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Abstract—This paper presents a new reconstruction operator
to be used in a super-resolution scheme. Here, by reconstrticn
in super-resolution, we mean the back-projection operatin, i.e.
the way K low resolution (LR) images are aggregated to obtain
a smooth high resolution (HR) image. Within this method, we
replace the usual reconstruction procedure by a non-additie
reconstruction operation based on the nice properties of fezy
partitions. This non-additive reconstruction operator represents
a convex family of usual additive reconstruction operators The
obtained reconstructed image is thus a convex family of usua
reconstructed images. It allows the super-resolution metbd to
be less sensitive to the choice of the reconstruction methodo
make the reading of this method easier, it is presented with D
signals. We present some experiments to illustrate the pred
properties of this new operator.

Keywords—Super-resolution, imprecise guaranteed reconstruc-
tion, Choquet integral, capacities.

I. INTRODUCTION

In this paper, we propose an interval-valued back-
projection operator that ensures a kind of guarantee in
the back-projected image. In fact, the interval-valuedkbac
projected image is the convex family of any back-projected
image that would have been obtained by a reconstruction tech
nigue using a wide range of positive monomodal probalilisti
kernels. This work is a first step towards the definition of a
new super-resolution imaging technique that should bestobu
w.r.t. a choice of both projection and back-projection letsn

In order to ease the understanding of this new technique,
we restrict its presentation tbD signals (i.e. reconstructing
the lines of the image). TheD extension of the presented
concepts is straightforward.

Section Il presents the up-to-date literature about super-
resolution techniques. The projection and back-projectio
models are also mentioned here. The following part of this
paper, Section lll, presents operators based on imprenide p
ability theories (capacity and possibility theory) thattemnd

Images with a high spatial resolution (HR) can be requiredhe usugl kernt_—zl base.d convolution. T_hese operators allow
when only low spatial resolution imagers are available. HReconvoluting a signal with a convex family of usual kernels.
images can e.g. improve the performances of a pattern recof? Section 1V, we present the guaranteed reconstruction and

nition algorithm or enhance relevant details in the context

image based medical diagnosis.

back-projection operators which are the main results of thi
paper. The guaranty property is clarified and proved. Sectio
V contains experiments that illustrate the guaranty priypefr

recovers a HR image from a sequencelofaliased, blurred

and noisy low resolution (LR) images acquired from the same

scene by one or several image sensors. The reconstructed

high resolution image must be a disaliased version of the lowA. State of art
resolution ones and should contain more details. It is often ) ) )
expressed as an optimization process leading to reconstruc 1€ first work on reconstructing a HR image from a
the image that should have been obtained by using the sanfgduénce of LR images was published in 1984 [1] and the
imager but with a sharper point spread function (i.e. the®m "Super-resolution” itself appeared at around 1990 [2]

response of an imaging system to an impulse signal) and with  An extensive literature exists about super-resolutiomh-tec

a higher spatial resolution. Such reconstruction need fRe L piques that has been published in the last two decades. Atrece
images to be acquired with sub-pixel projected motions.sThusyryey on super-resolution imaging techniques is availal

an accurate knowledge of the motion between images is al§@]. [4] also provides a snapshot of methods and techniques
required. to improve images and video beyond the capabilities of the

Most of the super-resolution techniques are based on twb2Meras.

dual operators called projection and back-projectionjero These techniques differ with respect to modeling and

tion models how the LR images can be derived from theg|gorithmic aspects. They are usually divided into fourdato
HR image. Back-projection consists in aggregating the LRcategories:

images in order to reconstruct a smoothed version of thehsoug
after HR image. Super-resolution techniques are usually ve 1)
sensitive to the choice of those two operators. 2)

Il. SUPER-RESOLUTION

Frequency domain-based techniques,
Iterative back-projection techniques,



3) Optimization techniques and resolution images{A’“f”}k:lmK obtained by projecting this
4)  Projection onto convex sets (POCS) techniques.  current guess and the measured LR imagés},—; x. A

i ) i good example of such a process, based on the Schultz igerativ
1) Frequency domain-based techniquéksai and Huang method, can be written as:

[1] at first proposed a frequency domain approach for solving N .
the problem of super-resolution image reconstruction i8419 " = 1"+ AR(I — AI"), (5)

This approach is based on assuming the original high resqgnere ) is a factor that ensures the convergence of the algo-
lution image to be band-limited. It exploits the translag®  iihm Some other models have been proposed that conside

property of the Fourier Transform by using the aliasing 1éla yccjysion and transparency [8] or specific models for thécbac
tionship that exists between the Continuous Fourier Tansf rprojection operator [9].

