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Abstract—Rough set theory has proven to be a useful math-
ematical basis for developing automated computational ap-
proaches which are able to deal with and utilise imperfect knowl-
edge. Ever since its inception, this theory has been successfully
employed for developing computationally efficient techniques for
addressing problems such as the discovery of hidden patterns
in data, decision rule induction, and feature selection. As an
extension to this theory, fuzzy-rough sets enhance the ability to
model uncertainty and vagueness more effectively. The efficacy of
fuzzy-rough set based approaches for the tasks of feature selection
and rule induction is now well established in the literature.
Although some work has been carried out using fuzzy-rough set
theory for the tasks of feature selection and instance selection in
isolation, the potential of this theory for its application to tasks for
the simultaneous selection of both features and instances has not
been investigated thus far. This paper proposes a novel method
for simultaneous instance and feature selection based on fuzzy-
rough sets. The initial experimentation demonstrates that the
method can significantly reduce both the number of instances
and features whilst maintaining high classification accuracies.

Index Terms—fuzzy-rough sets, feature selection, instance se-
lection, discernibility.

I. INTRODUCTION

The increasing trend towards the archiving of enormous
amounts of data has led to a situation where such data is now
stored and maintained in the hope that it will be processed
at a later date. The continuing growth of this data means that
the corresponding data collections are also expansive; both in
terms of dimensionality (number of features), and number of
data objects or instances. This means that there is an ever-
increasing demand in terms of resources for the storage and
maintenance of data. There is therefore, a growing need for
methods such as feature selection (FS) which can contribute
greatly to reducing the size of such data. FS is focused on
the reduction of dimensionality by removing features which
may be noisy, redundant, irrelevant, or even misleading [1]
The central aim of FS is to select a minimal subset of
features from a given domain whilst retaining a suitably
high accuracy in representing the original set of features.
In addition to the high dimensionality of data, there is also
the problem where prohibitively high numbers of training
instances may be present. In this case, approaches such as
instance selection (IS) [2] are desirable in order to reduce
the volume of the data to a more manageable size, whilst
also removing misleading training instances. This also has the

effect of improving any models which are learned from the
data. By employing techniques such as FS and IS, data size
can be reduced considerably, thereby alleviating management,
storage and maintenance resource requirements.

Rough set theory (RST) [3] has attracted great interest
amongst researchers in recent years and has been applied
to various real-world application domains. One of the main
reasons for the popularity of RST stems from a number of
appealing aspects of the theory. Indeed, the focus of RST
on grouping information entities into ‘granules’ in terms of
some form of relatedness, offers a certain universal intuitive
appeal. In addition to this, it has other desirable attributes; for
example, no tunable parameters are required, thus eliminating
the need for (possibly erroneous) subjective human input,
and it also finds a minimal knowledge representation. One
of the problems for RST however, is that it is constrained
to problem domains where the data is crisp-valued. It is this
inability to deal with real-valued data which has resulted in the
development of fuzzy-rough sets. Much work has been carried
out in the area of FS using both rough and fuzzy-rough sets
[4], and indeed some work has also been developed recently
for the task of IS [2]. However, there has been little or no work
in the area of fuzzy-rough sets for the task of simultaneous
feature and instance selection. This paper proposes a novel
approach to simultaneous instance and feature selection based
upon fuzzy-rough sets. The central idea behind this approach is
to remove instances and features from a dataset in an iterative
but simultaneous fashion by extending the work on (crisp)
bireducts described in [5], to the fuzzy case. The reason for the
fuzzification of such an approach is that fuzzy-rough sets have
the ability to consider real-valued data, while rough sets can
only deal with crisp-valued discrete data. The new fuzzy-rough
based bireduct definitions are then used to frame the problem
as a satisfiability problem using a Boolean representation in
CNF form. By removing both instances, and features, the
dataset can be quickly reduced both in terms of dimensionality
and number of training instances.

The remainder of this paper is structured as follows: Section
2 summarises the necessary theoretical basis and concepts
of fuzzy-rough sets. Section 3 details the proposed approach
to simultaneous fuzzy-rough instance and feature selection.
Initial experimental results are demonstrated in Section 4



that show the potential of the approach. Finally, the paper is
concluded in Section 5 with some discussion and suggestions
for future work.

