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Abstract—A major asset of fuzzy logic systems is dealing
with uncertainties arising in their various applications, thus it
is important to make them achieve this task as effectively and
comprehensively as possible. While singleton fuzzy logic systems
provide some capacity to deal with such uncertainty aspects, non-
singleton fuzzy logic systems (NSFLSs) have further enhanced
this capacity, particularly in handling input uncertainties. This
paper proposes a novel approach to NSFLSs, which further
develops this potential by changing the method of handling
input fuzzy sets within the inference engine. While the standard
approach is getting the maximum of the intersection between
input’s and antecedent’s fuzzy sets (in the ”pre-filtering” stage),
it is proposed to employ the centroid of the intersection as the
basis of each rule’s firing degree. The motivation is to capture the
interaction of input and antecedent fuzzy sets with high fidelity,
thus making NSFLSs more sensitive to the input’s uncertainty
information. The testbed is the common problem of Mackey-
Glass time series prediction in the presence of input noise.
Analyses of the results show that the new method outperforms
the standard approach (by reducing the prediction error) and
has potential for a more efficient uncertainty handling in NSFLS
applications.

I. INTRODUCTION

OST of the applications of fuzzy logic systems (FLSs)

include some forms of uncertainty handling. Examples
include dealing with sensor noise in engineering applications,
measurement approximation in the natural science or pre-
diction of chaotic time series [1]-[3]. Non-Singleton FLSs
(NSFLSs) [4], are specifically designed for handling the uncer-
tainties associated with the FLSs’ inputs. The input uncertainty
in NSFLSs is captured by non-singleton fuzzification, thus
transforming the crisp inputs to fuzzy input sets [5], as
opposed to singleton fuzzification in the case of singleton FLSs
(SFLSs).

Mendel and Mouzouris comprehensively established the
theoretical basis of NSFLSs in [5] and [4]. When Mamdani’s
inference method [6] is utilized, they have shown that input
and antecedent fuzzy sets are intersected, and the maximum
value of their intersection is employed as the degree of firing
for the given antecedent. It is also shown that this process
can be conceptualised as a pre-filtering stage, i.e. the NSFLS
intersects each fuzzy input set with each antecedent set, then
extracts a crisp, representative value for each intersection. The
inference engine then processes the produced crisp values as
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it would have processed them in a SFLS. As an example
of NSFLS applications, they applied the theory in predicting
Mackey-Glass time series.

The described pre-filtering is a critical point in NSFLS’s
functionality since it “concentrates” each input’s captured
uncertainty into a single crisp value. In this paper we propose
a novel pre-filtering method, motivated by the desire to capture
the interaction of input and antecedent FSs with high fidelity,
thus translating the information in these models consistently
and comprehensively to FLS outputs. In turn, this should
enable the separation of numerical and linguistic uncertainty
modelling, both of which are commonly “mixed” in the input
and antecedent FSs. We feel this is valuable in particular, as
it enables the capture and modelling of uncertainties where
they arise, i.e. whether in the inputs (e.g., a sensor) or in
the antecedents (e.g., unsure expert views about the linguistic
labels - what is “low™).

Similar to Mendel and Mouzouris’s approach, we apply the
proposed deviation to the well-known problem of Mackey-
Glass time series prediction which provides verifiable ground
truth, enables easy reproduction of our results by other re-
searchers, and enables us to easily modulate the different
characteristics such as the level of uncertainty/noise in the
experiments.

There are some other research works on using NSFLSs for
time-series prediction under uncertainty, showing that NSFLSs
provide better prediction in comparison to the SFLSs. For
example in [7] NSFLSs are utilized to forecast time series
from the domain of financial markets, or in [8], the Box-
Jenkin’s gas furnace time series data is used in conjunction
with NSFLS-based prediction.

This paper presents essential details (with a focus on the
practical application) of the proposed type of NSFLSs. A
more detailed version, including a discussion of the underlying
changes to the sup-star composition of fuzzy relations has been
submitted as a journal publication [9].

