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Abstract—Recently, there has been much research into effective
representation and analysis of uncertainty in human responses,
with applications in cyber-security, forest and wildlife manage-
ment, and product development, to name a few. Most of this
research has focused on representing the response uncertainty
as intervals, e.g., “I give the movie between 2 and 4 stars.” In
this paper, we extend upon the model-based interval agreement
approach (IAA) for combining interval data into fuzzy sets and
propose the efficient IAA (eIAA) algorithm, which enables effi-
cient representation of and operation on the fuzzy sets produced
by IAA (and other interval-based approaches, for that matter).
We develop methods for efficiently modeling, representing, and
aggregating both crisp and uncertain interval data (where the
interval endpoints are intervals themselves). These intervals are
assumed to be collected from individual or multiple survey
respondents over single or repeated surveys; although, without
loss of generality, the approaches put forth in this paper could
be used for any interval-based data where representation and
analysis is desired. The proposed method is designed to minimize
loss of information when transferring the interval-based data into
fuzzy set models and then when projecting onto a compressed
set of basis functions. We provide full details of eIAA and
demonstrate it on real-world and synthetic data.

I. INTRODUCTION

Surveys have long been a powerful way to elicit information
and knowledge from groups of individuals and, recently,
crowd-sourcing—surveying large groups of people to solve
problems—has become a very popular research topic. The in-
formation has many uses, from analysis of results to inference
of conclusions, relationships, or decision-making dynamics.
Recently, there has been much interest in employing survey
tools that enable the capture of response uncertainty with
special emphasis on the creation of expert and decision-
support systems that take uncertainty into account [1–4]. Fuzzy
logic, in particular, has been found to be effective for analysis
of survey results, with Type-2 (T2) fuzzy logic and, the related,
Computing with Words paradigm leading the pack [1, 3–7].

The aforementioned uncertainty in survey data comes from
many factors, but, in particular, two main contributors that
we address are i) inter-expert uncertainty: the variation
among the individual opinions in a group of participants; and
ii) intra-expert uncertainty: the variation (or vagueness) in
the opinions of individual participants - usually over time.
While intra-expert uncertainty can come from either dynamic

(a) Less uncertain survey response

(b) More uncertain survey response

Fig. 1: Example of interval responses from a real survey, where
(a) is more certain than (b). (from [8])

uncertainty—the respondent changes his answer when repeat-
edly queried—or indecision—the respondent is unsure about
their response—we will, in this paper, simply assume that
survey responses come in one of two forms: i) a T1 interval
or ii) a T2 interval. Figure 1 shows two examples of what a
T1 interval response looks like. In view (a), a fairly certain
interval-response is shown, while view (b) shows a more
uncertain interval.

Modeling and analysis of these survey-based data have been
discussed in previous works [3, 4]. The interval approach
(IA) and enhanced interval approach (EIA) methods show
great promise, but they require data pre-processing (e.g.,
outlier removal) and combine all types of uncertainty into one
uncertainty model, viz., the footprint of uncertainty (FOU)
of Interval Type-2 (IT2) fuzzy sets (FS). In this paper, we
will build on our previous works on the Interval Agreement
Approach (IAA) [8]. The intervals are aggregated to produce
FSs that are appropriate for the type of modeled uncertainty,
i.e., inter- or intra-expert uncertainty. One of the drawbacks of
IAA is that the resulting FSs are defined by (nearly) all the
endpoints of the input set of intervals, which can result in an
inefficient representation of the resulting FS. While the latter
is not a problem in most applications where the number of
intervals is manageable, in specific cases, such as the contin-
uous collection of intervals in a cyber-security vulnerability
assessment context, a more efficient modeling approach is
desirable. To address this need, we propose representing the
FSs as weighted sums of basis functions, where the number
of weights is significantly fewer than the number of endpoints



TABLE I: Acronyms and Notation

IAA Interval Agreement Approach FS Fuzzy Set
UMF Upper Membership Function T1 Type-1
LMF Lower Membership Function T2 Type-2

IT2 Interval Type-2 GT2 General Type-2
LBS Linguistic Basis Set GBS General Basis Set
FOU Footprint of Uncertainty

