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Abstract—In a relational database context, fuzzy quantified
queries have been long recognized for their ability to express
different types of imprecise and flexible information needs. In this
paper, we introduce the notion of fuzzy quantified statements in
a (fuzzy) RDF database context. We show how these statements
can be defined and implemented in FURQL, which is a fuzzy
extension of the SPARQL query language that we previously
proposed. Then, we present some experimental results that show
the feasibility of this approach.

I. INTRODUCTION

The Resource Description Framework (RDF) [17] is the
standard data model promoted by the W3C1 for representing
information about resources available on the Web. SPARQL
[16], is the official W3C recommendation for querying these
data in a crisp way.

In a previous work [13], we proposed a first extension of
SPARQL (called FURQL) aimed to support flexible querying
of crisp and fuzzy RDF databases. In a relational database con-
text, fuzzy quantified statements have been long recognized for
their ability to express different types of imprecise information
needs [1]. Recently, such statements started to attract attention
of many researchers [20], [4], [5], [14] in a graph database
context. However, in the specific RDF/SPARQL setting, the
current approaches from the literature that deal with quantified
queries consider crisp quantifiers only [3], [6].

In the present paper, we intend to integrate fuzzy quantified
statements in a FURQL query addressed to a fuzzy RDF
database. We use as a starting point our previous work [14]
where we extended the CYPHER language, used for querying
crisp graph databases, with fuzzy quantified structural queries.

The remainder of this paper is organized as follows. Sec-
tion II presents background notions. In Section III, which is
the core of the contribution, we introduce the syntactic format
for expressing fuzzy quantified statements in the FURQL
language defined in [13] and we describe their interpretation.
Section IV deals with query processing and discusses im-
plementation issues. In Section V, some experimental results
showing the feasibility of the approach are presented. Related
work is discussed in Section VI. Finally, Section VII recalls
the main contributions and outlines research perspectives.

II. BACKGROUND NOTIONS

In this section, we recall important notions about both the
classical and the fuzzy RDF data models, as well as reminders

1World Wide Web Consortium

about the query languages SPARQL and FURQL. We also
provide a refresher about fuzzy quantified statements.

A. RDF and Fuzzy RDF (F-RDF) Data Models

The Resource Description Framework (RDF) [17] uses pair-
wise disjoint infinite sets of resource names, literals and blank
nodes (i.e., unknown or anonymous resources) respectively
denoted by U , L and B in the following.

Let us consider a music album as a resource of the Web.
A characteristic may be attached to the album, like a title,
an artist, a date or a set of tracks. In order to express such a
characteristic, the RDF data model uses a statement in the form
of a triple 〈s, p, o〉 ∈ (U ∪B)×U × (U ∪L∪B). The subject s
denotes the resource being described, the predicate p denotes
the property of the resource and the object o denotes the
property value. A triple states that the subject s has a property
p with a value o. For instance, the triple 〈Beyonce, creator,

B'Day〉 states that Beyonce has B'Day as a creator property,
which can be interpreted as Beyonce is a creator of B'Day.
A set of RDF triples can be modeled by a directed labeled
graph (called RDF graph or simply graph in the following)
where for each triple 〈s, p, o〉, the subject s and the object o
are nodes, and the predicate p corresponds to an edge from the
subject node to the object one. RDF is then a graph-structural
data model that makes it possible to exploit the basic notions
of graph theory (such as node, edge, path, neighborhood,
connectivity, distance, in-degree, out-degree, etc.).

Unfortunately, the classical RDF model is only capable
of representing Boolean notions whereas real-world concepts
are often of a gradual nature. This is why several authors
proposed fuzzy extensions of the RDF model. Throughout
this paper, we consider the data model based on Definition 1
which synthesizes the existing fuzzy RDF models of literature
(like e.g. [11] or [10]), whose common principle consists
in adding a fuzzy degree to edges, modeled either by a
value embedded in each triple or by a function associating
a satisfaction degree with each triple, expressing the extent to
which the fuzzy concept attached to the edge is satisfied. For
instance, the fuzzy triple (〈Beyonce, recommends, Euphoria〉,
0.8) states that 〈Beyonce, recommends, Euphoria〉 is satisfied
to the degree 0.8, which could be interpreted as Beyonce

strongly recommends Euphoria.
Definition 1 (Fuzzy RDF (F-RDF) graph ): An F-RDF graph

is a tuple (T , ζ) such that (i) T is a finite set of triples of
(U ∪ B)× U × (U ∪ L ∪ B), (ii) ζ is a membership function
on triples ζ : T → [0, 1].
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Figure 1. Fuzzy RDF graph GMB inspired by MusicBrainz

According to the classical semantics associated with fuzzy
graphs, ζ(t) qualifies the intensity of the relationship involved
in the statement t. Intuitively, ζ attaches fuzzy degrees to edges
of the graph. Having a value of 0 for ζ is equivalent to not
belonging to the graph. Having a value of 1 for ζ is equivalent
to fully satisfying the associated concept. In the graph GMB

of Figure 1, such edges appear as classical ones, i.e. with no
degree attached. The fuzzy degrees associated with edges can
be given or calculated. In its simplest form, each degree may
be based on a simple statistical notion, e.g. the intensity of
friendship between two artists may be computed as the number
of their common friends over the total number of friends that
they have.