Following this introduction, the standard NSFLS architec-
ture will be reviewed in Section 2. We proceed in Section
3 by the proposed alternative type of NSFLSs. We then
experimentally compare the new and standard methods in
predicting Mackey-Glass time-series in Section 4. Finally in
Section 5, we conclude and provide the direction of future
work.
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Fig. 1. FLS components and the illustration of different fuzzification methods.
Singleton and non-singleton fuzzification of a sample input 2’ are also shown.

II. BACKGROUND

In this section we briefly introduce background material
related to the functionality of NSFLSs in handling uncertain
inputs.

A. Overview

In order to address uncertainty in the actual inputs to a FLS,
the fuzzifier block in NSFLS, maps a given crisp input to a
fuzzy input set, rather than to a fuzzy singleton as is the case
in SFLSs. Thus, as shown in Fig. 1, the overall components
of a SFLS and a NSFLS are identical, the only difference is
the handling of the crisp inputs in the fuzzifier.

In NSFLSs, the actual type of membership function to be
employed for the input FSs is application dependent, with the
most common being a type of fuzzy number, i.e. a convex,
normal FS. In Fig. 1, a Gaussian distribution is shown as an
example. While NSFLSs have been defined for type-1 and
type-2 FLSs, in this paper we limit ourselves to type-1 non-
singleton type-1 FLS (i.e. type-1 FLSs that use type-1 input
MFs), and will leave type-2 systems to future work, even
though the proposed modifications still apply.

The general mapping between NSFLSs’ inputs and outputs,
i.e. between input set X and output set Y in Fig. 1, is
comprehensively detailed in [S]. We do not repeat the details of
how the comprehensive formula for the mapping is derived,
instead we consider a simplified NSFLS, and focus on the
details of “pre-filtering”.

B. Pre-filtering in Standard NSFLSs

To illustrate the role of pre-filtering in NSFLSs, we con-
sider a single-input, single-rule and single-output discrete FL.S
where Mamdani implication is used. Let  and y be members
of input and output FSs (X and Y in Fig. 1) and let A and
C be two FSs representing an antecedent and a consequent.
The only defined rule is If x is A then y is C. We also define
wx (x), pa(z), pe(y) and py (y) as the membership functions
of X, A, C and Y respectively. In this case, the input-output
mapping derived in [5] is reduced to:

py (y) = no(y) xmazsex|px (@)« pa(x)) (1)
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Fig. 3. The illustration of how a simple standard NSFLS calculates its output
(Y) according to its input (X)), antecedent (A) and consequent (C) FSs.

or equally;

my (y) = MC(y) * X (xmaa:) * A (xma:z) 2

where * is any t-norm operator and x,,,, is the value of x
at which px(z) x pa(z) takes its maximum. The inference
engine in a NSFLS can be imagined as a pre-filter unit added
to a SFLS inference engine. The pre-filter unit transforms the
uncertain input set to a representative numerical value x4,
(Fig. 2) [5]. Handling the input uncertainty in NSFLSs is
concentrated in this pre-filtering unit, i.e. the rest of the FLS
acts identically to a singleton FLS.

If the minimum-operator is used as the t-norm, px(z) *
14 (zx) is the intersection of X and A. Based on the definition
of Timazs X (Tmaz) and pa(Tmas) are equal. As such, (1)
can be written as:

py (y) = min[pa(Tmaz), ke (Y)] 3)

Equation (3) expresses the input-output mapping in our
simplified system. Briefly, this formula tells us that the firing
level of an antecedent is the maximum of its intersection with
the input set (Fig. 3). We refer to standard NSFLSs based
on employing the described pre-filtering method as standard
NSFLS hereafter.

Equation (3) is a simple version of input-output mapping
used in the defined simple NSFLS. For the general NSFLS
case, the same formulation is iterated for an arbitrary number
of inputs and rules (detailed in [5]).

In this section, we have briefly reviewed how the uncertain
inputs are handled in the standard NSFLSs. However, while
very useful, the pre-filtering method in the standard NSFLSs
is not the only possible method. The next section introduces
the possible benefits of using an alternative method.