(CFT) of the original real scene and the Discrete Fourie
Transform (DFT) of the acquired low resolution images. This ~ 3) Optimization techniquesOptimization techniques try
early approach deals neither with blur nor noise. It has beetp solve Equation (3) in an optimization framework. It is
further extended by Kinet al [5] by introducing a weighted based on defining an objective function composed of two
recursive least square algorithm that combines filtering anterms. The first term expresses how the HR image fits the
reconstruction in order to account for noise, then by Kim and-R images by mean of the back-projection model. The second
Su [6] to account for blur. However, the obtained method isterm discards inappropriate solutions, preventing ovendg.

not stable due to the fact that super-resolution is an idlego A very common expression of this kind of algorithm, where
inverse problem. They thus proposed a recursive algoriijm [ the fitting term is based on quadratic error, can be written as
that includes a regularization term. e(1) = |IT — AL|2 + N|QI| ©6)

where( is the regularisation matrix and > 0 is a regulari-
sation parameter used to control the regularization lel/gi®
solution. Note that optimizing the unregularized Equat{6h
leads to the recursive Equation (5).

2) lterative back-projection techniquestterative back-
projection techniques work in the spatial domain. It cossis
reconstructing a HR image with" LR images. It is based on
two dual operators: projection and back-projection. Ritije’
consists in estimatingd LR images based on a HR image.
Back-projection consists in restoring a smoothed HR image Iterative back-projection techniques can be seen as aparti
based on theK LR images. Classically, the projection is ular case of optimization techniques. Both techniques roake
modeled by a linear operator corrupted by an additive noiseof a projection and a back-projection operator to altevedfi

i ks go from HR space to LR space and from LR space to HR
I :A I+ﬂ, vk:].,...,K (1) Space

where* is thek'" N-dimensional vector which is the lexico-  4) Projection onto convex sets techniqude Projection
graphically ordered version of thé" LR image and/ is the  Onto Convex Sets (POCS) techniques aim at solving the
M-dimensional vector which is the lexicographically oreér super-resolution problem on the constraint satisfactiotjem
version of the HR images is a N-dimensional additive noise framework. The POCS method has been introduced in [10]
and A* is a N x M matrix. [11] in 1982. In [12] [13], Stark explains the general tech-
nique for applying POCS for image restoration. He applied
this concept to the super-resolution problem in [14]. These
éechniques also extensively use projection and back-gtioje

Ak can be decomposed into a down sampling oper&Xor
(N x M matrix), a blurring operato3* (M x M matrix)
which expresses the point spread function (PSF) of the imag

and a warping operato}rV’“ (M x M matrix) modeling the operators.
motion betweer’* andI. A* is usually computed that way: Recently POCS has been used for estimating a high res-
& R olution image from multi-camera low resolution surveili@n
A" =D"B"W" Vk=1,... K. (2) imaging [15].
It is also convenient to represent the projection as onaitine o o
equation: A B. Projection and Back-projection
I=Al+p 3) In order to simplify the presentation of the developed

guaranteed reconstruction operators, we restrict thibleno
Moreover, the back-projection is based onla x NK to one dimension. Instead of considering an imagee work
matrix R that performs an aggregation of thelow resolution ~ with a 1D signalS. The extension in 2D of the proposed
images into a smooth HR image: concepts is straightforward.

I = RI (4) Reconstruction is involved in the projection and back-
projection model underlying most super-resolution meshod

In many papersR is defined as beingl®” the dual operator Indeed, a projection is, in some sense, a modified resampling
of A. method for retrieving a LR signal from a HR signal. This is a
modified resampling since it allows displacements whosenor

Iterative back-projection techniques generally use anaite is not sampling step multiplicative.

tive algorithm to solve the super-resolution issue [7].r8tg . _ . _
from an initial guesd?, this algorithm recursively update the ~ The reconstruction of a signal = (S,),=1,...,~ is condi-

current guess” based on reducing the error between the lowtioned by the Nyquist Shannon sampling theorem and, in most
cases, a sampled version of the Sine Cardinal kernel is con-

LThis operator is often referred mhservation modeih the literature voluted with the sampled image to achieve its reconstractio