II. THEORETICAL BACKGROUND

A. Rough and fuzzy-rough sets

At the very heart of the RST is the concept of indiscernibil-
ity [3]. Let I = (U,S) be an information system, where U is
a non-empty set of finite instances (the universe of discourse)
and S is a non-empty finite set of features so that a : U→ Va
for every a ∈ S. Va is the set of values that a can take. For
any P ⊆ S, there exists an associated equivalence relation
IND(P ):

IND(P ) = {(x, y) ∈ U2|∀a ∈ P, a(x) = a(y)} (1)

The partition generated by IND(P ) is denoted U/IND(P )
and is calculated as follows:

U/IND(P ) = ⊗{U/IND({a}) : a ∈ P} (2)

where,

S ⊗ T = {X ∩ Y : ∀X ∈ S,∀Y ∈ T,X ∩ Y 6= ∅} (3)

If (x, y) ∈ IND(P ), then x and y are indiscernible
by attributes from P . The equivalence classes of the P-
indiscernibility relation are denoted [x]P . Let X ⊆ U. X can
be approximated using only the information contained in P
by constructing the P-lower and P-upper approximations of
X:

PX = {x : [x]P ⊆ X} (4)
PX = {x : [x]P ∩X 6= ∅} (5)

Let P and Q be equivalence relations over U, then the
concepts of the positive, negative and boundary regions can
be defined:

POSP (Q) =
⋃

X∈U/Q

PX (6)

NEGP (Q) = U−
⋃

X∈U/Q

PX (7)

BNDP (Q) =
⋃

X∈U/Q

PX −
⋃

X∈U/Q

PX (8)

By employing this definition of the positive region it is
possible to calculate the rough set degree of dependency of
a set of attributes Q on a set of attributes P . This can be
achieved as follows: For P ,Q ⊆ S, it can be said that Q
depends on P in a degree k (0 ≤ k ≤ 1), thus the higher the
value of k the more dependent Q is upon P . This is denoted
(P ⇒k Q) if:

k = γP (Q) =
|POSP (Q)|
|U|

(9)

Fuzzy-rough sets have been proposed in order to improve
the ability to deal with uncertainty and vagueness present in
data. A fuzzy-rough set [4] is defined by two fuzzy sets, fuzzy
lower and upper approximations, obtained by extending the
corresponding crisp rough set notions defined in (4) and (5)
previously. In the crisp case, elements that belong to the lower
approximation (i.e. have a membership of 1) are said to belong
to the approximated set with absolute certainty. In the fuzzy-
rough case, elements may have a membership in the range
[0,1], thus allowing greater flexibility in handling uncertainty.
Fuzzy-rough sets encapsulate the related but distinct concepts
of vagueness (for fuzzy sets) and indiscernibility (for rough
sets), both of which occur as a result of uncertainty in
knowledge.

Definitions for the fuzzy lower and upper approximations
can be found in [6], where a T -transitive fuzzy similarity
relation is used to approximate a fuzzy concept X:

µRPX(x) = inf
y∈U
I(µRP

(x, y), µX(y)) (10)

µRPX
(x) = sup

y∈U
T (µRP

(x, y), µX(y)) (11)

Here, I is a fuzzy implicator and T a t-norm. A fuzzy impli-
cator is any [0, 1]2 → [0, 1]-mapping I satisfying I(0, 0) =
1, I(1, x) = x for all x in [0, 1]. RP is the fuzzy similarity
relation induced by the subset of features P :

µRP
(x, y) = Ta∈P {µRa

(x, y)} (12)

µRa
(x, y) is the degree to which instances x and y are similar

for feature a, and may be defined in many ways, for example:

µRa(x, y) = 1− |a(x)− a(y)|
|amax − amin|

(13)

µRa
(x, y) = exp(− (a(x)− a(y))2

2σa2
) (14)

µRa
(x, y) = max(min(

(a(y)− (a(x)− σa))
σa

,

((a(x) + σa)− a(y))
σa

, 0) (15)

where σa2 is the variance of feature a. The choice of relation
is largely determined by the intended application. For feature
selection, a relation such as (15) may be appropriate as this
permits only small differences between attribute values of
differing instances. For classification tasks, a more gradual
and inclusive relation such as (13) should be used. Other fuzzy
relation definitions can also be found in [7].

In a similar way to the original crisp rough set approach,
the fuzzy positive region [1] can be defined as :

µPOSP (D)(x) = sup
X∈U/D

µRPX(x) (16)

An important issue in data analysis is discovering dependen-
cies between attributes. The fuzzy-rough degree of dependency



of D on the attribute subset P can be defined in the following
way:

γ′P (D) =

∑
x∈U

µPOSP (D)(x)

|U|
(17)

A fuzzy-rough reduct R can be defined as a minimal subset
of features that preserves the dependency degree of the entire
dataset, i.e. γ′R(D) = γ′C(D). Based on this, a fuzzy-rough
greedy hill-climbing algorithm can be constructed that uses
equation (17) to gauge subset quality. In [1], it has been shown
that the dependency function is monotonic and that fuzzy
discernibility matrices may also be used to discover reducts.

B. Fuzzy Discernibility Matrices

There are two main branches of research in crisp rough
set-based approaches: those based on the dependency degree
and those based on discernibility matrices and functions.
Therefore, it is a natural progression to extend concepts in
the latter branch to the fuzzy-rough domain [8], [1].