III. AN ALTERNATIVE TYPE OF NSFLS

In this section we first discuss the motivation for proposing
an alternative type of NSFLS, then we proceed by formally
introducing the alternative.

A. Motivation

The standard approach to NSFLSs has proved highly useful
and effective in comparison to SFLS (e.g., [8], [10], [11]).
However, while standard NSFLSs provide the capability for
improved uncertainty capture in inputs (over that of SFLSs),
the nature of the employed pre-filtering mechanism does not
provide a fine-grained tracking of uncertainty information -
as it is largely insensitive to the shape of the input FSs. In
other words, the “pre-filter” in standard NSFLSs results in a
significant loss of information regarding the intersection of
input and antecedent models.

To illustrate, in Fig. 4, two different input FSs in a typical
NSFLS are intersected with a single antecedent. Even though
the actual input FSs are different, the firing levels calculated
by the standard method are the same in both cases. Intuitively,
we would expect a different output of the FLS when the
uncertainty model of our inputs are different. Specifically in
the example of Fig. 4, one would expect that the antecedent
A is fired differently (at a lower level in this example) for
input X5 than for X7, since p4(x) decreases for those higher
values of z within X5 that are not within X7.

It is arguable that z,,,, may not be the best choice in
terms of capturing the interaction (i.e. intersection) between
the input and antecedent FSs with high fidelity. The details of
the intersection are partially omitted in standard NSFLSs. An
approach with a more detailed capture of input uncertainty and
its interaction with the prospective antecedent FS is desirable.
Specially, an alternative should have a higher sensitivity to the
”shape” of the intersection. This is particularly relevant in the
case when input fuzzy sets are complex, e.g., are designed
based on for example prior modelling [12].

Based on the motivation above, we proceed to introduce an
alternative type of NSFLS in the next sub-section.

B. The Alternative to Standard NSFLS

We propose an alternative type of NSFLSs with improved
sensitivity for capturing the detailed interaction of input and
antecedent FSs. Since we are interested in taking as much
of the information about the shape of interacting FSs into
account as possible, our choice is to compute the centroid of
the resulting intersection of input and antecedents FSs as a
pre-filter, rather than relying on the maximum. Clearly, the
centroid is still a drastic simplification of the intersection, and
richer models (e.g., an interval of FS) could be used. However,
the latter would significantly increase the overall complexity of
the NSFLS, while the centroid-based approach preserves the
same complexity as standard NSFLS, after the firing strength
has been determined.

In general, for a discrete fuzzy set X with a membership
function px (z;), the centroid is defined as:
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Fig. 4. The intersection of two different input fuzzy sets X1 and X2 with
a single antecedent fuzzy set A, where x;,q2 (and consequently the firing
strength) is equal for both cases. Alternative firing strengths of A are shown
when the centroid of each intersection is used instead of their maximum.

where n is the number of discretization levels used in a
discrete system. In our case, we are interested in the centroid
of the intersection of an input X and an antecedent A, i.e. the
centroid of X N A. In this case we define the new input/output
mapping as:

1y () = tra (Teen(X N A)) x pe(y), (5)
or for minimum t-norm:
pry (y) = min [y, (Teen (X N A)), po(y)] (6)

Briefly, this formula tells us that the firing level of an
antecedent is the membership degree of its intersection with
the input set at the intersection’s centroid point (Fig. 4).

We refer to this type of NSFLS as Cen-NSFLS hereafter.
Note that while in (3), pa(Tmaz) = pc(Tmaz), this is
not necessarily the case in Cen-NSFLSs, thus resulting in
the requirement for specifying the membership degree in the
actual intersection, i.e. {4 (Teen(X N A)).

In the following section we focus on the exploration of
the proposed approach through a series of experiments and
analysis.