It is often better [16], [17] to consider a reconstructionieth  ~ being a normalizing factor such that, i € {1,..., K},
involves a band limited discrete kerngt = (7%),=1...n, vn € {1,...,N}, S¥ = C (C being a constant value), then
which is not translation invariant since its shape depends ovm € {1,..., M}, S,, = C. This normalizing factor equals
the reconstruction locatiow. Reconstruction, in that way, of % due to the fact thaﬁtk(“)wt) is summative:

the sampled signa$ at positionw € Q is written as:

K N
N _ tr (Wim)
. . C=y Cf
S(w) =Y Sunt. (7) ,; 2
n=t 1 K N K
In super-resolution, the projection describes the way a = - = Z Z pis(@m) — 21 =K.
LR signal S* is obtained from the HR signal. The global LA ' k=1

description of this model is the following sequence I/ recon Thys, Equation (10) is nothing else but the usual average of
struction of the continuous signal, II/ transformation bt he K reconstructed signals”:
obtained continuous signal and IlIl/ LR sampling. We thus

recognize a transformed down-sampling procedure. . 1.
’ 6 I & I & pr °P Sm:}ZS'rkn' (11)
S58 =8, — 5" k=1
The formal mathematical desgription follow_s here and can be Il. SIGNAL CONVOLUTION WITH A CAPACITY
understood by taking the previous scheme in the reverse.orde _ o _ _ _
Thus, for anyn =1,..., N, A. Capacity, possibility measure and imprecise expeatatio

~ R Mo - Let © be any discrete or continuous space. A capacioyn
Sjj =Sk(wn) =S8 (t,;l(wn)) = Z STk (wn), (8) © is a monotone confidence measure, i.e. a set-valued functior
m=1 defined on the power s@(0) such thatv()) =0, »(©) =1

Where t,;l is a geometric transformation that we considerand ifAC B C 6, thenv(4) < v(B).

here to be a translation. From this projection model, the A probability measure is a particular case of capacity which
transformation and down-sampling operations clearly appe respects the additivity axiom. Another particular capacit
which is of interest for us is the concave capacity: this is a

While projection is some kind of transformed down- . C - .
sampling, the back-projection model that we propose heae isgﬁgﬁc'w which is 2-alternating, i.e. for any and B C ©,

transformed up-sampling model. This model will be used an
extended in the next sections. v(ANB) +v(AUB) < v(A) +v(B).

Within this approach, we obtain eithdf back-projected "0M & concave capacity, a dual confidence measyrehich
is convex (opposite inequality to concave), is computedhis t

HR signalsS* from K LR signals S* or one fused back- :
. s way:
projected HR signab. VA C O, v°(A) = 1 — v(A°). (12)
First, let us describe how we obtain ti#é back-projected
HR signals. Back-projecting th&!” LR signal involves I/
reconstructing the LR signal in order to obtain a continuou
signal, Il/ transforming the obtained continuous signéll, | M(v)={P |VACO,r°(A) < P(A) <v(A)}.
HR sampling this signal. We thus recognize a transformed

up-sampling procedure. The formal mathematical desoripti | hiS encoding property is due to the sensitivity analysis
follows here. interpretation [18] of concave capacities.

The two measures;® and v, encode a family of probability
dneasures, denoted by!(v), and defined by:

st L & § L g A possibility measure is a particular case of concave
capacity [19]. Similarly to probability theory, a possibil

Once again, the following formal mathematical descriptionmeasurell is equivalently represented by its distribution
should be read form point Ill to | in the previous scheme.function: the possibility distributionr. In probability theory,

Thus, for anym =1,..., M, the link between distribution and measure is summative. In
possibility theory, this link is maxitive: for anyd C €,

N
Sk = S(wm) = S (tr(wm)) = > Skpirm.(9)  H(A) = maxpean(w).
n=1 Since a concave capacity measure is non-additive, the

Then, how the fused back-projected HR signal is compute@on\/em'onal expectation operator cannot be used. The ex-

is described here. Let us consider thé" pixel in the HR . :
space. Thent™ pixel of the k™ LR image can be seen as called the Choquet integral (denot&dl [20]. Using a Choquet

