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Abstract—We characterize a fuzzy lattice through a fuzzy
partial order relation, define a fuzzy ideal and fuzzy filter of
fuzzy lattice, characterize a fuzzy ideal of fuzzy lattice using its
level set and its support and show that a subset of a fuzzy lattice
is a fuzzy ideal if and only if its support is a crisp ideal. Similarly,
we show the same for its level set.

I. INTRODUCTION

The concept of a fuzzy set was first introduced by Zadeh
[18] and this concept was adapted by Goguen [12] and
Sanchez [15] to define and study fuzzy relations. The notion
of partial and lattice order goes back to 19th century investi-
gations in logic. Yuan and Wu [16] introduced the concepts
of fuzzy sublattices and fuzzy ideals of a lattice. Ajmal and
Thomas [1] defined a fuzzy lattice as a fuzzy algebra and
characterized fuzzy sublattices. In 2000, Attallah [2] defined
a fuzzy ideal and fuzzy filter of lattice, characterized in terms
of meet and join operations. In 2008, Koguep, Nkumi and Lele
[13] studied the notion of fuzzy prime ideal and highlighted
the difference between fuzzy prime ideal and prime fuzzy ideal
of a lattice. Recently, Chon [7] characterized a fuzzy partial
order relation using its level set and defined a fuzzy lattice
as a fuzzy relation, developed some basic properties of fuzzy
lattices, characterized a fuzzy lattice using its level set, and
showed that a fuzzy totally ordered set is a distributive fuzzy
lattice. As a continuation of these studies, we define a fuzzy
ideal of fuzzy lattice using the fuzzy partial order relation and
fuzzy lattice defined by Chon.

In section 2, we report preliminary results on some basic
concepts of ideal, filter and lattice of both the algebraic
point of view and as partial order. In section 3, we define
a fuzzy partial order relation using a fuzzy relation of
a set and its fuzzy partial ordered set. Also we define
a fuzzy lattice as a partial order relation and develop
some properties of fuzzy lattice. In section 4, we define
fuzzy ideal and fuzzy filter of fuzzy lattices, characterize a
fuzzy ideal of a fuzzy lattice using its support and its level set.

II. PRELIMINARIES

In this section, we will briefly review some basic concepts
of lattices, ideals and filters both under the algebraic point of
view and as partial order as necessary for the development of
other sections. This text is quite introductory and can be found
in many books and articles like in [5] and [9]. Any people
familiar with the matter may proceed to the next section.

Many important properties of an ordered set P are expressed
in terms of the existence of certain upper bounds or lower
bounds of subsets of P . Two of the most important classes
of ordered sets defined in this way are lattices and complete
lattices. Here we present the basic theory of such ordered sets,
and also consider lattices as algebraic structures.

It is a fundamental property of the real numbers, R, that if
I is a closed and bounded interval in R, then every subset of
I has both a least upper bound (or supremum) and a greatest
lower bound (or infimum) in I . These concepts pertain to any
ordered set.

Definition 2.1: Let P be an ordered set and let S ⊆ P . An
element x ∈ P is an upper bound of S if s ≤ x for all s ∈ S.
A lower bound is defined dually. The set of all upper bounds
of S is denoted by Su and the set of all lower bounds by Sl:

Su := {x ∈ P : (∀s ∈ S) s ≤ x} and
Sl := {x ∈ P : (∀s ∈ S) s ≥ x}.

Since ≤ is transitive, Su is always an up-set and Sl a down-
set. If Su has a least element x, then x is called the least upper
bound of S. Equivalently, x ∈ P is the least upper bound of
S if
(i) x is an upper bound of S, that is, x ∈ Su and
(ii) x ≤ y for all upper bounds y ∈ Su.

Dually, if Sl has a greatest element x, then x is called the
greatest lower bound of S. Since least elements and greatest
elements are unique, least upper bounds and greatest lower
bounds are unique when they exist.

We use the following notation: we write x ∨ y in place of
sup{x, y} when it exists and x∧y in place of inf{x, y} when
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it exists. Similarly, we write
∨
S and

∧
S instead of sup S

and inf S when these exist.
When they exist, the top and bottom elements of P are

denoted by > and ⊥ respectively. It is easy to see that if P
has a top element, then Pu = {>} in which case sup P = >.
When P has no top element, we have Pu = ∅ and hence
sup P does not exist. By duality, inf P = ⊥ wherever P
has a bottom element.

