2) = qi′j2 . . . X

′(qiiM ) = qi′jM |M)∑
P (X ′(qir1) = qi′s1 , . . . , X

′(qirM ) = qi′sM |M)

where 1 ≤ r2 < . . . < rm ≤ N , and {s2, · · · , sM} =
{2, · · · ,M}.

We have said that, to have probabilistic k-anonymity, In-
equality (1) must hold. However, the previous examples show
that the computation of the re-identification probability in
Inequality (1) for an arbitrary mechanism M may be complex.
In the following section, we propose to use data swapping as
M , which has the advantage of making the computation of
the re-identification probability very simple.

IV. PROBABILISTIC k-ANONYMITY VIA
MICROAGGREGATION AND SWAPPING

The proposed method consists of two main steps: (i) par-
tition the records in T into groups of size k and (ii) apply
a permutation to the quasi-identifier attributes within each of
the groups. This method can accommodate many variations,
depending on how the partition step (i) is done.

Note that, as the same permutation is applied to all quasi-
identifier attributes, the identity of the individual is not
masked. However, the quasi-identifier attributes are dissociated
from the confidential attributes, and therefore intruders can
only guess the actual values corresponding to a confidential
attribute with probability at most 1/k. If leaking the mere
presence of an individual in the data set is itself disclosive,
then some of the quasi-identifier attributes must be considered
confidential, which takes us to the informed intruder scenario.

We introduce first the method that offers protection against
uninformed intruders. In other words, we assume that the
attributes may be quasi-identifier attributes or confidential
attributes, but not both. Later we extend the method to the
scenario with informed intruders proposed in Section I.

TABLE IV
DATA SETS IN THE UNINFORMED INTRUDER SCENARIO

T T ′ E

x1 = (qi1, c1) x′1 = (qi′1, c1) e1 = (qiE1 , id1)
...

...
...

xN = (qiN , cN ) x′N = (qi′N , cN ) eN = (qiEN , idN )

A. Uninformed intruders

In presence of uninformed intruders there is a clear sep-
aration between quasi-identifier and confidential attributes.
Assuming that all records in T are masked and included in
T ′, we have the data sets in Table IV.

Selecting a random sample from T to create T ′ is a sensible
approach, as it introduces uncertainty on whether an individual
whose data was collected has been included in the published
data set. However, by assuming that all the individuals in T
have been included in T ′, we provide the intruder with the best
information available. Therefore, if we achieve probabilistic k-
anonymity in this scenario, then we will also achieve it in a
scenario where a random sample from T is selected.

It is easy to see that the partition and swapping method
described above satisfies probabilistic k-anonymity because

P (X ′(qiEi ) = qi|T ′, E,M) =

{
1/k if qi ∈ G(id(qiEi ))
0 otherwise

where G(id(qiEi )) is the group of records of T that contains
the record corresponding to qiEi .

The key point in the method is the partition step. A first
approach is to partition the data set T into random groups.
This leads indeed not only to probabilistic k-anonymity, but to
probabilistic |T |-anonymity, as the quasi-identifiers of a record
can be swapped with the quasi-identifiers of any other record.
Moreover, the risk of attribute disclosure is small. However,
the impact on data quality can be substantial, because very
different records may be swapped.

To achieve better data quality, the groups of records must
be selected to be as homogeneous as possible, although this
increases the risk of attribute disclosure. Our proposal is to
generate the groups using a microaggregation algorithm ([8],
[9]) over the quasi-identifier attributes. Microaggregation is a
cardinality-constrained form of clustering in which the number
of clusters (groups) is not fixed beforehand but the minimum
cardinality of each group is required to be k. In the section
devoted to informed intruders, there are some experimental
results obtained by using the MDAV microaggregation algo-
rithm ([9], [13]); MDAV attempts to maximize intra-group



TABLE V
QUASI-IDENTIFIERS AND CONFIDENTIAL ATTRIBUTE FOR EACH

INFORMED INTRUDER

Intruder Quasi-identifier attributes Confidential attribute
I1 A0, A2, . . . , An A1

I2 A0, A1, A3 . . . , An A2

...
...

...
In A0, A1, . . . , An−1 An

homogeneity using the least squares criterion and it yields
groups with size k, except perhaps one group which has size
between k and 2k − 1.