Example 1: Figure 1 is an example of a Fuzzy RDF graph,
denoted by GMB in the following, inspired from MusicBrainz2.
It mainly contains artists and albums as nodes. For readability
reasons, each URI node contains the value of its name instead
of the URI itself. Literal values may be attached to URIs,
like the age of an artist, the release date or the global rating
of an album. The graph contains fuzzy relationships (e.g.
recommends) as well as crisp ones (e.g. creator,...).�

B. SPARQL and FURQL

SPARQL [16] is the standard query language promoted by
the W3C for querying RDF Data. It is a declarative query
language based on graph pattern matching, in the sense that
the query processor searches for sets of triples in the data
graph that satisfy a pattern expressed in the query.

2https://musicbrainz.org/

Roughly speaking, a graph pattern is defined as triples
where variables can occur, composed by binary operators
UNION, FILTER, OPTIONAL and . (concatenation).

Example 2: Listing 1 gives an example of a SPARQL
query that retrieves every artist such that the albums he/she
recommends have a rating under 4 and were created by another
artist connected by a path of friend links to him/her. �

SELECT ?art1 WHERE {
?art1 recommends ?alb. ?alb rating ?rating.
?art1 friend+ ?art2. ?art2 creator ?alb.

FILTER (?rating < 4) }

Listing 1. A SPARQL query

The language FURQL (Fuzzy RDF Query Language) de-
fined in [13], uses fuzzy extensions of the SPARQL graph
patterns introduced in [12] in order to express fuzzy pref-
erences on the entities of an F-RDF graph (through fuzzy
conditions) and on the structure of the graph (through fuzzy
regular expressions). A fuzzy graph pattern considers the
following binary operators: AND (SPARQL concatenation),
UNION (SPARQL UNION), OPT (SPARQL OPTIONAL) and FIL-
TER (SPARQL FILTER).

Syntactically, FURQL extends SPARQL by allowing the
occurrence of fuzzy graph patterns in the WHERE clause and
the occurrence of fuzzy conditions in the FILTER clause.
A fuzzy regular expression is close to a property path, as
defined in SPARQL 1.1 [8], and may involve fuzzy structural
properties (e.g. concerning the distance between two nodes or
the strength of a path).

Example 3: The FURQL query of Listing 2 retrieves the
artists that recommend low-rated albums made by friends or



related friends of friends, and performs an alpha-cut on the
answers (only those having a satisfaction degree greater or
equal to 0.3 are kept) The CUT clause is of course optional.�

DEFINEDESC low AS (3,6)
SELECT ?art1 WHERE {
?art1 recommends ?alb. ?alb rating ?rating.
?art1 friend+ ?art2. ?art2 creator ?alb.

FILTER (?rating IS low)
} CUT 0.3

Listing 2. A FURQL query

C. Fuzzy Quantified Statements

We first recall important notions about fuzzy quantifiers,
then we present different approaches from the literature for
interpreting fuzzy quantified statements.

1) Fuzzy Quantifiers: Fuzzy quantifiers makes it possible
to model quantifiers from the natural language (most of, at
least half, few, around a dozen, etc). Zadeh [21] distinguishes
between absolute (e.g, at least three) and relative (e.g, most)
quantifiers. Absolute quantifiers refer to a number while
relative ones refer to a proportion. An absolute quantifier is
represented by a function µQ from an integer (or real) range
to [0, 1] whereas a relative quantifier is a mapping µQ from
[0, 1] to [0, 1]. In both cases, the value µQ(j) is defined as
the truth value of the statement “QX are A” when exactly j
elements from X fully satisfy A (whereas it is assumed that
A is fully unsatisfied by the other elements).

Calculating the truth degree of the statement “Q X are
A” raises the issue of determining the cardinality of the set
of elements from X which satisfy A. If A is a Boolean
predicate, this cardinality is a precise integer (k), and then,
the truth value of “Q X are A” is µQ(k). If A is a fuzzy
predicate, this cardinality cannot be established precisely and
then, computing the quantification corresponds to establishing
the value of function µQ for an imprecise argument.

2) Interpretation of Fuzzy Quantified Statements: We now
present different proposals from the literature for interpreting
quantified statements of the type “Q B X are A” (which
generalizes the case “QX are A” by considering that the set
to which the quantifier applies is itself fuzzy) where X is a
(crisp) referential and A and B are fuzzy predicates.

a) Zadeh’s Interpretation: Let X be the usual (crisp) set
{x1, x2, . . ., xn} and n the cardinality of X . Zadeh [21]
defines the cardinality of the set of elements of X which
satisfy A, as: Σcount(A) =

∑n
i=1 µA(xi).