Notation Definition
µA(x) Membership of A at value x

Ā = [lĀ, rĀ] Interval between values l and r (see Fig. 2a)
Ä = [l̄Ä, r̄Ä] Uncertain interval between values l̄ = [ll̄, rl̄], and

r̄ = [lr̄, rr̄] (see Fig. 2b)
i = [n] The set of integers, i = 1, 2, . . . , n

i = [a : b] The set of integers, i = a, a+ 1, . . . , b
1m m-length vector of ones
0m m-length vector of zeroes
λ(x) Linguistic basis function, λ : x → [0, 1] (see

Definition 1)
φ(x) General basis function, φ : x→ R

in the input set of intervals—often the difference of 100s
or 1,000s of endpoints versus 10s of weights. This not only
produces an efficient representation of the FS, but also reduces
the computational complexity of FS operations further down
the analysis pipeline.

This paper is organized as follows. Section II provides a
brief background on the topics addressed in this paper, while
Section III describes how sets of intervals can be aggregated
into FSs—namely, the IAA method. Section IV proposes the
efficient IAA (eIAA) method and Section V demonstrates
eIAA on some real survey data. Finally, Section VI briefly
summarizes this paper. Select acronyms and notation are
contained in Table I.

II. BACKGROUND

In this section we provide a very brief introduction to the
interval and FS models used in this paper [9]. For a more
thorough treatment of these topics, please see refs. [8–10].

A. Crisp and Uncertain Intervals

Two types of intervals are considered in this paper: i) crisp
intervals, and ii) uncertain intervals [8]. These intervals are
shown in Fig. 2. Crisp intervals are denoted as Ā = [lĀ, rĀ],
where lĀ is the left endpoint and rĀ is the right endpoint.
Uncertain intervals are denoted as B̈ = [l̄B̈ , r̄B̈ ], where the left
and right endpoints are intervals themselves: l̄B̈ = [ll̄B̈ , rl̄B̈ ]
and r̄B̈ = [lr̄B̈ , rr̄B̈ ].

B. Interval Type-2 Fuzzy Sets

GT2 FSs [9] were first introduced by Zadeh [11] as a
generalization of T1 FSs. In these sets, the membership µ at
each point on the domain x is itself defined as a T1 FS. GT2
FSs introduce a burdensome computational complexity and
thus many representations, simplifications, and approximations
have been introduced to make application of GT2 FSs tractable
[10, 12–14]. One of these is the IT2 FS [15], where the T2 FS
is considered to have a secondary membership that is 1 on an
interval [ȳ(x), y(x)]. The primary membership function that
follows ȳ(x) is called the upper membership function (UMF)

Fig. 2: Illustration of a crisp interval Ā = [lĀ, rĀ], and
an uncertain interval B̈ = [l̄B̄ , r̄B̄ ] (where for an uncertain
interval each endpoint is itself an interval). (from [8])

(a) T1 FS model A of single
crisp interval Ā

(b) T1 FS model F of two crisp
intervals Ā and B̄

Fig. 3: Modeling crisp intervals as FSs using IAA. (from [8])

and the membership function that follows y(x) is the lower
membership function (LMF), where both the UMF and LMF
are T1 FSs [16].

Commonly, the membership function of a T1 FS is notated
as µ, while for T2 FSs the primary membership is denoted u
and the secondary membership is denoted µ [16]. The primary
membership is on the y, or vertical, axis and the secondary
membership is on the z, or “towards-you,” axis. An IT2 FS
is fully described by its UMF and LMF, where the IT2 FS A
has the (secondary) membership function that has values of 1
between the UMF and LMF.

III. FUZZY SETS FROM INTERVALS

The IAA approach generates FSs from sets of intervals. Two
cases are considered: i) crisp intervals Ā = [lĀ, rĀ], and ii)
uncertain intervals, Ä = [l̄Ā, r̄Ā]. For the first case, the result
of IAA is a T1 FS; for the case of uncertain intervals, IAA
produces an IT2 FS.