1) Fuzzy Discernibility: The crisp discernibility matrix is
herein extended by employing fuzzy clauses. Entries in the
fuzzy discernibility matrix is a fuzzy set, to which every
feature belongs to a certain degree. The extent to which a
feature a belongs to the fuzzy clause Cij is determined by the
fuzzy discernibility measure:

µCij
(a) = N(µRa

(i, j)) (18)

where N denotes fuzzy negation and µRa
(i, j) is the fuzzy

similarity of instances i and j, and hence µCij (a) is a measure
of the fuzzy discernibility. For the crisp case, if µCij (a) = 1
then the two instances are distinct for this feature; if µCij

(a)
= 0, the two instances are identical. For fuzzy cases where
µCij

(a) ∈ (0, 1), the instances are partly discernible. Note
that the choice of fuzzy similarity relation must be identical
to that of the fuzzy-rough dependency degree approach to
find corresponding reducts. Each entry (or clause) in the
fuzzy indiscernibility matrix is a set of attributes and their
memberships:

Cij = {ax|a ∈ C, x = N(µRa(i, j))} i, j = 1, ..., |U| (19)

For example, an entry Cij in the fuzzy discernibility matrix
may be: {a0.4, b0.8, c0.2, d0.0}. This denotes that µCij

(a) =
0.4, µCij

(b) = 0.8, etc. In crisp discernibility matrices, these
values are either 0 or 1 as the underlying relation is an
equivalence relation. The example clause can be viewed as
indicating the significance value of each feature - the extent
to which the feature discriminates between the two instances
i and j. The core of the dataset is defined as:

Core(C) = {a ∈ C|∃Cij , µCij
(a) > 0,

∀f ∈ {C− a} µCij
(f) = 0}

(20)

2) Fuzzy Discernibility Function: As with the crisp ap-
proach, the entries in the matrix can be used to construct the
fuzzy discernibility function:

fD(a
∗
1, ..., a

∗
m) = ∧{∨ C∗ij |1 ≤ j < i ≤ |U|} (21)

where C∗ij = {a∗x|ax ∈ Cij}. The function returns values in
[0, 1], which can be seen to be a measure of the extent to which
the function is satisfied for a given assignment of truth values
to variables. To discover reducts from the fuzzy discernibility
function, the task is to find the minimal assignment of the
value true to the variables such that the formula is maximally
satisfied. By setting all variables to true, the maximal value
for the function can be obtained as this provides the greatest
discernibility between instances.

3) Decision-relative Fuzzy Discernibility Matrix: As with
the crisp discernibility matrix, for a decision system the
decision feature must be taken into account for achieving
reductions; only those clauses with different decision values
are included in the crisp discernibility matrix. For the fuzzy
version, this is encoded as:

fD(a
∗
1, ..., a

∗
m) = {∧{{∨ C∗ij} ← qN(µRq (i,j))

}|
1 ≤ j < i ≤ |U|}

(22)

for decision feature q, where ← denotes fuzzy implication.
This allows the extent to which decision values differ to
affect the overall satisfiability of the clause. If µCij (q) = 1
then this clause provides maximum discernibility (i.e., the
two instances are maximally different according to the fuzzy
similarity measure). When the decision is crisp and crisp
equivalence is used, µCij (q) becomes either 0 or 1.

C. Formulation

The degree of satisfaction for a clause Cij for a given subset
of features P is defined as:

SATP (Cij) = Sa∈P {µCij
(a)} (23)

for a t-conorm S. Returning to the example clause
{a0.4, b0.8, c0.2, d0.0}, if the subset P = {a, c} is chosen, the
resulting degree of satisfaction of the clause is

SATP (Cij) = S{0.4, 0.2} = 0.6

using the Łukasiewicz t-conorm, min(1, x+ y).
In traditional (crisp) propositional satisfiability, a clause is

fully satisfied if at least one variable in the clause has been
set to true. For the fuzzy case, clauses may be satisfied
to a certain degree depending on which variables have been
assigned the value true. By setting P = C, the maximum
satisfiability degree of a clause can be obtained:

maxSATij = SATC(Cij) = Sa∈C{µCij
(a)} (24)

This is the maximal amount that clause Cij may be satisfied.
The maximum satisfiability degree of the example clause is
S(0.4, 0.8, 0.2, 0.0) which evaluates to 1 if the Łukasiewicz
t-conorm is used. Here it can be seen that, depending on the
t-conorm used, clauses may in fact be maximally satisfied by



the selection of several sub-maximal features. Using the max
t-conorm, the maximum satisfiability degree is 0.8, obtained
only by the inclusion of feature b in P .

In this setting, a fuzzy-rough reduct corresponds to a
(minimal) truth assignment to variables such that each clause
has been satisfied to its maximum extent.