Other options in the selection of the groups of records are
possible. For example, a variant of MDAV, known as V-MDAV
([14], [15]), may be used that performs clustering in groups
of variable size and that is known to reduce the information
loss in clustered data sets. The µ-Approx microaggregation
heuristic [16] offers also variable-sized groups and is proven
to yield a clustering within a bound of the optimal clustering.
Another possibility is to select the groups of records in such a
way that the risk of attribute disclosure is reduced, by ensuring
a certain diversity in the values of the confidential attributes
within each group.

B. MDAV microaggregation for informed intruders

In the scenario for informed intruders presented in Section I
we assumed the number of informed intruders to be the same
as the number of confidential attributes in the data set. To
be more specific, we consider the attributes: A0, A1, . . . , An,
with A0 being a non-confidential quasi-identifier attribute,
and A1, . . . , An being confidential quasi-identifier attributes.
Intruder Ii, for i = 1 to n, is assumed to know the values of
all attributes except Ai.

To achieve the desired level of protection against all in-
formed intruders, we apply the method presented for unin-
formed intruders once for each informed intruder, in order to
dissociate the value of the confidential attribute unknown to
this intruder from the rest of attributes. For each informed
intruder, we use the quasi-identifiers and the confidential
attribute shown in Table V.

One difficulty that we face with the previous approach is that
dealing with informed intruders in sequence requires applying
different permutations over different but overlapping sets of
attributes of the original data set T (the quasi-identifiers for
each informed intruder). To overcome this difficulty we take
the reverse approach: instead of performing the permutation
over the quasi-identifier attributes, we apply the reverse per-
mutation to the single confidential attribute unknown to the
current intruder. In this way, each permutation acts over a
different attribute and there are no overlaps.

C. Individual ranking microaggregation for informed intrud-
ers

The above observation regarding the application of the
inverse permutation on the single unknown confidential at-
tribute leads to single-attribute microaggregation, also called

individual ranking microaggregation. Instead of multivariate
microaggregation of quasi-identifier attributes, we do indi-
vidual ranking microaggregation on the unknown confidential
attribute. By doing so, the data quality of the published data
set is increased, as the confidential attributes are only swapped
across records with similar values (see [17] on the low infor-
mation loss caused by individual ranking microaggregation).
It may be argued that there is an increase in the attribute
disclosure risk; however, this increase can be mitigated by
increasing k.

One extra benefit from this approach is that, since mi-
croaggregation is performed on a single attribute, there is
no need to normalize attributes as required by multivariate
microaggregation to avoid scale problems.

V. EXPERIMENTAL RESULTS

We have implemented the following three methods:
• MDAV-ID. MDAV microaggregation is run on the quasi-

identifier attributes to partition the data set in groups
of size k records. Within each group, quasi-identifiers
are replaced by the group centroid in order to have
identical quasi-identifiers for all records in the group.
This is the procedure suggested in [9] and it achieves the
standard notion of k-anonymity proposed in [7] in the
sense that all quasi-identifiers within a group are made
indistinguishable.

• MDAV-SWAP. This is the method described in Sec-
tion IV-A for probabilistic k-anonymity: MDAV microag-
gregation on the quasi-identifier attributes plus swapping
within groups.

• IR-SWAP. This is the method described in Section IV-B
above for probabilistic k-anonymity: individual rank-
ing microaggregation on each confidential attribute plus
swapping within groups.

The above methods have been tested with the “Census” and
“EIA” reference data sets proposed in the European project
CASC [18].

A. “Census” data set

The “Census” data set contains 1080 records with 13 con-
tinuous attributes. Following the approach in [9] we consider
the first 6 attributes in “Census” to be non-confidential quasi-
identifiers, and the last 7 attributes to be confidential.

To assess the data quality, we evaluate the correlations from
all attributes to the confidential attributes. As the proposed
methods for probabilistic k-anonymity do not modify non-
confidential attributes, correlations between the latter have the
same value as in the original data set. Means and variances
also remain unchanged for all attributes, because swapping
does not change the values taken by each original attribute.