A. Crisp intervals Ā

Let A = {Ā1, . . . , Ān} be a set of intervals. Then the
degree of membership of the set over the survey domain x
captures the number of intervals that are overlapping—i.e.,
are in agreement—at a particular point. Hence, the T1 FS A
defined by the membership function µA is described by

µA =

n∑
i=1

yi/

n−i+1⋃
j1=1

n−i+2⋃
j2=j1+1

· · ·
n⋃

ji=ji−1+1

(Āj1 ∩ · · · ∩ Āji)


(1)

where yi = i/n is the degree of membership, which only
equals 1 at values where all the intervals in A overlap.
Essentially, what this equation shows is that the membership
of A at a value is equal to the number of intervals in A
that contain that value. We can simplify (1) for computational



purposes in two different ways. First, for any value x, we
can simply count the number of intervals in which x resides,
computing the membership as

µA(x) =

∑n
i=1 µĀi

(x)

n
, (2a)

µĀi
(x) =

{
1 lĀi

≤ x ≤ rĀi
,

0 else.
(2b)

The second simple formulation is convenient if one wishes to
compute all the locations in the membership function where
transitions from one level yi to either yi−1 or yi+1 occur. It is
easy to show that the membership function can be calculated
as

µA(x) =
1

n

(
n∑

i=1

(lĀi
≤ x)−

N∑
i=1

(rĀi
≤ x)

)
, (3)

where this gives the membership of A at x by counting the
number of left endpoints in A less than x and subtracting
the number of right endpoints in A less than x.1 Thus, let
XA = {x1, . . . , x2n} be the set of sorted interval endpoints,
where x1 ≤ x2 ≤ . . . ≤ x2n, and let B = {b1, . . . , b2n} be
an associated set of indicator variables, where bi = +1 if xi
is a left interval endpoint and bi = −1 if xi is a right interval
endpoint. Then,

uA(x1) = 1/n, (4a)
uA(xi) = uA(xi−1) + bi/n, i = [2 : 2n]. (4b)

Using this formulation, one can build up the membership func-
tion by looping through X , from x1 to x2n. The membership
at any other value x is simply

uA(x) =

{
uA(xi) xi ≤ x < xi+1, i = [2n− 1]

0 else.
(5)

When the intervals are presented with uncertain endpoints,
IAA produces IT2 FSs, which we describe next.

B. Uncertain intervals Ä

Let Ä = {Ä1, . . . , ÄN} be a set of uncertain intervals,
where the interval endpoints are represented as having interval
uncertainty themselves. To combine uncertain intervals, we
proceed similarly as for crisp intervals; however, we apply (1)
independently for all “outer” and “inner” endpoints, resulting
in a T1 UMF and LMF, respectively, of an IT2 FS. Let
Äi = [l̄i, r̄i] notate the ith uncertain interval in Ä. Also, let
the outermost (most uncertain) set of intervals in Ä be ÄU ={[
ll̄1 , rr̄1

]
, . . . ,

[
ll̄n , rr̄n

]}
, and the innermost (least uncertain)

set of intervals in Ä be ÄL =
{[
rl̄1 , lr̄1

]
, . . . ,

[
rl̄n , lr̄n

]}
.

Then, mathematically, the following operations produce the
IT2 FS Ã that models Ä,

UMF
(
Ã
)

= IAA
(
ÄU

)
; LMF

(
Ã
)

= IAA
(
ÄL

)
. (6)

1Note that the second efficient formulation of µA considers the intervals
to be Ai = [l, r), where the right endpoint is not included in the interval.

(a) IT2 FS model Ä of single
uncertain interval Ä

(b) IT2 FS model of two uncertain
intervals Ä and B̈

Fig. 4: Modeling uncertain intervals as IT2 FSs using IAA—
uncertainty around interval endpoints is shaded. (from [8])

Figure 4 illustrates the process of using IAA to generate an
IT2 FS from uncertain intervals. As was noted in our previous
work [8], if the intervals in Ä are crisp—i.e., l̄ = [l, l] and r̄ =
[r, r]—then the UMF simply equals the LMF, thus producing
a T1 FS. In other words, IAA is generalized to produce the
most parsimonious model from the input intervals: a T1 FS
for crisp intervals and an IT2 FS for uncertain intervals.

C. Computational Complexity of IAA

While IAA has been shown to be effective in representing
interval survey data [8], a potential weakness is in the way it
represents the FSs which model the combined interval data -
in particular when a high number of intervals are considered.
For crisp intervals, the resulting T1 FS that represents n
intervals is be modeled by (at most) 2n pairs of domain values
and the membership at that value, {X,µ(X)}2n—assuming
unique interval endpoints for the survey responses—where
(5) is used to determine the membership from these pairs.
For uncertain intervals both the UMF and LMF must be
modeled, resulting in 4n pairs. While this is not unreasonable
for modern storage, this can cause FS operations on these
models to be computationally expensive.