D. Crisp Bireducts

In the work of [5], the authors introduce the idea of a
rough set bireduct. This concept is based on a similar, but
non-equivalent approach termed approximate reducts [9]. The
definition of a bireduct focuses on a subset of features that
describes the decision class, and a subset of instances for
which such a description is valid. The motivation for this
definition draws on the work in the area of unsupervised
learning known as biclustering [10]. In [5], the authors define
bireducts in the following way:

Def. 1 Let I = (U,S), be an information system. A tuple
(B,X), where B ⊆ S and X ⊆ U is an information bireduct,
iff B discerns all pairs of instances in X , ∀i, j ∈ X, ∃b ∈
B | b(i) 6= b(j), and:

1) There is no proper subset C ⊂ B such that C discerns
all pairs in X

2) There is no proper superset Y ⊃ X such that B discerns
all pairs in Y

This idea is further extended to the case where I is a decision
system:

Def. 2 Let I = (U,S ∪ {d}), be an information system.
A tuple (B,X), where B ⊆ S and X ⊆ U is a decision
bireduct, iff B discerns all pairs of instances i, j ∈ X , where
d(i) 6= d(j), and:

1) There is no proper subset C ⊂ B such that C discerns
all pairs i, j ∈ X , where d(i) 6= d(j)

2) There is no proper superset Y ⊃ X such that B discerns
all pairs i, j ∈ Y , where d(i) 6= d(j)

Referring to the earlier RST definitions, it can be seen that
a decision bireduct can be regarded as a type of inexact
functional dependence which links the subset of features in
B with the decision feature d to a degree X . Those instances
contained in U \ X are treated as outliers. Conversely those
instances in X can be used to learn from the data using the
features in B.

The definition of a bireduct in [5], relies on two properties
which aim to ensure that the feature subset is minimal and
that the coverage is maximal. This can also be formulated in
a Boolean propositional setting by considering bireducts as
prime implicants of a CNF formula generated from data akin
to that used in finding reducts via crisp discernibility matrices
[5]. This is exploited and used as the foundation for the fuzzy-
rough approach described in the following section.

III. SIMULTANEOUS FUZZY-ROUGH INSTANCE AND
FEATURE SELECTION

This section details the proposed approach to simultane-
ous fuzzy-rough instance and feature selection (SFRIFS).

In the traditional approach to finding reducts, each clause
is generated by the comparison of pairs of instances, with
features appearing in the clauses if their values differ for these
instances. Hence, to discern between these pairs of instances,
at least one of these features must be selected. However, in the
bireduct approach, we can also satisfy a clause by removing
either (or both) of the instances that generated it. The reason
behind this is that one of the instances may be noisy or
even an outlier, and therefore not useful for any subsequent
learning process(es) which may be employed. In this case,
rather than selecting a number of features to discriminate
between this instance and others, it may be better to remove the
misleading instance altogether. This provides the motivation
for the proposed method for using fuzzy-rough sets to perform
simultaneous instance and feature selection.

The previous definition of the fuzzy discernibility function
can be extended to the bireduct case as follows:

fD(a
∗
1, ..., a

∗
m) = ∧{i∗ ∨ j∗ ∨ C∗ij |1 ≤ j < i ≤ |U|} (25)

Here, it can be seen that a clause is satisfied if C∗ij is
maximally satisfied, or if either i∗ or j∗ are selected (which
means they are ultimately removed from the dataset). The task
is then to select a subset of features B and remove a subset of
instances Z in order to maximally satisfy all of the generated
clauses for the dataset. The pair (B,X), X = U − Z, will
then be a bireduct as no proper subset of B will discern all
instances in X , and no proper superset of X will be discernible
by B thus fulfilling the same conditions defined earlier for
crisp bireducts.

Having framed the problem in this way, it is clear that there
needs to be some mechanism by which to select appropriate
features and instances in a systematic and sensible way. Many
different search mechanisms are appropriate for this task.
However, for the purpose of the initial investigation detailed
in this paper, a simple heuristic frequency-of-occurrence type
approach based on the Johnson reducer is adopted.

A. Algorithm

The algorithm for SFRIFS is shown in Fig. 1. Its first
step is to generate the CNF clause list from the data. This
is achieved by examining the data in the manner described
above before generating a clause for each case where the
decision feature differs for any pair of instances. In each
case, the clause contains the degree of (fuzzy) discernibility
between the features of that pairwise comparison as well as
those instances which are compared in order to construct
the clause. Once the set of CNF clauses have been formed,
the algorithm then considers which features and instances to
select. As mentioned previously, a simple but nevertheless
effective heuristic based on the Johnson reducer is used here.
The basis for this is that the maximum number of clauses
is satisfied at each iteration, and therefore the greatest level
of reduction is achieved. Obviously, in terms of the features
for real-valued data, the discernibility is fuzzy. One approach
to selection in this particular situation is to search for a



SFRIS(S)
S, the dataset.