Definition 2.2: Let P be a non-empty ordered set.
(i) If x ∨ y and x ∧ y exist for all x, y ∈ P , then P is called
a lattice.
(ii) If

∨
S and

∧
S exist for all S ⊆ P , then P is called a

complete lattice.

We introduced lattices as ordered sets of a special type.
However, we may adopt an alternative viewpoint. Given a
lattice L =

〈
L,≤

〉
, we may define binary operations join and

meet on the nonempty set L by

a ∨ b = sup{a, b} and a ∧ b = inf{a, b} (a, b ∈ L).

Now, we view a lattice as an algebraic structure
L =

〈
L,∨,∧

〉
. We amplify the connection between

∨,∧ and ≤.

Lemma 2.1: Let L be a lattice and let a, b ∈ L. Then the
following are equivalent:
(i) a ≤ b;
(ii) a ∨ b = b;
(iii) a ∧ b = a.

Proof. See in [8] Lemma 2.8.

Theorem 2.1: Let L be a lattice. Then ∨ and ∧ satisfy, for
all a, b, c ∈ L,
(L1.1) (a ∨ b) ∨ c = a ∨ (b ∨ c) (associative laws)
(L1.2) (a ∧ b) ∧ c = a ∧ (b ∧ c)
(L2.1) a ∨ b = b ∨ a (commutative laws)
(L2.2) a ∧ b = b ∧ a
(L3.1) a ∨ a = a (idempotency laws)
(L3.2) a ∧ a = a
(L4.1) a ∨ (a ∧ b) = a (absorption laws)
(L4.2) a ∧ (a ∨ b) = a.

Proof. See in [8] Theorem 2.9.

Theorem 2.2: Let
〈
L,∨,∧

〉
be a non-empty set equipped

with two binary operations which satisfy all the conditions of
Theorem 2.1.
(i) For all a, b ∈ L, we have a ∨ b = b iff a ∧ b = a.
(ii) Define ≤ on L by a ≤ b if a∨ b = b. Then, ≤ is an order
relation.
(iii) With ≤ as in (ii),

〈
L,≤

〉
is a lattice in which the original

operations agree with the induced operations, that is, for all
a, b ∈ L,

a ∨ b = sup{a, b} and a ∧ b = inf{a, b}.

Proof. See in [8] Theorem 2.10.

We have shown that lattices can be completely characterized
in terms of the join and meet operations. We may henceforth
say ’let L be a lattice’, replacing L by

〈
L,≤

〉
or by

〈
L,∨,∧

〉
if we want to emphasize that we are thinking of it as a special
kind of ordered set or as an algebraic structure.

It may happen that
〈
L,≤

〉
has top and bottom elements.

When thinking of L as
〈
L,∨,∧

〉
, it is appropriate to view

these elements from a more algebraic standpoint.

Definition 2.3: Let L be a lattice and L a nonempty set.
We say L has a top element if there exists 1 ∈ L such that
a = a ∧ 1 for all a ∈ L. Dually, we say L has a bottom
element if there exists 0 ∈ L such that a = a ∨ 0 for all
a ∈ L. The lattice

〈
L,∨,∧

〉
has a 1 iff

〈
L,≤

〉
has a top

element > and, in that case, 1 = >. A dual statement holds
for 0 and ⊥. A lattice

〈
L,∨,∧

〉
possessing 0 and 1 is called

bounded.

A finite lattice is automatically bounded, with 1 =
∨
L

and 0 =
∧
L.

For more detailed study we refer to [8].

Now, we define an ideal in the algebraic viewpoint. In
[13] is defined the ideal and filter of a lattice L as follows.
Let L be a nonempty set and L =

〈
L,∧,∨, 0, 1

〉
stand for a

bounded distributive lattice.

Definition 2.4: A nonempty subset J of L is called an ideal
of L if for all x, y ∈ L
(i) if x ∈ J with y ≤ x, then y ∈ J .
(ii) x, y ∈ J implies x ∨ y ∈ J .

Definition 2.5: A nonempty subset F of L is called a filter
of L if for all x, y ∈ L
(i) if x ∈ F with x ≤ y, then y ∈ F .
(ii) x, y ∈ F implies x ∧ y ∈ F .

III. FUZZY LATTICES

In this section, we define a fuzzy lattice as a fuzzy partial
order relation and develop some properties of fuzzy lattices.