As an example, we computed the correlations for: i) the
original data set (see Table VI); ii) the k-anonymous data set
resulting from MDAV-ID with k = 12 (see Table VII); iii) the
probabilistically k-anonymous data set resulting from MDAV-
SWAP with k = 12 (see Table VIII); and the probabilistically
k-anonymous data set resulting from IR-SWAP with k = 12



TABLE VI
CORRELATIONS TO THE CONFIDENTIAL ATTRIBUTES IN THE ORIGINAL

“CENSUS” DATA SET

A7 A8 A9 A10 A11 A12 A13

A1 .0038 -.027 -.024 .031 .032 .039 .036
A2 .98 .14 .2 .73 .71 .72 .7
A3 .44 -.12 -.058 .56 .55 .56 .55
A4 .98 .2 .28 .73 .69 .71 .69
A5 .78 .27 .27 .9 .85 .88 .86
A6 .79 .13 .22 .59 .57 .57 .56
A7 1 .17 .23 .72 .7 .71 .69
A8 1 .45 -.17 -.19 -.17 -.17
A9 1 .072 .061 .70 .075
A10 1 .96 .98 .96
A11 1 .91 .89
A12 1 .97
A13 1

TABLE VII
CORRELATIONS TO THE CONFIDENTIAL ATTRIBUTES IN THE DATA SET

OBTAINED USING MDAV-ID WITH k = 12 (“CENSUS” DATA SET)

A7 A8 A9 A10 A11 A12 A13

A1 -.0035 -.035 -.055 .034 .035 .042 .04
A2 1 .18 .39 .8 .81 .8 .78
A3 .79 -.17 .084 .89 .9 .89 .89
A4 .99 .23 .45 .82 .8 .81 .8
A5 .86 .18 .4 .94 .92 .94 .93
A6 .95 .2 .43 .77 .76 .76 .75
A7 1 .2 .41 .8 .8 .79 .78
A8 1 .68 -.15 -.18 -.15 -.16
A9 1 .18 .14 .17 .16
A10 1 .98 1 .99
A11 1 .97 .97
A12 1 1
A13 1

(see Table IX). The values in these tables must be taken
with caution: they are results from a single execution of the
algorithms, and may change in another execution. Despite
these words of caution, we observe that MDAV-SWAP and
IR-SWAP result in correlation values closer to the original
data set than those obtained with MDAV-ID. The results of
IR-SWAP are closest to the original correlations.

To obtain results with more statistical significance, we
ran MDAV-ID, MDAV-SWAP and IR-SWAP 100 times. In
Table X we report the mean and the standard deviation of
the absolute value of the difference between the correlations
to the confidential attributes in the anonymized data set and the
original data set. The better the data quality of the anonymized
data set, the closer the mean and standard deviation to zero.
A value close to one for the mean means that most of the
dependencies between attributes have been lost.

Table X confirms what had been observed from the previous
tables based on a single run: MDAV-SWAP offers better
quality than MDAV-ID, but IR-SWAP clearly offers the best
quality among the three methods compared. For example, for
the data set tried, similar data quality is obtained using MDAV-
ID with k = 11, MDAV-SWAP with k = 25 and IR-SWAP
with k = 300. Hence, probabilistic k-anonymity turns out to

TABLE VIII
CORRELATIONS TO THE CONFIDENTIAL ATTRIBUTES IN THE

PROBABILISTICALLY k-ANONYMOUS DATA SET OBTAINED USING
MDAV-SWAP WITH k = 12 (“CENSUS” DATA SET)

A7 A8 A9 A10 A11 A12 A13

A1 -.0011 -.028 -.034 .032 .033 .036 .032
A2 .81 .089 .17 .69 .67 .69 .67
A3 .42 -.020 .091 .48 .47 .48 .43
A4 .77 .093 .18 .68 .65 .68 .67
A5 .72 .086 .16 .80 .76 .79 .77
A6 .64 .086 .14 .54 .52 .54 .52
A7 1 .12 .17 .69 .67 .66 .65
A8 1 .19 -.013 -.022 -.042 -.011
A9 1 .11 .10 .10 .13
A10 1 .76 .81 .87
A11 1 .72 .70
A12 1 .77
A13 1

TABLE IX
CORRELATIONS TO THE CONFIDENTIAL ATTRIBUTES IN THE

PROBABILISTICALLY k-ANONYMOUS DATA SET OBTAINED USING
IR-SWAP WITH k = 12 (“CENSUS” DATA SET)