(1) fD ← GenerateCNF(S)
(2) R← {}; bestA ← 0; bestFeat ← ∅
(3) O ← U; bestO ← 0; bestInst ← ∅
(4) while fD! = ∅
(5) foreach a ∈ (C−R) //choose a feature
(6) c = heuristic(a)
(7) if c > bestA
(8) bestA = c; bestFeat ← a
(9) R← R ∪ bestFeat
(10) fD = removeClauses(fD,bestFeat)
(11) if fD == ∅ return (R,O)
(12) foreach o ∈ O //choose an instance
(13) c = heuristic(o)
(14) if c > bestO
(15) bestO = c; bestInst ← o
(16) O ← O− bestInst
(17) fD = removeClauses(fD,bestInst)
(18) if fD == ∅ return (R,O)

Fig. 1. The SFRIFS Algorithm

feature that has a non-zero value for discernibility in the
greatest number of clauses. Alternatively, the sum of the fuzzy
discernibility values for a particular feature across all of the
clauses gives a good indication of feature importance. Indeed,
this is the heuristic adopted for this work. The selection of
instances is much simpler given that the presence or absence
of any instance is indicated in the crisp sense. Therefore, an
instance is either present or absent from any given clause. This
simplifies the selection of instances since their frequency of
occurrence may be noted in a conventional crisp manner.

The main loop of the SFRIFS algorithm begins by selecting
features initially. There is no particular reason for performing
the selection of features prior to instances and indeed the al-
gorithm can also be formulated by selecting instances initially.
It is worth noting that this can result in the discovery of a dif-
ferent fuzzy-rough bireduct, however. The algorithm continues
to select features and instances alternately until the clause list
is fully satisfied (fD = ∅). Therefore, for each phase of either
feature or instance selection, one or the other is selected. When
a feature is selected, all clauses that have been maximally
satisfied are removed (fD = removeClauses(fD,bestFeat)).
In the case of instances, a simple count of frequency-of-
occurrence identifies those clauses to be removed (fD =
removeClauses(fD,bestInst)). Following the selection of either
features or instances (and removal of the relevant clauses), the
feature (or instance) that is selected is recorded. The process
continues until all clauses have been satisfied and the fuzzy-
rough bireduct is then returned (lines (11) and (18)).

B. Worked example

An example dataset is shown in Table I which is used in
order to illustrate the operation of SFRIFS. The fuzzy connec-

TABLE I
EXAMPLE DATASET

Instance a b c q
1 -0.4 -0.3 -0.5 no
2 -0.4 0.2 -0.1 yes
3 -0.3 -0.4 -0.3 no
4 0.3 -0.3 0 yes
5 0.2 -0.3 0 yes
6 0.2 0 0 no

tives used are the Łukasiewicz t-norm (max(x+y−1, 0)) and
the Łukasiewicz fuzzy implicator (min(1−x+y, 1)). The use
of this implicator is recommended as it is both a residual and
S-implicator.

Using the fuzzy similarity measure in (15), the resulting
relations are as follows for each feature in the dataset:

Ra(x, y) =
1.0 1.0 0.699 0.0 0.0 0.0
1.0 1.0 0.699 0.0 0.0 0.0
0.699 0.699 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.699 0.699
0.0 0.0 0.0 0.699 1.0 1.0
0.0 0.0 0.0 0.699 1.0 1.0


Rb(x, y) =

1.0 0.0 0.568 1.0 1.0 0.0
0.0 1.0 0.0 0.0 0.0 0.137
0.568 0.0 1.0 0.568 0.568 0.0
1.0 0.0 0.568 1.0 1.0 0.0
1.0 0.0 0.568 1.0 1.0 0.0
0.0 0.137 0.0 0.0 0.0 1.0


Rc(x, y) =

1.0 0.0 0.036 0.0 0.0 0.0
0.0 1.0 0.036 0.518 0.518 0.518
0.036 0.036 1.0 0.0 0.0 0.0
0.0 0.518 0.0 1.0 1.0 1.0
0.0 0.518 0.0 1.0 1.0 1.0
0.0 0.518 0.0 1.0 1.0 1.0


Next, the fuzzy discernibility matrix needs to be constructed

on the basis of the fuzzy discernibility given in equation (18).
For instances 2 and 3, the resulting fuzzy clause is {2∗ ∨ 3∗ ∨
a0.301 ∨ b1.0 ∨ c0.964} ← q1.0.

The fuzzy discernibility of instances 2 and 3 for attribute a
is 0.301, indicating that the instances are partly discernible for
this feature. The instances are fully discernible with respect
to the decision feature, indicated by q1.0. The set of clauses is:



C12 : {1∗ ∨ 2∗ ∨ a0.0 ∨ b1.0 ∨ c1.0} ← q1.0
C13 : {1∗ ∨ 3∗ ∨ a0.301 ∨ b0.432 ∨ c0.964} ← q0.0
C14 : {1∗ ∨ 4∗ ∨ a1.0 ∨ b0.0 ∨ c1.0} ← q1.0
C15 : {1∗ ∨ 5∗ ∨ a1.0 ∨ b0.0 ∨ c1.0} ← q1.0
C16 : {1∗ ∨ 6∗ ∨ a1.0 ∨ b1.0 ∨ c1.0} ← q0.0
C23 : {2∗ ∨ 3∗ ∨ a0.301 ∨ b1.0 ∨ c0.964} ← q1.0
C24 : {2∗ ∨ 4∗ ∨ a1.0 ∨ b1.0 ∨ c0.482} ← q0.0
C25 : {2∗ ∨ 5∗ ∨ a1.0 ∨ b1.0 ∨ c0.482} ← q0.0
C26 : {2∗ ∨ 6∗ ∨ a1.0 ∨ b0.863 ∨ c0.482} ← q1.0
C34 : {3∗ ∨ 4∗ ∨ a1.0 ∨ b0.431 ∨ c1.0} ← q1.0
C35 : {3∗ ∨ 5∗ ∨ a1.0 ∨ b0.431 ∨ c1.0} ← q1.0
C36 : {3∗ ∨ 6∗ ∨ a1.0 ∨ b1.0 ∨ c1.0} ← q0.0
C45 : {4∗ ∨ 5∗ ∨ a0.301 ∨ b0.0 ∨ c0.0} ← q0.0
C46 : {4∗ ∨ 6∗ ∨ a0.301 ∨ b1.0 ∨ c0.0} ← q1.0
C56 : {5∗ ∨ 6∗ ∨ a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

Due to the properties of implicators, all clauses with q0.0
may be removed without influencing the returned bireduct,
hence the clause list can be reduced to:

C12 : {1∗ ∨ 2∗ ∨ a0.0 ∨ b1.0 ∨ c1.0} ← q1.0
C14 : {1∗ ∨ 4∗ ∨ a1.0 ∨ b0.0 ∨ c1.0} ← q1.0
C15 : {1∗ ∨ 5∗ ∨ a1.0 ∨ b0.0 ∨ c1.0} ← q1.0
C16 : {1∗ ∨ 6∗ ∨ a1.0 ∨ b1.0 ∨ c1.0} ← q0.0
C23 : {2∗ ∨ 3∗ ∨ a0.301 ∨ b1.0 ∨ c0.964} ← q1.0
C26 : {2∗ ∨ 6∗ ∨ a1.0 ∨ b0.863 ∨ c0.482} ← q1.0
C34 : {3∗ ∨ 4∗ ∨ a1.0 ∨ b0.431 ∨ c1.0} ← q1.0
C35 : {3∗ ∨ 5∗ ∨ a1.0 ∨ b0.431 ∨ c1.0} ← q1.0
C46 : {4∗ ∨ 6∗ ∨ a0.301 ∨ b1.0 ∨ c0.0} ← q1.0
C56 : {5∗ ∨ 6∗ ∨ a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

Having generated the set of clauses, the SFRIFS algorithm
then proceeds to select the feature that occurs with the
highest sum of its fuzzy discernibilities. Here, the values are
calculated as a = 6.602, b = 6.725, c = 7.446, and so feature
c is chosen. The clauses that have been maximally satisfied
are then removed, leaving:

C23 : {2∗ ∨ 3∗ ∨ a0.301 ∨ b1.0 ∨ c0.964} ← q1.0
C26 : {2∗ ∨ 6∗ ∨ a1.0 ∨ b0.863 ∨ c0.482} ← q1.0
C46 : {4∗ ∨ 6∗ ∨ a0.301 ∨ b1.0 ∨ c0.0} ← q1.0
C56 : {5∗ ∨ 6∗ ∨ a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

As there are clauses remaining yet to be satisfied, the
algorithm continues. The next stage of SFRIFS is to consider
instances. It can be seen from the clause list above that
instance 6 occurs most frequently, and hence this instance
is selected (for removal) and the satisfied clauses are then
removed:

C23 : {2∗ ∨ 3∗ ∨ a0.301 ∨ b1.0 ∨ c0.964} ← q1.0

One clause remains, and so the algorithm continues. The
next step is to select a feature that has the highest sum of fuzzy
discernibilities, which in this case is feature b. Having selected
this feature, the final clause is satisfied and the algorithm
terminates, returning the bireduct which has the constituent:
feature subset {b, c} and set of instances {1, 2, 3, 4, 5}.

IV. EXPERIMENTAL EVALUATION

In this section the results of applying the novel simultaneous
instance and feature selection method are presented. The
datasets used for this evaluation are drawn from [11]. A series
of experiments are carried out on this data and the results are
presented which demonstrate the advantages of the proposed
method. The SFRIFS method is also compared with a fuzzy-
rough feature selection method [1]. The comparison with such
methods helps to demonstrate that useful and valuable features
are indeed retained by the feature and instance selection
method described in this paper. An important note is that,
it is not possible to compare the work proposed here directly
with that of [5], because the fuzzy-rough extension allows the
consideration of real-valued data. The work in [5], considers
only crisp data which is usually obtained by discretising the
real-valued data, which can result in information loss. Indeed
this is one of the main motivations for this work. In addition,
the framing of the feature and instance selection task as a
propositional satisfiability problem means that the heuristic
for the generation of bireducts is also carried out in a very
different way to that of [5].