£ (@m) integral to compute the expectation of any bounded (discret

an information t‘;LVith a weighty, in the reconstruction o continuous) functiory leads to an interval-valued operator
process of then' pixel value. Thus, a straightforward way t0 \yhose bounds are given by:

fuse all the information provided by th&€ LR images should

be: E,(f) = E, (), Es(H)] = [Coe(f).Cu(f)].  (13)

K N
Sy = 'VZ Z Sfjnff(“”"), (10)  The key point of this approach is that the interval-valued ex
pectation obtained by means of a concave capacity measure i

ectation operator must be replaced by its generalization,

k=1n=1



the set of all the single-valued expectations obtained laygus IV. GUARANTEED IMPRECISE BACK-PROJECTION
all the convolution kernels encoded by the considered aanca The back-proiection method is particularly sensitive te th
capacity. This fundamental property comes from the work of proj P y

Denneberg [21] linking precise and imprecise expectations 'cconstruction kermel choice: see its expression (9). I8 th
section we propose a particular case of the precise recon-

Theorem 1:Let f : © — R be a (discrete or continuous) Struction involved in the back-projection. This operater i
bounded function and letbe a concave Capacity defined®n based on a reconstruction kernel which is the convolution

VP € M(v), Ep(f) € E,(f) andVy € E,(f), IP € M(v) of a summative kernek with a fuzzy partition of the LR
such thaty = Ep(f). o signal domain. This operator is interesting for two reasdns

it allows to transfer to the reconstructed signal the snmoedk
of the chosen fuzzy partition and 2/ it allows an extension to
B. Signal convolution with a capacity a guaranteed imprecise reconstruction operator and then to
guaranteed back-projection operator, which is the maieatbj
In most convolution-based signal applications (like low- of this article.
pass filtering, sampling or reconstruction), the used clrvo
tion kernels are positive and have a Unitary gain. Thesegkern A. Fuzzy partition based precise reconstruction

are calledsummative kernel$-or instance, the super resolution ) " )
involves a reconstruction (7) kernel that is summative: The reconstruction kernej* that we propose to use is
constructed from a fuzzy partition on the signal domain.

N Let {C,}n=1,. .~ be theN atoms of a fuzzy partition a la
Z nY = 1. Ruspini off2, i.e. a set of unimodal symmetrical fuzzy intervals
ot {ttn}tn=1,...~ complying with [26], [27]:Vw € €,

. L4 2715121 Mn(w) =1,
In that case, the convolution kernel can be seen as a

probability distribution or a probability density functichat e dln, such thatu, (w) > 0 and y41(w) = 0,
induces a probability measure, computed in this way: e 1, is continuous.
VAC{l,...,N}, Pu(A) = Z ne. A useful tool for our developments is the definition of the

eyl union of fuzzy subsets in the fuzzy partition.
From this remark, we can show that reconstruction, whic
is a convolution operation can be written as an expectatio
operator:

Definition 2: Let A  {1,..., N} be a subset of nodes of
he & la Ruspini fuzzy partitiofu, }n=1,.. ~. Let 1A be the
notation for{J,,. , C\, where the membership function of this
union of fuzzy subsets is thieukasiewicz T-conorm defined
S(w) = E,. (). (14) by:

Vw € Q, pia(w) = Y pin(w).

We propose to rewrite these operations with the expectation vy

operator since it allows dealing with a family of convolutio

kernels by switching from the usual probability theory to Note thatvA C {1,...,N}, Yw € Q, min(1, Y, a tin(w))
imprecise probability theory. Since a probability measisre _ s~ () since>, _, ji,(w) < 1.

in one to one correspondence with a probability distributio neA s ~nEA AT =

or a probability density function (and thus with summative  Such operator fulfills an important property: for any sets
convolution kernels) we can claim that a concave capacity ©of partition nodes4, B C {1,..., N},

encodes a family of summative convolution kernels equivtale ;| € Q, paos(@)+Fpans @) = p W) +psw). (16)

to M(v).
o o ) Equation (16) is directly deduced from the following gen-
All the necessary definitions were given in Sections Ill-Ato eral equation which is true for any sequen@s,), _,

directly define the imprecise convolution based upon a G8pac o real numbers: W — W, + “
neighborhood. e tn D neAup Un Dineatn + Dnep tin
n .