IV. EXPERIMENTS AND RESULTS

Following the proposition of the Cen-NSFLS in the previous
section, its practical applicability is examined in this section.
Specifically, we aim to shed light on the hypothesis that the
novel method provides a superior integration and modelling
of the uncertainty in system inputs and its interaction with
antecedents, in turn enabling in superior performance when the
input uncertainty is accurately captured within the input FSs.
In this context, both the standard NSFLS and the new proposed
Cen-NSFLS are employed within the prediction of Mackey-
Glass chaotic time series under different Gaussian noise con-
ditions (reflected in the different input FSs). In addition we
compare both NSFLSs to a standard SFLS, aligning to [4]
and [5].
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Fig. 5. The illustration of the pre-computed (noise-free) and noisy (SNR=10dB) time series. The training stage is from ¢ = 1 to ¢ = 700 (in both noise-free
and noisy conditions) and the testing stage is from ¢t = 701 to ¢ = 1000. The period t = —999 to t = 0 (not shown here) is for the initial transients to die

out.

A. Methodology

The method described in [4], uses standard NSFLSs for
the prediction of Mackey-Glass chaotic time series in noisy
conditions and compares the results to SFLSs. We follow a
similar approach but conduct the same experiment on both the
standard and the Cen-NSFLS. Each type of FLS is evaluated
based on the MSE (Mean Squared Error) indicating the devia-
tion of the actual FLS output from the expected value. We then
compare the calculated MSEs for the individual experiments.
Regarding the rule-base generation, we follow the method
given in [13], an established approach to learning rules from
existing input-output pairs.

The differential equation of the modeled Mackey-Glass time
series [14] is defined as:

de(t)  0.2z(t—1)
dt - 1+20(t—71)

—0.12(t) 7

This time series is a benchmark problem which has been
considered by a number of researchers (e.g., in [15]-[19]).
For 7 > 17, (7) demonstrates a chaotic behaviour. We have
selected 7 = 30. Using (7), z(t) is calculated for 2000
consecutive time points, i.e.: t = —999 to ¢ = 1000. The
first 1000 points are for the initial transients to die out, then
using points ¢ = 1 to ¢ = 700 the system is trained to develop
its rule-base. The last 300 points from ¢ = 701 to ¢ = 1000 are
used for testing the system. Fig. 5 shows the pre-computed and
an example of a noisy time series for SNR (Signal to Noise
Ratio) of 10dB in training and testing intervals.

Nine past points in the time series are employed as inputs
to generate a predicted value. Seven equally-distributed trian-
gular membership functions are also used to model the input
domains. Rules are trained according to the one-pass method
described in [13]. Three FLSs are designed: a singleton and
two non-singleton systems (standard and Cen-NSFLSs). For
all the systems, Mamdani inference is used with min and max
operators for the t-norm and t-conorm respectively. All the
output FSs are deffuzified using centroid defuzzification. The
same discretization level (=100) is used for all FLSs.

The input models used for NSFLSs are Gaussian member-
ship functions centred on the crisp (noise-free) inputs, with a
standard-deviation equal to that of the noise added in the given
experiment. We note that the Gaussian fuzzifier employed for
the NSFLSs is not necessarily the best approach, but we feel it
provides a reasonable choice which should allow the NSFLS
to “track” the increasing uncertainty in the inputs. For the
SFLS, a singleton fuzzification is used.

The work in [4] used noisy data for both training and testing.
While this is the case in most real world scenarios, it is also
practically possible that a system is trained in noise-free (lab-)
conditions and then used in a noisy real-world setting. To take
this into account, we repeat our experiments for the two cases,
i.e., where the system is trained in either noise-free or noisy
conditions. In noise-free training, the same rule-base generated
for the singleton FLS is used whereas in noisy training the
rule-base is trained with noisy inputs for each noise level.
For each NSFLS, two experiments are conducted for the
different signal-to-noise ratios (SNRs) of 10dB and 5dB. Fig.
6 illustrates the noise-free and noisy input types for singleton
and non-singleton FLSs. The described combinations of the
system configuration lead to 8 individual systems/experiments
in addition to the SFLS experiment.

Each experiment generates 300 outputs which are compared
to the pre-computed outputs calculated by (7). The MSE over
the 300 points is used as a measure of the overall error of
a given FLS. Note that the aim of the experiments is the
comparison of the individual FLS types, i.e. the relative best
performance. We are not seeking to build a “best” time series
prediction FLS for which one could employ more FSs, a
different strategy for rule creation, etc.