1) Experimental Setup: A total of 11 different datasets are
employed for the experimental evaluation detailed in Table
II. For the SFRIFS method, three different similarity relations
were employed in order to investigate the effect that this has
on the algorithm. These relations are termed sim1, sim2 and
sim3 hereafter and refer to those defined earlier as eqns.
(13), (14) and (15) in that respective order in section II-A.
In this paper, the Łukasiewicz t-norm (max(x + y − 1, 0))
and the Łukasiewicz fuzzy implicator (min(1− x+ y, 1)) are
adopted to implement the fuzzy connectives for both SFRIFS
and the fuzzy-rough FS approaches. For FRFS, only sim3 was
used for the comparison with SFRIFS as this is the similarity
relation used in standard fuzzy-rough feature selection.

For the generation of classification results, three different
classifier learners have been employed: J48 which is based
on ID3 [12]; JRip, a rule-based classifier [13]; and PART,
another rule-based classifier [14]. Stratified 10 × 10-fold
crossvalidation was employed in generating the classification
results. Finally for the comparison of SFRIFS with FRFS, a
statistical significance test was performed using a paired t-test
(significance value: 0.05) in order to ensure that the results
obtained were statistically significant.

2) Results: The results of applying the SFIS approach is
detailed in Tables III - VI. The bireduct size is represented
here in terms of the number of features selected, followed by
the number of instances remaining in the data set following
reduction. The classification accuracy recorded is reported
with respect to the reduced dataset in each case.

Perhaps what is most apparent from the results in Tables
III- V is the extent to which the choice of fuzzy similarity
relation tends to have on the sizes of the fuzzy bireducts that
are discovered. Overall, and certainly in terms of the number
of features selected, sim3 tends to be the most aggressive
and results in the greatest overall reduction for all datasets.



TABLE II
BENCHMARK DATA AND UNREDUCED CLASSIFICATION ACCURACIES (%)

Dataset Features Instances J48 JRip PART
water2 39 390 83.18 82.08 83.85
water3 39 390 81.59 82.26 82.72

Cleveland 13 297 53.39 54.16 52.44
Glass 9 214 68.08 67.05 69.12
Heart 13 270 78.15 79.19 77.33

ionosphere 34 230 86.13 87.09 87.39
iris 4 150 94.80 94.40 94.27

olitos 25 120 65.75 68.83 67.00
web 2557 149 57.63 55.09 51.50

wine 13 178 93.37 92.75 92.24
wisconsin 9 699 95.01 95.69 94.69

The use of sim1 seems to favour a reduction in the number
of instances when compared with either sim2 or sim3, and
generally indicates that this is the most conservative with
regard to bireduct generation. It is of note that none of
the similarity relations employed results in a reduction of
dimensionality for the iris dataset, but all return the same
number of instances. However, if the classification results are
examined, it can be seen that the results for each similarity
relation are indeed different, demonstrating that although the
number of instances selected are the same, a different set
of instances is removed from the dataset depending on the
similarity relation employed. Given the nature of the iris
dataset, this also seems to suggest that if it is not possible
to select features from a particular dataset, then the approach
may just return a reduced set of instances. The results for the
glass dataset show a similar tendency with all three similarity
relations demonstrating a similar pattern. It is important to
note that all of these tendencies are related to the way in
which instances are compared before the construction of the
clauses as detailed in section II-C.

TABLE III
RESULTS FOR SFRIFS USING sim1

Dataset Bireduct Classification Accy (%)
reduct size dataset size J48 JRip PART

water2 19 372 85.48 88.70 83.87
water3 18 373 84.71 83.91 82.03

cleve 13 284 54.22 57.39 58.09
glass 8 205 67.31 65.36 67.31
heart 12 257 82.1 80.54 82.10

ionosphere 13 217 94.48 89.86 94.93
iris 4 146 95.20 89.72 95.89

olitos 12 108 71.29 62.04 68.51
web 27 122 59.01 47.54 60.65

wine 10 168 97.02 95.83 98.21
wisconsin 9 690 95.50 96.52 95.65

In terms of classification accuracy, there does not seem to
be any clear advantage of one relation over another. However,
sim3 does seem to have marginally lower overall accuracies
particularly in the case of the heart and wine datasets. It is
important to note, however, that despite this slightly reduced
accuracy, the bireduct sizes are significantly smaller than
those returned for the same datasets for sim1 and sim2.

Indeed in some cases sim3 seems to do better in terms of
the classification accuracies returned as well as achieving a
reduction in data size, e.g. water2 and wisconsin.