Definition 1: Let S : Q — R be a (discrete or continuous) Usually a reconstruction operator (7) involves, for any

signal and letr be a concave capacity defined 6n The w € , a summative kerneh* = (9¥),=1.. n. In our
convolution of S by v is defined by: approach, we propose to work with a summative kenyeél
o which is the convolution of another summative kernel

Sxv=FE,(S) =[Cue(S),C,(5)] (15)  with the fuzzy partitiony. Thus, we propose to consider a

reconstruction kernel defined for anyof the image domain

. . by:
Sxv represents all the convolutions we would have obtameé2 y
with the set of convolution kernels encoded iy Vn=1,...,N, 0¥ = (k* ) (w) = Exe (un)- a7)

Some particu|ar app”cations of this Operator have a|read§ﬂ that case, the reconstruction of a Signal can be written as
been proposed: imprecise linear filtering and noise levéél es N
ma;ion [22], [23], guaranteed image rigid tral_"nsfo_rma_tiﬁn][ gﬁ(w) - Z Sy (K % i) (w). (18)
or link between fuzzy morphology and imprecise filtering][25 ot



It can be shown that the set of weighits: * 11,,)(w)),—;  n
is a summative kernel. Indeed; " 72 = SN | [ k(u —
w)pin(u)du = [ K(u —w) Zf:[:l pin(W)du = [ k(v — w)du

The interest of this reconstruction is its stability due to

From expression (16), we also have taf(u 4015 +

tianis) = Cu(paa + pap), whichis< C, (paa) + Cy (pun),

because’ is concave. Thus,

Vu(AUB) < vu(A) + 1,(B) — v,(AN B),

the smoothness of the fuzzy partition basis function. ldgdee v, is @ concave capacity.

convolution is a type of averaging: it tends to be a smoothing

operation. Generally speaking, a convolution of two fuortsi
inherits the “best” properties of both its operands. Fotanse,
if p is continuous on(, then, for anyn, w — 7% =
(K * ) (w) is continous and thus iS,; since it is a weighted

3) If P,(A) = Ep(p1a) is a probability measure and
v,(A) = C,(p1a) is a concave capacity an € M(v),
then a direct implication of Theorem 1 is th&l, € M(v,).
[

sum of theseV functions, see (18). Fixed smoothness couldrrom these stability results, we construct an imprecise re-
be passed to the reconstructed signal when the smoothness@fnstruction operator which is guaranteed to contain a et o

the fuzzy partition is fixed.

Now we can show that the probability measure associate

to the summative kerneh* (17), which is a probability

distribution, can be written, for any coalition of sampling

positions (or fuzzy partition nodes), by
Py (A) = Ere (p14).
Indeed, Py (A) = > cam = Y nea Jomlu — w)pn(u)du

= Jorlu—w) > qmn(w)du = fo K(u — w)pi(u)du =
E,.w(p1a). Finally, ﬁwe precise reconstruction operator is

(19)

gﬁ(w) = Ein (S) (20)

B. Guaranteed reconstruction

Proposition 1 shows the stability of the expectation (Eeci
or imprecise) operator when applied to coalitions of fuzzy

subsets of a fuzzy partition a la Ruspini.

Proposition 1: Let {C}, } =1,
Ruspini of Q.

ceey

1) Let P be a continuous probability measure 6n
Then P,, defined, for any subset of node$ C
{1,...,N}, by: P,(A) = Ep(uia) is a discrete
probability measure.

2) Letv be a continuous concave capacity, thgn, for
any subset of noded C {1,...,N}, by: v,(4) =

reconstructors that we can tune. This new operator employs &
pjzzy representation of the involved reconstruction kemme
nstead of considering usual summative reconstructioneter

k as it is done in the reconstruction operator (18), we use
a possibility distributionr. It allows explicitly working with
families of usual reconstruction kernels.

Within this modeling, we propose to use the discrete
concave capacity defined, for any coalition of sampling t=in
A, by:

Ve (A) = Crro (p114) (21)
The imprecise reconstruction operator is obtained frorma thi
concave capacity constructed from the fuzzy partition doed t
fuzzy (or possibilistic) reconstruction kernelby the Choquet
integral operator.

Definition 3 (Guaranteed reconstruction operatot)et
S = (Sn)n=1,...n be a sampled signal. Let be a fuzzy
neighborhood modeling the ill-known reconstruction kérne

~ be a fuzzy partition a la of S. Let u be a fuzzy partition on the reconstruction domain.

S (W), Sr(w)] = [Cue,, (5),Cy ()], (22)

is the guaranteed reconstructed signal 5f where v« is
defined by (21).