Let X be a nonempty set. A function A : X×X −→ [0, 1]
is called a fuzzy equivalence relation in X if A is reflex-
ive, transitive and symmetric. A fuzzy relation A in X is
reflexive iff A(x, x) = 1 for all x ∈ X , A is transitive iff
A(x, z) ≥ supy∈Xmin[A(x, y), A(y, z)], and A is antisym-
metric iff A(x, y) > 0 and A(y, x) > 0 implies x = y.

A fuzzy relation A is a fuzzy partial order relation if A is
reflexive, antisymmetric and transitive. A fuzzy partial order
relation A is a fuzzy total order relation iff A(x, y) > 0 or
A(y, x) > 0 for all x, y ∈ X . If A is a fuzzy partial order



relation on a set X , then (X,A) is called a fuzzy partially
ordered set or fuzzy poset. If A is a fuzzy total order relation
in a set X , then (X,A) is called fuzzy totally ordered set or
a fuzzy chain.

For more detailed study we refer to [7].

In the literature there are several other ways to define
a fuzzy relation reflexive, symmetric and transitive as for
example in [4], [10], [11]. Also, we can find several other
forms to define fuzzy partial order relations, as we can see in
[5], [6], [7], [17].

Remark 3.1: When A is reflexive, then the transitivity can
be rewritten by replacing the ”≥” by ”=”. In other words, A
is transitive iff A(x, z) = supy∈Xmin[A(x, y), A(y, z)], for
all x, y, z ∈ X .

The statement that is claimed in the last
remark can be easily proved. First, we know that
A(x, z) ≥ supy∈Xmin[A(x, y), A(y, z)] and second, trivially,
supy∈Xmin[A(x, y), A(y, z)] ≥ min[A(x, x), A(x, z)] =
min[1, A(x, z)] = A(x, z). Therefore, we have that
A(x, z) = supy∈Xmin[A(x, y), A(y, z)].

We define a fuzzy lattice as a fuzzy partial order relation
and develop some properties of fuzzy lattices.

Definition 3.1: Let (X,A) be a fuzzy poset and let Y ⊆ X .
An element u ∈ X is said to be an upper bound for a subset
Y iff A(y, u) > 0 for all y ∈ Y . An upper bound u0 for Y is
the least upper bound (or supremum) of Y iff A(u0, u) > 0
for every upper bound u for Y . An element v ∈ X is said to
be a lower bound for a subset Y iff A(v, y) > 0 for all y ∈ Y .
A lower bound v0 for Y is the greatest lower bound (or
infimum) of Y iff A(v, v0) > 0 for every lower bound v for Y .

The least upper bound of Y will be denoted by sup Y or
LUB Y and the greatest lower bound by inf Y or GLB Y .
We denote the least upper bound of the set {x, y} by x ∨ y
and denote the greatest lower bound of the set {x, y} by x∧y.

Remark 3.2: Since A is antisymmetric, then the least upper
(greatest lower) bound, if it exists, is unique.

The statement claimed in the above remark is easily
proved. Suppose that u0 and u1 are two least upper bounds
in a subset Y ⊆ X . Then, by definition, u0 and u1 are upper
bounds of Y . Thus as u0 is a LUB, then A(u0, u1) > 0
and as u1 is a LUB, then A(u1, u0) > 0. Therefore, by the
antisymmetry of A, u0 = u1. Similarly, we prove that GLB
is unique.

Example 3.1: Let X = {x, y, z, w} and let
A : X × X −→ [0, 1] be a fuzzy relation such that
A(x, x) = A(y, y) = A(z, z) = A(w,w) = 1, A(x, y) =

A(x, z) = A(x,w) = A(y, z) = A(y, w) = A(z, w) =
0, A(y, x) = 0.3, A(z, x) = 0.5, A(w, x) = 0.8, A(z, y) =
0.2, A(w, y) = 0.4, and A(w, z) = 0.1. Then it is
easily checked that A is a fuzzy total order relation. Also,
x∨y = x, x∨z = x, x∨w = x, y∨z = y, y∨w = y, z∨w =
z, x∧ y = y, x∧ z = z, x∧w = w, y ∧ z = z, y ∧w = w,
and z ∧ w = w.
Now, let Y = {z, w} be a subset of X . Then, x, y and z are
upper bounds of Y and how A(z, w) = 0 and A(w, z) > 0,
the LUB is z and the GLB is w.