TABLE IV
RESULTS FOR SFRIFS USING sim2

Dataset Bireduct Classification Accy (%)
reduct size dataset size J48 JRip PART

water2 12 379 82.84 79.41 81.53
water3 12 379 83.11 83.37 83.90

cleve 12 284 54.22 57.39 58.09
glass 8 205 69.26 66.82 69.75
heart 12 258 79.84 81.39 83.72

ionosphere 13 217 91.70 91.24 89.86
iris 4 146 94.52 95.20 94.52

olitos 9 111 68.46 69.36 61.26
web 21 128 50.78 53.12 60.65

wine 8 170 94.70 92.35 95.88
wisconsin 9 690 94.34 96.52 95.21

TABLE V
RESULTS FOR SFRIFS USING sim3

Dataset Bireduct Classification Accy (%)
reduct size dataset size J48 JRip PART

water2 7 384 83.33 83.59 81.51
water3 6 384 83.07 82.29 81.77

cleve 7 290 55.51 55.17 55.86
glass 8 206 67.00 64.07 67.47
heart 6 264 76.89 76.13 77.65

ionosphere 6 224 88.39 87.94 89.73
iris 4 146 96.57 97.26 96.57

olitos 5 115 64.34 63.47 67.82
web 13 136 55.88 54.41 55.88

wine 5 173 91.90 88.43 92.48
wisconsin 6 693 96.53 95.95 96.39

In addition to the analysis of SFRIFS in terms of the
bireducts generated and the classification accuracies of the
generated models, a comparison is also made with a fuzzy-
rough feature selection approach (FRFS) [1]. The reason for
this comparison is to demonstrate that SFRIFS can offer a
reduction in both dimensionality and the number of instances
without any loss of generality. Table VI shows the results
of running FRFS on the same 11 datasets used previously
for evaluating SFRIFS. Also included in this table are the
summary of a statistical comparison using a paired t-test with
SFRIFS as the base for comparison; * indicates a result that
was statistically worse than SFRIFS, - indicates no statistical
difference, and v indicates a result where FRFS was statisti-
cally better. The results are compared with those of SFRIFS
employing sim3.

In Table VI, it is clear that SFRIFS outperforms FRFS
for six out of the total 11 datasets in terms of the subset
size: cleveland, glass, heart, ionosphere, web and wisconsin.
Indeed, as mentioned previously, whilst SFRIFS does not
achieve a reduction in the dimensionality for iris, the num-
ber of instances is reduced meaning that some reduction is
achieved for all of the datasets. In terms of the classification
accuracy, there is little difference in the performance of the



TABLE VI
RESULTS FOR FRFS

Dataset Reduct size Classification Accy (%) T-test
J48 JRIP PART (*/-/v)

water2 7 86.41 84.05 84.61 0/3/0
water3 6 80.51 81.28 79.23 1/2/0

cleveland 8 50.84 54.54 53.19 1/2/0
glass N/R 68.08 67.05 69.12 –
heart 7 79.25 78.57 76.29 0/3/0

ionosphere 8 85.36 88.26 86.07 1/2/0
iris N/R 94.80 94.40 94.27 –

olitos 5 63.30 64.17 58.33 1/2/0
web 20 57.08 55.03 58.33 0/3/0

wine 5 95.50 94.38 95.50 0/2/1
wisconsin 8 96.80 95.70 94.70 0/3/0

N/R: denotes that no reduction was achieved for that particular dataset

models generated. The paired t-test only identified a single
classifier result (for the wine dataset) out of a total of 27
which was statistically better for FRFS. The remainder were
comparable or better than FRFS.

V. CONCLUSION

This paper has presented a novel method for simultaneous
instance and feature selection using fuzzy-rough sets. The
approach is based on the removal of instances and selection of
features that appear most often in the fuzzy clauses generated
from the data. Instances and features are removed alternately
until all of the terms are satisfied. From the initial exper-
imentation it can be seen that SFRIFS consistently results
in some reduction of the data. The removal of features or
instances does not seem to have any significant impact on
classification accuracy and in some cases can simultaneously
remove instances and features whilst maintaining classifier
performance.
There is much potential for further development in this area.
One particular aspect that would be interesting to investigate is
the comparison of the results of the application of stand-alone
FS and IS approaches with SFRIFS. This might provide some
insight into those features and instances which are selected
for each iteration of SFRIFS. The application of the approach
to very large data in order to assess scalability is another
aspect which may also provide an additional perspective.
Throughout the paper, a frequency-based approach has been
adopted as a heuristic in order to select features or instances
alternately. This is rather a greedy type of solution, and the
result is therefore unlikely to be optimal. Other alternatives
could be investigated by adopting a more intelligent approach
to selection, or even by employing a nature-inspired meta-
heuristic such as particle swarm optimisation or harmony
search [15]. Also, this paper has focused solely on the task of
simultaneous feature and instance selection, but the underlying
ideas may also be useful for areas such as dynamic feature
selection, or semi-supervised learning where the data is non-
static.
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