In order to mitigate the effect of randomness, each ex-
periment is repeated 30 times and the generated MSEs are
averaged. This means that there are 270 individual experiments
in total. The experiment design is illustrated in Fig. 7.

The next sub-section provides the experiments’ results.
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B. Results

In order to illustrate the results, we provide both visual
representations of individual outputs and tables capturing the
MSE results averaged over the 30 repeated experiments.

First, we focus on the prediction of the SFLS. The SFLS
is trained using noise-free data for 0 < ¢ < 700 in which 184
rules are generated. Then the SFLS is executed to compute its
outputs over 700 < ¢ < 1000. The prediction results are shown
in Fig. 8, which demonstrates that the system is relatively well
trained and closely follows the pre-computed ground truth.
This was anticipated based on the results shown in [4]. The
averaged MSE over 30 FLS runs is 0.0014. Note that no noise
is added at this stage, and the SFLS experiment is merely
conducted as a benchmark.
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Fig. 8. SFLS output when trained with noise-free data compared to the pre-
computed dataset.

Secondly, we focus on the NSFLSs and show the time series
prediction under different noise conditions. We do not compare
the results of the NSFLS with those of the SFLS (under
noise) in this paper, since the same comparison has already
been done in [4] where the authors showed that NSFLSs are
more capable in handling noisy inputs than SFLS in different
noise conditions. Instead, we focus on the comparison of the
prediction results, when the two methods (standard and Cen-
NSFLS) are utilized.

As far as the rule-training process concerns, while the noise-
free training produced 184 rules, the training process under
noise produced 557 rules for SNR=10dB and 664 rules for
SNR=5dB. In all the cases, noisy data is used for testing as
is intuitive in real-world applications.

Fig. 10 shows the NSFLS predictions when trained with
noise-free data and tested with noisy inputs with SNR=10dB
and SNR=5dB. This figure and specifically Table I highlight
that utilizing Cen-NSFLS showed a reduced deviation from
the pre-computed time series and thus better performance in
comparison to when the standard NSFLS is used. Specifically,
with SNR=10dB, the averaged MSE dropped from 0.0067 to
0.0058 (reduced by 13.19%). Also in SNR=5dB, averaged
MSE changed from 0.0155 to 0.0135 (reduced by 12.61%).
The same experiments are conducted for a NSFLS trained
with noisy data. The average MSE in this case changed from
0.0124 to 0.0114 (7.71% reduction) for SNR=10dB, and from
0.0406 to 0.0332 (17.31% reduction) for SNR=5dB.

Table I and Fig. 11 show the summarized results for both
NSFLS types. Note that all results are based on the average
of 30 repeated experiments (see section IV-A), while figures
8 and 10 show a ”single run” for visualization purposes.

C. Discussion

The summary of calculated MSEs (Table I and Fig. 11)
show that for Cen-NSFLS, the MSE has improved in all four
experiments. The highest improvement (17.31%) was found
for noisy training with higher levels of noise (SNR=5dB)
and the lowest improvement (7.71%) was achieved in noisy
training but under lower noise levels (SNR=10dB). It is also
shown that when the system is trained with noise-free data,
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Fig. 9. NSFLS outputs, trained with noise-free data and tested with noisy
data using Cen-NSFLS compared to the standard NSFLS. (a) SNR=10dB; (b)
SNR=5dB. Note that only a subset of the samples are shown to enable better

(larger) visualization.

the MSE improvement is similar for different noise levels
compared to when the system is trained with noisy data.

In order to examine the source of the observed MSE
improvements in the described time-series predictions, it is
helpful to investigate an individual output calculation and
compare the results between both NSFLSs (standard and Cen-
NSFLS). We focus on one of the designed NSFLSs where
SNR=5dB and where noise-free training data are used. Here,
we focus on one of the data samples, namely at t=1000.
In this case, the outputs of the two systems (standard and
Cen-NSFLS) are 1.150 and 1.180 respectively, whereas the
expected value derived by the differential equation (7) is
1.280. Each of the two first values are results of a centroid
defuzzification, predicted using 9 previous samples and a set
of 184 fuzzy rules.