But, not every set of elements of a fuzzy poset has a least
upper (greatest lower) bound as can be seen in the following
example.

Example 3.2: Let X = {x, y, z, w} and let
A : X × X −→ [0, 1] be a fuzzy relation such that
A(x, x) = A(y, y) = A(z, z) = A(w,w) = 1, A(x, y) =
A(y, x) = A(x, z) = A(x,w) = A(y, z) = A(y, w) =
A(z, w) = 0, A(z, x) = 0.5, A(w, x) = 0.8, A(z, y) =
0.2, A(w, y) = 0.4, and A(w, z) = 0.1. Then it is easily
checked that A is a fuzzy partial order relation. Also,
x ∨ z = x, x ∨ w = x, y ∨ z = y, y ∨ w = y, z ∨ w =
z, x ∧ z = z, x ∧ w = w, y ∧ z = z, y ∧ w = w, x ∧ y = z
and z ∧ w = w. Notice that x ∨ y does not exist.

Definition 3.2: Let (X,A) be a fuzzy poset. Then, (X,A)
is a fuzzy lattice iff x ∨ y and x ∧ y exist for all x, y ∈ X .
We denote by L the fuzzy lattice (X,A).

The example 3.1 is an example of fuzzy lattice whereas
the example 3.2, is not a fuzzy lattice.

Proposition 3.1: Let (X,A) be a fuzzy poset (or chain)
and Y ⊆ X . If B = A|Y×Y , that is, B is a fuzzy relation on
Y such that for all x, y ∈ Y , B(x, y) = A(x, y), then (Y,B)
is a fuzzy poset (or chain).

Proof. Straightforward.

Definition 3.3: Let L=(X,A) be a fuzzy lattice. (Y,B) is
a fuzzy sublattice of L if Y ⊆ X , B = A|Y×Y and (Y,B) is
a fuzzy lattice.

We define for any p ∈ (0, 1] the p-level set
Ap = {(x, y) ∈ X × X : A(x, y) ≥ p} of a fuzzy
relation A in a set X and characterize a relation on X
and we define the support of a fuzzy relation A in X by
S(A) = {(x, y) ∈ X ×X : A(x, y) > 0}.

The following Proposition was transcribed from paper [7]
Proposition 2.4 and its proof is included because the proof
the transitivity has been modified.

Proposition 3.2: Let A : X × X −→ [0, 1] be a fuzzy
relation. Then, A is a fuzzy partial order relation on X iff for



each p ∈ (0, 1], the p-level set Ap is a partial order relation
in X .

Proof. (⇒) Let A be a fuzzy partial order relation on X and
p ∈ (0, 1]. Since A(x, x) = 1 for all x ∈ X , (x, x) ∈ Ap

for all p such that 0 < p ≤ 1. Suppose (x, y) ∈ Ap and
(y, x) ∈ Ap. Then, A(x, y) ≥ p > 0 and A(y, x) ≥ p > 0,
and hence, because A is antisymmetric, x = y. Suppose
(x, y) ∈ Ap and (y, z) ∈ Ap. Then, A(x, y) ≥ p and
A(y, z) ≥ p. Since A(x, z) ≥ supy∈Xmin[A(x, y), A(y, z)],
A(x, z) ≥ min[A(x, y), A(y, z)] ≥ p, that is, (x, z) ∈ Ap.

(⇐) Let Ap be a partial order relation for all p such
that 0 < p ≤ 1. Then, (x, x) ∈ Ap for all p such that
0 < p ≤ 1. Thus, (x, x) ∈ A1, that is, A(x, x) = 1. Suppose
A(x, y) > 0 and A(y, x) > 0. Then, A(x, y) > v > 0 for
some v ∈ R and A(Y, x) > w > 0 for some w ∈ R. Let
u = min(v, w). Then, A(x, y) > u > 0 and A(y, x) > u > 0.
Thus, (x, y), (y, x) ∈ Au. Since Au is antisymmetric,
x = y. Let x, y, z ∈ X and py = min(A(x, y), A(y, z)).
So, (x, y), (y, z) ∈ Apy and because Apy is by
hypothesis a partial order, then (x, z) ∈ Apy . Therefore,
A(x, z) ≥ py = min[A(x, y), A(y, z)] and hence
A(x, z) ≥ supy∈X min[A(x, y), A(y, z)], that is, A is
transitive.