Our main result is that the imprecise reconstruction oletin
with a fuzzy reconstruction modeling that we propose is

EV(M_LA) = C,(u1a) is a discrete concave capacity. guaranteed to include the set all the precise reconstructio

3) if Pe M(v)thenP, € M(v,).

Proof:

operators obtained with the set reconstuction models of the
family M (x) represented byt.

Theorem 2 (Guaranteed reconstruction theoreingt

1) This point is directly due to the linearity of the expec-  be a fuzzy partition on the reconstruction domain. Let

tation operator and to property (16).

2) First it should be noted that for any concave capaeijty

for any f andg in L1(2), C,(f +9) < C,(f) +Cy(g). If
andg are comonotonic of, thenC, (f+g) = C,(f)+C.,(g).

11auip @ndpianip are comonotonic ofl. Indeed, due to
the Lukasiewicz T-conorm definition, (i) ifi.an1z = 0 and
is flat, then whatever the monotonicity of 45, they are
comonotonic ; (i) if pianip > 0 then pianip = piauis OF
tiauip = 1 and thusp 4. and pian.p are comonotonic.

Therefore C, (iavis + pianiB) = Cu(piavis) +

Cu(p1aniB)-

m be a fuzzy subset representing a family of summative
reconstruction kernelsM(w). Then, for any summative
reconstruction kernet of M(r),

Vw e Q, S(w) €[S, (w), Sx(w)]. (23)

Proof: From the definitions ofS,, and [ﬁw,gﬂ] (respec-
tively (20) and (22)), from the measure constructions (1) a
(21) as well as from Proposition 1, it is directly proved.m

Moreover, the smoothness of the set of reconstructed signal
is guaranteed to be at least the same as the fuzzy partiten on



C. Guaranteed back-projection

The usual back-projection can thus be extended to a guar-
anteed back-projection. The first step is the direct apptina
of the previous imprecise guaranteed reconstruction tthell
LR signals S* for the transformed sampling points; (w.,,)
(cf. expression (9)). Thus, for any=1, ..., K, we have

Vm=1,...,M, [Snkwv S’fn] = [Qw(tk(wm))aSﬂ'(tk(wm))]a
e (24)
which contains all the HR reconstructed signals we would
have obtained with all the summative reconstruction kernel
of M(x).

The guaranteed back-projection is the fusion of these
guaranteed reconstructed HR signals with the same fusion
operator than in the precise case. Thus,

R 1 &L 1 K=
Vm=1,...,M, [_mvsm]:[gz_ffmgz *1. (25) © %) ©)
=1 =1 Figure 1: () HR image, (b) Zoom on a part of the HR image, @), (e)

Theorem 3 (Guaranteed back-projection theoreingt 1 zoom on parts of three LR images generated from the imagei{a)ifferent
be a fuzzy partition on the reconstruction domain. kete a  translation values.
fuzzy subset representing a family of summative reconstmic
kernels M(r). All the back-projection operators obtained
with the summative kernels € M(x) are included in the
guaranteed intervalist back-projection operator (25)ioieid

With Figure 1(c)(d)(e) shows details of three LR images result-
.

ing from the HR image (Figure 1(a), detail on (b)). It clearly

Proof: Summing intervals does not alter the guaranty.2ppears in Figure 1 that the three low resolution imageg carr
Therefore Theorem 3 is proved. u different information related to the original image: havd@se

look, for example, at the white spot in the eye or the shadow
V. EXPERIMENTS under the eyebrow.
In this experimental section, we illustrate the properties