For this particular NSFLS at t=1000, the output FSs and the
applied centroid defuzzification in the standard NSFLS and
Cen-NSFLS are illustrated in Fig. 12. Intuitively, as shown in
Fig. 12, we expect that the membership function of the Cen-
NSFLS’s output at each point is less than its counterpart for
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Fig. 10. NSFLS outputs, trained and tested with noisy data using Cen-NSFLS

compared to the standard NSFLS. (a) SNR=10dB; (b) SNR=5dB. Note that
only a subset of the samples are shown to enable better (larger) visualization.
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TABLE I
THE RESULTS OF THE DIFFERENT FLSS BASED ON AVERAGE MSES
(MEAN SQUARED ERRORS) AND THE CHANGE IN ERROR FROM THE
STANDARD NSFLS TO THE CEN-NSFLS.

TABLE II
THE NUMBER OF SAMPLES (OUT OF 300) WHERE EACH METHOD IS
OUTPERFORMED IN DIFFERENT NSFLS CONFIGURATIONS

NSFLS Outperformed Outperformed

System MSE (Cen- | MSE Change Configuration Cen-NSFLS’s standard NSFLS’s

NSFLS) (standard in prediction prediction
NSFLS) Error SNR=10dB 216 84

Singleton FLS (no noise) 0.00138 0.00138 0.00% noise-free training

NSFLS (SNR=10dB, 0.00673 0.00584 -13.19% SNR=5dB 214 86

noise-free training) noise-free training

NSFLS (SNR=5dB, 0.01546 0.01351 -12.61% SNR=10dB 204 96

noise-free training) noisy training

NSFLS (SNR=10dB, 0.01236 0.01141 -7.71% SNR=5dB 216 84

noisy training) noisy training

NSFLS (SNR=5dB, 0.04016 0.03320 -17.31%

noisy training)

show a similar pattern to the MSE improvement percentages
0.9 (%) IExpected = 1.280 111.T.able I. For §xample, the smallest F)utperformance aqd the
08 i : i minimum MSE improvement are both in the case of the higher-
07 | SNR noisy-trained system.

' : The described increase in performance of the Cen-NSFLSs
06 means that in the studied time-series prediction systems, the
05 standard-NSFLS new method provides more accurate results especially when
04 | the data samples (and thus the inputs) are more noisy. This in-
03 CorNSELS dicates that the original motivation - to better track uncertainty
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Fig. 12. Output FSs for t=1000 in a sample NSFLS with SNR=5dB and noise-
free training. The centroid defuzzification results for both cases, together with
the expected ground-truth value are shown.

the standard NSFLS, because for each intersection between
an input and an antecedent FS, the firing strength of .., is
equal or less than the firing strength of x,,,, (see also Fig.
4). Beyond this, the centroids of the output FSs are calculated
based on the overall shape of the output membership function,
not only on the individual membership grades. In the example
shown in Fig. 12, the change in the shape of the membership
function has shifted the graph’s centroid to the right and has
resulted in it being closer to the expected value.

This particular set of results shows a better estimation of
the actual value by the Cen-NSFLS compared to the standard
NSFLS. However, for other samples, this may not be always
the case. On a sample-by-sample analysis of the particular
NSFLS, the Cen-NSFLS provided a better estimate (lower
MSE) than the standard NSFLS in 216 out of 300 samples
(from t=701 to t=1000). This shows that in most of the cases
(in this arbitrarily chosen set of samples), the change in the
shape of the output membership function made the centroid
point closer to the expected value. In the case of SNR=10dB
and when noisy training data are used, the result of the similar
sample-by-sample analysis is almost the same.