Proposition 3.3: Let A : X × X → [0, 1] be a fuzzy
relation and let Ap = {(x, y) ∈ X × X : A(x, y) ≥ p}. If
(X,Ap) is a lattice for every p with p ∈ (0, 1], then (X,A)
is a fuzzy lattice.

Proof. See in [7] Proposition 3.5.

In first view, we might think that the reverse is also true.
That is, if (X,A) is a fuzzy lattice, then (X,Ap) is a lattice
for every p with p ∈ (0, 1]. But, we can see that depending
on the α-cut, (X,Ap) may not be a lattice as seen in the
following example.

Example 3.3: Let X = {x, y, z, w} and let
A : X × X → [0, 1] be a fuzzy relation such that
A(x, x) = A(y, y) = A(z, z) = A(w,w) = 1, A(x, y) =
A(x, z) = A(x,w) = A(y, z) = A(z, y) = A(y, w) =
A(z, w) = 0, A(y, x) = 0.2, A(z, x) = 0.5, A(w, x) =
0.8, A(w, y) = 0.4 and A(w, z) = 0.1. Then it is easily
checked that A is a fuzzy partial order relation and that
(X,A) is a fuzzy lattice. But, if we choose the α-cut equal
to 0.5, (X,Ap) is not a lattice because the GLB there not
exists.

We can not even say that there is a α-cut that is a fuzzy
lattice (X,Ap) as was claimed in [7] Proposition 3.6. The
following example shows this situation.

Example 3.4: Let L = ((0, 1] × {a, b}) ∪ {0,>} be a set,
let the fuzzy partial order defined by

A(x, y) =


1, if x = y

n−m
2 , if x=(m,c), y=(n,c), c∈{a,b},m≤n
n
2 , if x = 0, y = (n, c) and c ∈ {a, b}

0.5, if y = > and x 6= >
0, otherwise

Clearly,
〈
L,A

〉
is a fuzzy lattice. Nevertheless, for all p > 0,

Ap is not a lattice because if x = (p, a) and y = (p, b), then
{x, y} has no lower bound in Ap. Suppose l is a lower bound
in Ap for {x, y}. Then, A(l, x) ≥ p and A(l, y) ≥ p. Thus,
by definition of A,
(i) If l = x, then A(x, y) ≥ p, but by definition of A,
A(x, y) = A((p, a), (p, b)) = 0. Analogously, if l = y.
(ii) If l = (z, a), then by definition of A, A(l, y) =
A((z, a), (p, b)) = 0. Analogously, if l = (z, b).
(iii) If l = 0, then A(l, x) = A(0, (p, a)) = p/2 < p.
Analogously, A(l, y) = p/2.
Hence, {x, y} has no lower bound in Ap.
The forth and fifth conditions of the equation A(x, y) not occur
in this case.

But we can build a lattice using the idea of support as
follows.

Proposition 3.4: Let A : X × X −→ [0, 1] be a fuzzy
relation. If A is a fuzzy partial order relation on X , then
S(A) is a partial order relation on X .

Proof. Let A be a fuzzy partial order relation on X . Since
A(x, x) = 1 for all x ∈ X , (x, x) ∈ S(A). Suppose (x, y) ∈
S(A) and (y, x) ∈ S(A). Then, A(x, y) > 0 and A(y, x) >
0, and hence, because A is antisymmetric, x = y. Suppose
(x, y) ∈ S(A) and (y, z) ∈ S(A). Then, A(x, y) > 0 and
A(y, z) > 0. Since A(x, z) ≥ supy∈Xmin[A(x, y), A(y, z)],
A(x, z) ≥ min[A(x, y), A(y, z)] > 0, that is, (x, z) ∈ S(A).

Proposition 3.5: Let (X,A) be a fuzzy lattice and let
x, y, z ∈ X . Then

1) A(x, x ∨ y) > 0, A(y, x ∨ y) > 0, A(x ∧ y, x) >
0, A(x ∧ y, y) > 0.

2) A(x, z) > 0 and A(y, z) > 0 implies A(x ∨ y, z) > 0.
3) A(z, x) > 0 and A(z, y) > 0 implies A(z, x ∧ y) > 0.
4) A(x, y) > 0 iff x ∨ y = y.
5) A(x, y) > 0 iff x ∧ y = x.
6) If A(y, z) > 0, then A(x ∧ y, x ∧ z) > 0 and A(x ∨

y, x ∨ z) > 0.

Proof. See in [7] Proposition 3.3.