Consider two T1 FSs as modeled by IAA, A →
{X,µA(X)}2n and B → {Y, µB(Y )}2m, where A represents
n intervals and B represents m intervals. To compute the oper-
ation A∪B, one can apply (7) on the sorted sets produced by
(5). This, however, can result in a union set that, in the worst
case, is represented as 4nm pairs, {X∪Y, µA∪B(X∪Y )}4nm.
Furthermore, computing (7) costs O(n+m) computations: the
cost of sorting z into X and Y . In the next section, we will
show how an approximation based on a linear-constraint least
squares problem can reduce this cost.

IV. EFFICIENT IAA

Consider a FS as modeled by IAA, A → {X,µA(X)}2n.
The eIAA method compresses the membership function µA(x)
by representing it as the weighted sum of a set of basis
functions. We propose two different types of basis sets and
methods for learning the weights on those bases. The main
idea is that the 2n pairs needed to model the IAA membership



µA∪B(z) =

{
max{µA(xi), µB(yj)} xi ≤ z ≤ xi+1, i = [2n− 1], yj ≤ z ≤ yj+1, j = [2m− 1],

0 else.
(7)

function are compressed into the sum of m weighted basis
functions, where m� 2n.

We consider two different types of basis sets: linguistic
basis sets (LBS) and general basis sets (GBS). The method
for each type of basis is formulated to ensure that the resulting
compressed membership function has membership degrees on
[0, 1], and that the approximation error is minimized. The
LBS representation puts a constraint on the basis function
and weights, which ensures that the compressed membership
function is on [0, 1] throughout the entire real-valued range of
the survey. This comes at a cost of the design of the LBS;
i.e., not all basis sets are LBSs. With a GBS, one can use
any set of basis functions on the range of the survey, but the
resulting membership function is not guaranteed to be on [0, 1]
for the entire survey range. It will, however, be on [0, 1] at the
locations modeled by IAA: the 2n interval end-points in the
survey responses. So, the GBS is flexible in that it can use
any basis set, but in practice may need a clipping function
to ensure that the compressed membership function returns
values in [0, 1]. We now describe the compression process for
each of LBS and GBS.

A. Linguistic Basis Functions

Consider a set of linguistic basis functions Λ(x) =
{λ1(x), . . . , λm(x)} on the range of the survey, as defined
in Definition 1. The properties of Λ are such that at any value
x in the survey domain, the sum of the basis functions equals
1. Since we will be modeling µA(x) by the weighted sum of
this basis set, this ensures we can achieve a membership at
any value in [0, 1] in the survey domain.

Definition 1 (Linguistic Basis Set). Λ(x) =
{λ1(x), . . . , λ(x)m} is a set of basis functions, λi : x→ [0, 1],
such that

m∑
i=1

λi(x) = 1, ∀x ∈ survey domain.

We call Λ(x) a Linguistic Basis Set (LBS) as the individual
basis functions λi(x) represent linguistic elements of the
survey range: e.g., ‘very low,’ ‘low,’ ‘medium,’ ‘high,’ ‘very
high,’ and, also, the set of all linguistic elements can be
combined to form the core of the survey. Figure 5 shows an
example of an LBS with 5 basis functions on the survey range
[0, 10].

Let µA(x) be represented as the weighted sum of an LBS,

µ̂A(x;w) =

m∑
i=1

wiλi(x), (8)

where w = (w1, . . . , wm)T is the vector of weights on the
respective basis functions, λi(x). If wi ∈ [0, 1], then it is easy

x
0 2 4 6 8 10

?
(x

)

0

0.5

1

Fig. 5: Example of an LBS on the survey range [0, 10]—the
linguistic interpretation of the basis functions could be ‘very
low,’ ‘low,’ ‘medium,’ ‘high,’ and ‘very high,’ from left to
right.

to see that 0 ≤ µ̂A(x;w) ≤ 1, ∀w and ∀x in the survey
domain. Hence, to get the “best” µ̂A(x;w) representation of
µA(x), we wish to solve the squared-error objective,

w∗ = arg min
w

1

2

∑
i

‖µA(xi)− µ̂A(xi;w)‖2, w ∈ [0, 1]m.