this new back-projection operator that have been proved in
Section IV. This section is decomposed in three parts. In thd. Single-input reconstruction
first part, we explain and illustrate how a sub-pixel progelct
translation modifies the measured illumination distribatin This part aims at illustrating that any precise reconséact
the acquired image. The second and third parts are reselgctiv Signal obtained with Expression (18) is included in theriveé
dedicated to the illustration of Theorem 2 and Theorem 3valued reconstructed signal obtained by considering the co
In the second part, we consider reconstructing a single LRave capacity, defined by Expression 21, i is included in
image. In the third part, we perform a back-projection of a HRthe core ofr.
image with20 LR images. The LR images are simulated by o _ _ _ -
subsampling a very-high resolutio22(10 x 22279) image of Within this experiment, we cqn5|d_er the triangular maxitiv
the painting "The Ambassadors” (1533) by Hans Holbein thekernel whose spreadh equals five times the spread of the
Younger, according to the projection model (8). To provide a sought after HR sampling in order to consider a wide range of
easier reading, the results are giverli, i.e. the considered unimodal symmetric kernels [28]. The set of summative ker-
signals are lines of the images. Extending this methogiin ~ Nels used in this experiment includes Epanechnikov, triedca
can be achieved in two ways. The first way consists in defininfaUSSIan, cubic splines, uniform, and randomly generated
a 2D capacity as in [25]. A second and easier technique cakernels having a spread lower or equalo The considered
be used that consists in considering the family of separableR image is obtained by down-sampling each line of the
kernels. In this case, performing tB® reconstruction can be original HR image by25, using a cubic spline kernel whose
simply performed by performing the reconstruction rowavis spread equal85.

then column-wise. ) L ) .
Figure 2 plots a part of one of the original image lines.

Figure 3 is the LR signal obtained by down-sampling the
original line. Figure 4 plots the imprecise reconstructieal

As mentioned in the introduction, achieving super-obtained by using the concave capacity (upper bound
resolution involves LR input images which are related by-subin blue, lower bound in red) superimposed with ten precise
pixel motions. The high resolution arises from the fact thatreconstructions (in light blue) obtained with summativenads
the LR images contain different information. The LR imagesconstructed as proposed in Expression (9). Figure 4(bylglea
are obtained by sub-sampling a very high resolution image bghows that all the precise reconstructed signals belonbeo t
using the projection model (8) with different translatialues.  imprecise reconstructed signal.

A. Translational sampling effects
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Figure 4: (a): 10 precise-reconstruction signals with glsii.R input signal
Figure 3: LR generated signal. (light blue) and upper (resp. lower) bound of the impreciseonstruction in
red (resp. blue). (b): enlargement of the portion framedlatlin (a)

C. Multiple-input reconstruction . o
generated by convoluting a fuzzy partition in the LR space

The aim of this part is to illustrate that the interval-value \,iih 10 summative kernels belonging to the corerof

reconstruction, obtained using several LR signals related

sub-pixel translations (according to Expression (25)) #rel On Figure 5(a), those0 precise reconstructed signals
concave capacity,, includes all precise reconstructions ob- are plotted in light blue. Figure 5(b) clearly shows that the
tained using the same LR signals (according to Expressioifiterval-valued reconstructed signal includes every ipeece-
(10)) and by considering a summative kernel obtained byconstructed signals. This property is true on the whole doma
convoluting a summative kernel (included in the core of of the signal.

) with a fuzzy partition of the LR space.

20 LR signals have been generated according to the VI~ ConcLusioN

translational projection equation (8). The translatiohuga In this paper, we proposed an original non-additive interva
are integers in the original image space but not in the lowalued reconstruction operator in a super resolution sehem
resolution space. The other settings remain the same as tfdis solution allows coping with an a priori choice of recon-
settings of Section V-B. struction kernels which is a crucial point in super resoluti

For each of the 20 LR signals, an interval-valued recon—teChmqueS'

struction is computed taking into account the known traista Our approach consists on shifting from a precise to an
values and using the same maxitive kermelthan in the imprecise representation of the reconstruction kernels Th
previous experiment. Thes¥) interval-valued recontructions imprecise representation is based on constructing a cencav
are fused using a mean operator, i.e. the lower (resp. uppecapacity, whose core contains a wide range of usual recon-
boundary is the mean of all lower (resp. upper) boundariestruction kernels, by exploiting the nice properties ofZfyz
according to Expression (25). The upper (resp. lower) boungartitions. The obtained reconstructed image (here linfes o
of this interval-valued signal is plotted in blue (resp. edy the image) is interval-valued. We prove that this interval
on Figure 5(a) As in the previous experiment, we have consideontains every precise reconstructions obtained by using a
ered10 different reconstructions according to Expression (10)econstruction kernel belonging to the core of the coneider
by consideringl0 different summative reconstruction kernels capacity.
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Future work will study the specificity of the obtained (4

interval-valued reconstructed signal (is it the most dpeci [z
interval having this property), the extension of this apgmto

in two dimension and its use in an interval valued superq{23]
resolution reconstruction of the original image. This |patt

will need an interval-valued extension of the reconstarcti
procedures described in Section II-A. (24]

[25]
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