Corollary 3.1: Let A : X×X −→ [0, 1] be a fuzzy relation.
If (X,A) is a fuzzy lattice, then (X,S(A)) is a lattice.
Proof. Straightforward from Proposition 3.5 item (1), (2) and
(3).



IV. FUZZY IDEAL AND FUZZY FILTER

In this section, we define a fuzzy ideal and fuzzy filter of a
fuzzy lattice and characterize a fuzzy ideal and a fuzzy filter
of a fuzzy lattice using its support and its level set. First, we
will define a fuzzy ideal and fuzzy filter of a fuzzy lattice as
follows:

Definition 4.1: Let (Y,B) be a fuzzy sublattice of L.
(Y,B) is a fuzzy ideal of L if for all x ∈ X and y ∈ Y ,
(i) If A(x, y) > 0, then x ∈ Y ;
(ii) If x, y ∈ Y , then x ∨ y ∈ Y .

Definition 4.2: Let (Y,B) be a fuzzy sublattice of L.
(Y,B) is a fuzzy filter of L if for all x ∈ X and y ∈ Y ,
(i) If A(y, x) > 0, then x ∈ Y ;
(ii) If x, y ∈ Y , then x ∧ y ∈ Y .

In section II we define an ideal of a lattice L. So far we
have defined a fuzzy ideal (Y,B) from a fuzzy lattice L. We
have also defined the set S(A) of a fuzzy relation A in a set
X as well as p-level set Ap of a fuzzy relation A in a set X
and characterize a relation on X . Then, we can think of a set
of ideals from a α-cut, that is, the set of ideals with degree
greater than or equal to α or, the set of elements x ∈ X and
y ∈ Y such that A(x, y) ≥ p with p ∈ (0, 1].

Proposition 4.1: (Y,B) is a fuzzy ideal (fuzzy filter) of
fuzzy lattice L iff Y is an ideal (filter) of (X,S(A)).

Proof. (⇒) Let (Y,B) be a fuzzy ideal of L and let y ∈ Y .
Then,
(i) If (x, y) ∈ S(A), then A(x, y) > 0. So, by Definition 4.1
item (i) x ∈ Y .
(ii) If x ∈ Y and y ∈ Y , then by Definition 4.1 item (ii),
x ∨ y ∈ Y .
(⇐) (i) Let x ∈ X and y ∈ Y and suppose that A(x, y) > 0,
then (x, y) ∈ S(A) and x ∈ Y .
(ii) Trivially.

Similarly, we can proof that (Y,B) is a fuzzy filter of L
iff Y is a filter of (X,S(A)).

Let Bp be the p-level set Bp = {(x, y) ∈ Y × Y :
B(x, y) ≥ p} for any p ∈ (0, 1].

Theorem 4.1: (Y,B) is a fuzzy ideal (fuzzy filter) of fuzzy
lattice L iff for each p ∈ (0, 1], Bp is an ideal (filter) of
(Y,Ap).

Proof. (⇒) Let (Y,B) be a fuzzy ideal of L and let y ∈ Y .
Then,
(i) If (x, y) ∈ Bp, then A(x, y) ≥ p. So, by Definition 4.1
item (i) x ∈ Y .
(ii) If x ∈ Y and y ∈ Y , then by Definition 4.1 item (ii),
x ∨ y ∈ Y .

(⇐) (i) Let x ∈ X and y ∈ Y and suppose that A(x, y) > 0,
then (x, y) ∈ Bp and x ∈ Y .
(ii) Trivially.

Similarly, we can proof that (Y,B) is a fuzzy filter of L
iff Y is a filter of (X,Ap).

V. CONCLUSION

We have studied the notion of fuzzy lattice using a fuzzy
order relation, the notion of fuzzy ideal and fuzzy filter of
fuzzy lattice and established the fuzzy ideal theorem of a fuzzy
lattice through its level set. We can found several other forms
to define fuzzy partial order relations, as we can see in [5], [6],
[7], [17]. The same way, one should observe that the concept
of fuzzy partial order, fuzzy partially ordered set and fuzzy
lattice can be found in several other forms in the literature.

One of the most promising ideas could be the investigation
of a fuzzy prime ideal of a fuzzy lattice and its consequences.
As future work we extend the idea of [14] from fuzzy ideal
and fuzzy filter. Thus, for further works we hope to think of
building bounded interval fuzzy lattice using the idea of [3]
from bounded fuzzy lattices.
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