(9)
The squared-error objective at (9) is a linearly constrained

least-squares problem, which can be solved by using Matlab’s
lsqlin routine. However, for generalization purposes (and
for later work we will propose on this problem), we now
write (9) in its matrix-vector form. Let x = (x1, . . . , x2n)T

be a vector of the set of values at which µA(x) is mod-
eled by IAA.2 Let uA = (µA(x1), . . . , µA(x2n))

T be the
vector of the membership values of A at x, and ûA(w) =
(µ̂A(x1;w), . . . , µ̂A(x2n;w))

T is similarly defined. Finally,
let Λ = [λj(xi)]

2n×m be the matrix where the ith row and jth
column is λj(xi). It is easy to see that (8) is ûA(w) = Λw.
Then the squared-error term of (9) can be rewritten as

1

2

∑
i

‖µA(xi)− µ̂A(xi;w)‖2 =

=
1

2
uT
AuA +

1

2
ûA(w)T ûA(w)− uT

AûA(w),

=
1

2
uT
AuA +

1

2
wT ΛT Λw − uT

AΛw.

Since uT
AuA is a constant term, (9) can be rewritten as

w∗ = arg min
w

1

2
wT ΛT Λw − uT

AΛw, w ∈ [0, 1]m. (10)

Equation (10) is a standard linear-constraint quadratic pro-
gramming (QP) problem,

arg min
w

1

2
wTHw + fTw, Cw ≤ b, (11)

which can be solved by nearly any available QP solver, such
as quadprog in Matlab. To express (10) as (11), H = ΛT Λ,
f = −ΛTuA, C = (1T

m,−1T
m)T , and b = (1T

m,0
T
m)T .

2Note that in practice if you start with n intervals, there are (at most) 2n
values of µA(x) that are modeled by IAA.



B. General Basis Functions

Consider a set of general basis functions Φ(x) =
{φ1(x), . . . , φm(x)} on the survey domain, where φi : x →
R. Unlike an LBS described in Definition 1, this set of basis
functions follows no specified definition other than mapping
x to the real number line. Let µA(x) be represented as the
weighted sum of Φ(x),

µ̂A(x;w) =

m∑
i=1

wiφi(x), (12)

where w = (w1, . . . , wm)T is the vector of weights on the
respective basis functions, φi(x). Rather than constraining w
directly to ensure that µ̂A(x;w) has membership degrees on
[0, 1], as we did with the LBS, the constraint for the GBS
representation will be applied in the squared-error objective.

Again, consider the vector representations defined earlier, x,
uA, and ûA, and let Φ = [φj(xi)]

2n×m be the matrix where
the ith row and jth column is φj(xi). Thus, (12) is ûA = Φw.
Going through the same process as we did for the LBS, the
squared-error objective can be written as

w∗ = arg min
w

1

2
wT ΦT Φw − uT

AΦw, Φw ∈ [0, 1]2n, (13)

where the constraint now is on ûA = Φw to be on the interval
[0, 1]. The objective function at (13) can be expressed as either
a linear-constraint least square problem or as the QP at (11)
by H = ΦT Φ, f = −ΦTuA, b = (1T

m,0
T
m)T , and C =

[ΦT − ΦT ]T .

C. Discussion

The LBS weights, given that they are on the interval
[0, 1], not only represent a FS, but also are themselves FSs
that represent the membership in each of the linguistic basis
functions. Hence, if the LBS can be described by linguistic
terms, such as ‘big’ or ‘small,’ then the weights represent the
contribution of that linguistic term in the FS representing the
survey responses. Section V demonstrates this for a survey
where respondents were asked to indicate the interval between
0 and 10 that represents the word ‘little.’

Another attractive aspect of the basis function
representation—either LBS or GBS—is that FS operations
can be directly applied to the basis functions. Consider
two FSs, A and B, represented on the basis shown
in Fig. 6, A → wA = (0.1, 0.6, 0.4, 0.05, 0.01)T and
B → wB = (0.5, 0.2, 0, 0.01, 0.3)T ; illustrated in Fig. 6(a).
The intersection of these two sets is shown in view (b), which
is calculated by

(A ∩B)(z) = min

{
5∑

i=1

(wA)iφi(z),

5∑
i=1

(wB)iφi(z)

}
.