A7 A8 A9 A10 A11 A12 A13

A1 .0041 -.017 -.018 .031 .038 .039 .038
A2 .98 .13 .20 .73 .71 .72 .70
A3 .44 -.12 -.041 .56 .55 .56 .55
A4 .98 .19 .27 .73 .68 .71 .69
A5 .78 .26 .26 .90 .85 .88 .86
A6 .79 -.12 .21 .59 .57 .57 .56
A7 1 .16 .23 .72 .69 .71 .69
A8 1 .42 -.17 -.19 -.17 -.17
A9 1 .077 .063 .075 .080
A10 1 .95 .98 .96
A11 1 .91 .89
A12 1 .97
A13 1

be much more information-preserving than k-anonymity.

B. “EIA” data set

Due to space constraints, empirical results for the “EIA”
data set are more succinctly presented. Table XI reports an
evaluation for the “EIA” data set analogous to the one reported
in Table X for the “Census” data set. Like before, we observe

TABLE X
MEAN AND STANDARD DEVIATION OF THE ABSOLUTE VALUE OF THE

DIFFERENCE BETWEEN THE CORRELATIONS IN THE ORIGINAL AND THE
ANONYMIZED DATA SETS (“CENSUS” DATA SET)

MDAV-ID MDAV-SWAP IR-SWAP
k mean st.dev. mean st.dev. mean st.dev.
5 .055 .064 .037 .045 .0021 .0041
7 .062 .071 .048 .056 .0022 .0039
9 .069 .078 .055 .064 .0028 .0049
11 .078 .085 .061 .070 .0038 .0068
25 .11 .11 .091 .093 .0061 .012
50 .14 .13 .13 .12 .010 .020

100 .17 .15 .19 .17 .020 .030
200 .29 .27 .31 .28 .044 .047
300 .38 .39 .37 .34 .087 .071



TABLE XI
MEAN AND STANDARD DEVIATION OF THE ABSOLUTE VALUE OF THE

DIFFERENCE BETWEEN THE CORRELATIONS IN THE ORIGINAL AND THE
ANONYMIZED DATA SETS (“EIA” DATA SET)

MDAV-ID MDAV-SWAP IR-SWAP
k mean st.dev. mean st.dev. mean st.dev.
5 .018 .017 .017 .035 .00064 .00075
7 .02 .017 .024 .05 .0012 .0018
9 .034 .031 .028 .053 .0015 .0018
11 .039 .036 .029 .052 .0019 .0023
25 .085 .078 .043 .081 .0063 .0072
50 .13 .12 .053 .089 .011 .011

100 .15 .14 .058 .092 .029 .037
200 .19 .18 .09 .11 .093 .074
300 .2 .18 .12 .13 .14 .091

that MDAV-SWAP performs better than MDAV-ID, but IR-
SWAP is clearly the best of the three methods.

VI. CONCLUSIONS AND FUTURE RESEARCH

k-Anonymity is a broadly used privacy property that focuses
on protecting against identity disclosure. In a k-anonymous
data set, for each record there are at least k − 1 other
records sharing the same values for all the quasi-identifier
attributes. Hence, enforcing k-anonymity implies variability
loss and therefore quality loss. This is especially serious in
a scenario with informed intruders, who know the values of
some confidential attributes: the confidential attributes known
by the informed intruder can be viewed as additional quasi-
identifiers. The more quasi-identifier attributes, the more data
quality loss is caused by k-anonymity.

To mitigate the above problem, we have introduced the no-
tion of probabilistic k-anonymity. Like standard k-anonymity,
probabilistic k-anonymity guarantees that the probability of
correct re-identification is at most 1/k, but without explicitly
requiring that the quasi-identifier attributes take identical val-
ues within each group of k records. We have presented two
computational methods to reach probabilistic k-anonymity,
based on microaggregation and swapping. Experimental work
shows that, for a fixed re-identification probability 1/k, the
new methods are much more quality-preserving than standard
k-anonymity enforcement.

Future research will combine probabilistic k-anonymity
with other properties like l-diversity or t-closeness in view of
reducing the quality loss incurred to protect against attribute
disclosure.
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