Table II shows the number of times that each of the two
methods outperformed the other over the 300 samples for
different experiment configurations. The figures in Table II

captured in the input fuzzy sets - was achieved by the Cen-
NSFLS. Clearly, this conclusion is so far based on observing
a particular set of NSFLSs in a specific application. It also
relates to the particular shape of the fuzzy sets used to capture
the noise levels. With this in mind, the generalizability of the
results to a wide range of NSFLS applications (particularly in
time-series prediction) is a direction for future work.

D. Computational Complexity

It is intuitive to expect higher computational complexity for
calculating the centroid in comparison to finding the maximum
of a fuzzy set. While this may arguably be a drawback for
the new method, the discrete representation of FSs in most
real-world applications means that any increase in computation
time may not be as large as one could expect.

A timing test is conducted for the NSFLSs where the
input is noisy (SNR=10dB) and training data are noise-free.
On average over 300 samples (from ¢=701 to ¢=1000), the
calculation of a single output took 37.19ms for the standard
NSFLS and 36.84ms for Cen-NSFLS (using a regular PC).
The test shows no significant difference in the necessary time
for a control iteration between the two methods.

To explain this, we notice that both methods rely on travers-
ing the discrete MFs, while performing basic computation as
illustrated by the following sample Java code listings for both
approaches. If disc is the discretization level and u(7) is the
discrete degree of membership of the intersection between
the input and antecedent set, the following listing shows the
computation of a FS’s maximum:

peak=0; xmax=1;

for (i=1; i<=disc;

if (u(i)>peak) {
peak=u(i);
xmax=x (1) ;

}

} return xmax;

i++) {



and the following listing computes the FS’s centroid:

numerator=0; denominator=0;

for (i=1; i>=disc; i++) {
numerator+=x (i) ~u (i) ;
denominator+=u (i) ;

} return numerator/denominator;

Both listings include a similar loop over disc sampled
points. While the first listing employs a Boolean check follow-
ing two assignments, the second listing employs a multiplica-
tions and an incrementation. The similarity between the two
listing’s complexity explains the observed timing similarity
between the two methods. Moreover, both listings are com-
putationally so simple that on modern computer architectures,
the timing difference is negligible. Finally, it is noticeable that
both listings purposefully do not make any assumptions about
the FS shapes (e.g. convexity).

V. CONCLUSIONS AND FUTURE WORK

This paper aims to develop the capacity of NSFLSs to better
exploit models of input uncertainty in order to provide better
overall uncertainty capture and thus, better performance. We
proposed a novel type of NSFLS in order to enable this higher
fidelity capture of the input uncertainty embodied by input
fuzzy sets in comparison to traditional NSFLSs. In the novel
approach, the firing level of the rules are calculated based on
the centroid of the intersection of input and antecedent FSs,
instead of being based on the intersection’s maximum. This
operation visually better captures the detail of the input FS’s
membership function during inference and thus should intu-
itively provide the potential for more fine-grained modelling
of the input uncertainty.

In order to support this intuition, we applied the new
approach for NSFLSs to the common Mackey-Glass chaotic
time series prediction problem and compared the results of
both the novel and traditional NSFLS formulations for (a)
different noise levels on SNR=10dB and SNR=5dB, and (b)
different training methods with noise-free and noisy data. The
results show that the mean-squared error (MSE) between the
NSFLS predictions and the actual time series values is reduced
for the new approach by about 7 to 17 percent - for all different
noise/training conditions. These results where achieved using
a very basic input FS construction method, where the standard
deviation of the input FSs was adjusted in line with the applied
noise levels.

While the scope of this conference paper focuses on the
presentation of the novel approach to NSFLSs, their practical
exploration and evaluation; a journal article [9] elaborating on
the theoretical aspects of the work has been submitted.

Beyond the work presented here, there are a number of
interesting avenues for future work. They include (a) trying
other use cases in time-series or other applications when input
data is noisy; (b) studying the comparison for other types
of membership functions including non-Gaussian, non-convex
and dynamic/adaptive types of input FSs (as in [11], [20],
[21]); and (c) expanding the new method to non-singleton
type-2 systems and type-2 non-singleton type-2 systems (i.e.
where the input FS is also of type-2).
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