The computational complexity of computing A ? B using
the basis functions is O(m), where, to compute A ? B using
the original IAA representation is O(nA + nB), which is the
cost of sorting z into the IAA set of ordinals X and Y—
assuming that there are nA intervals in A and nB in B. Since
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(b) A ∩B

Fig. 6: Example of fuzzy intersection applied to FSs A and B
using the LBS representation.
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Fig. 7: (a) Survey responses for linguistic meaning of ‘little’
[7]. Each horizontal blue line indicates a survey response. (b)
IAA and eIAA results for ’little’ survey responses.

m � (nA + nB), the basis function representation is more
efficient.

For IT2 FSs, which are the result of IAA with uncertain
interval inputs, the IT2 FS is completely defined by its UMF
and LMF; hence, eIAA can simply be used on each of these
two defining sets. Thus, this makes eIAA also useful for the
case of uncertain interval inputs.

V. DEMONSTRATION

Figure 7(a) shows 174 survey responses where the respon-
dents were asked to indicate the interval for ‘little’ on a scale
of 0-10 (see [7] for a full description of these data). Clearly,
most respondents indicated ‘little’ as being on the low end of
the scale. The blue line in Fig. 7(b) shows the IAA model and
the dotted lines indicate the eIAA models of the 174 interval
responses. The eIAA membership functions were built with
5, 7, and 15 basis functions. The weighted basis functions are
shown in Fig. 8. As expected, as the number of basis functions
is increased, the eIAA approximation of the IAA membership
function is improved. The basis functions in Fig. 8 also show
that the linguistic content of the survey responses favors basis
functions that peak around 1-2, which is intuitively pleasing.

Next, we demonstrate how the eIAA method can be used
for FS operations on the FSs produced by IAA. Figure 9(a)
shows the FS produced by IAA on survey responses for the
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(c) 15 basis functions

Fig. 8: Contribution of eIAA basis functions for ’little’ survey
responses. The sum of these basis functions produces the eIAA
membership functions shown in Fig. 7(b).
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Fig. 9: Example of using IAA and eIAA-7 representations to
compute union of ‘little’ and ‘large’ survey responses.

word ’large.’ As expected, the high membership area for the
IAA ’large’ FS is around 8-9 on the survey scale. View (b)
of Fig. 9 shows the result of the union of ‘little’ and ‘large’
computed using the IAA FSs (blue line) and the eIAA FSs
(red line) using 7 basis functions. Unsurprisingly, the union
of the eIAA FSs is an excellent approximation of the union
of the IAA FSs.

VI. CONCLUSION

The IAA method provides aggregation and analysis for
crisp and uncertain interval survey responses. A challenge
with IAA is that the resulting FSs are defined by a large
number of membership-domain pairs—equal to the number
of input survey responses. This can not only result in storage
issues for huge survey pools, but also present challenges when
operating on the resulting FSs produced by IAA. The proposed
eIAA algorithm can significantly reduce the necessary storage
of the FSs and computational complexity of FS operations.
Furthermore, eIAA provides a way to approximate the survey
responses with linguistic prototypes, i.e., linguistic basis func-
tions, giving meaning to the IAA and survey analysis results.
We demonstrated this on a real survey where respondents were
asked to quantify the interval that describes the word ‘little.’

As was seen in the demonstration of using IAA and eIAA
with the words survey data, there were many survey respon-
dents that selected intervals for these words that would be
outside the typical definition of the word, i.e., most reasonable
respondents would not choose a value of 10 for the word,
‘little.’ Some respondents also chose very wide intervals,

with a few respondents choosing the interval 0-10 for their
response. The IA and EIA approaches attack this problem
with a statistical preprocessing and aggregation scheme. In
the future, for cases where outlier removal is appropriate, we
will examine using `1 regularization with (9) and (10), which
will prefer sparse solutions for the basis function weights—
essentially, choosing the linguistic bases that best fit the
responses and disregarding all others. We will also investigate
how regularization can automate the trade-off between the
number of basis functions and the accuracy of eIAA.

Lastly, we will investigate efficient methods for handling
inter-expert or inter-source uncertainty in surveys, which in
[8] were shown to be best represented by zSlice GT2 FSs.
This can be accomplished by using the eIAA idea on each
slice of the zSlice GT2 FS.
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