The truth degree of the statement “QB X are A” (with Q
relative) is then given by:

µ(QB X are A) = µQ

(
Σcount(A ∩B)

Σcount(B)

)
= µQ

(∑
x∈X >(µA(x), µB(x))∑

x∈X µB(x)

) (1)

where > denotes a triangular norm (e.g., the minimum).
b) Yager’s Competitive Type Aggregation: The inter-

pretation by decomposition described in [18] is limited to
increasing quantifiers. The statement “QBX are A” is true if
there exists a crisp subset C of X that satisfies the conditions

(c′1) Q B X are in C and (c′2) each element x of C satisfies
the implication (x is B)⇒ (x is A).

The truth value of the proposition: “QB X are A” is then
defined as:

µ(QB X are A) = sup
C ⊆X

min(µc′1
(C), µc′2

(C)) (2)

with

µc′1
(C) =


µQ

(∑
x∈C µB(x)

)
if Q is absolute,

µQ


∑
x∈C

µB(x)∑
x∈X

µB(x)

 if Q is relative
(3)

and µc′2
(C) = infx ∈ C µB(x)→ µA(x), where → is a fuzzy

implication (see e.g. [7]).

c) Interpretation Based on the OWA Operator: In [19],
Yager suggests to compute the truth degree of statements of the
form “QBX are A” by an OWA aggregation of the implication
values µB(x)→KD µA(x) where→KD denotes Kleene-Dienes
implication (a→KD b = max(1− a, b)).

Let X = {x1, . . . , xn} such that µB(x1) ≤ µB(x2) ≤
. . . ≤ µB(xn) and

∑n
i=1 µB(xi) = d. The weights of the

OWA operator are defined by: wi = µQ(Si)−µQ(Si−1), with

Si =
∑i

j=1

µB(xj)

d
and S0 = 0. The implication values are

denoted by ci and ordered decreasingly: c1 ≥ c2 ≥ . . . ≥ cn.
Finally:

µ(QB X are A) =

n∑
i=1

wi × ci. (4)

III. FUZZY QUANTIFIED STATEMENTS IN FURQL

In this section, we show how fuzzy quantified statements
may be expressed in FURQL queries. We first propose a
syntactic format for these queries, and then we show how they
can be evaluated in an efficient way.

A. Syntax of a Fuzzy Quantified Query in FURQL

In the following, we consider fuzzy quantified statements
of the type “Q B X are A” over fuzzy RDF graph databases,
where the quantifier Q is represented by a fuzzy set and
denotes either a relative quantifier (e.g., most) or an absolute
one (e.g., at least three), B is the fuzzy condition “to be
connected to a node x”, X is the set of nodes in the graph,
and A denotes a fuzzy (possibly compound) condition. An
example of such a statement is: “most of the recent albums
that are recommended by an artist, are highly rated and have
been created by a young friend of this artist”.

The general syntactic form of fuzzy quantified queries in the
FURQL language is given in Listing 3.

DEFINE...
SELECT ?res WHERE {
B(?res,?X)
GROUP BY ?res
HAVING Q(?X) ARE ( A(?X) ) }

Listing 3. Syntax of a FURQL quantified query R



The DEFINE clause allows to define the fuzzy terms and
the fuzzy quantifier (denoted here by Q). The SELECT clause
specifies which variables ?res should be returned in the result
set, B(?res,?X) and A(?X) are SPARQL patterns such that the
variables ?res and ?X appear in B, and ?X appears in A.

Example 4: The query, denoted by RmostAlbums, that aims to
retrieve every artist (?art1) such that most of the recent albums
(?alb) that he/she recommends are highly rated and have been
created by a young friend (?art2) of his/hers may be expressed
in FURQL as follows:

1 DEFINEQRELATIVEASC most AS (0,1)
2 DEFINEASC high AS (2,5)
3 DEFINEDESC young AS (25,40)
4 DEFINEASC recent AS (2010,2015)
5 SELECT ?art1 WHERE {
6 ?art1 recommends ?alb. ?alb date ?date.
7 FILTER ( ?date IS recent ) }
8 GROUP BY ?art1
9 HAVING most(?alb) ARE

10 ( ?art1 friend ?art2. ?art2 creator ?alb.
11 ?alb rating ?rating. ?art2 age ?age.
12 FILTER (?rating IS high && ?age IS young) )

Listing 4. Syntax of the FURQL quantified query RmostAlbums

where the DEFINEQRELATIVEASC clause defines the fuzzy rela-
tive increasing quantifier most of Figure 2.(c), the DEFINEASC

clauses define the (increasing) membership functions associ-
ated with the fuzzy terms high and recent of Figure 2.(a)
and (b), and the DEFINEDESC clause defines the (decreasing)
membership function associated with the fuzzy term young of
Figure 2.(d). In this query, ?art1 corresponds to ?res, ?alb
corresponds to ?X, lines 6 to 7 correspond to B and lines 10
to 12 correspond to A. �

B. Evaluation of a Fuzzy Quantified Query

The interpretation of a fuzzy quantified statement in a
FURQL query can be based on one of the formulas (1), (2),
and (4). We first derive the original query into an intermediate
query Rflat (given in Listing 5) aimed to retrieve the elements
of the B part of the initial query, matching the variables ?res

and ?X, for which we will then need to calculate the final
satisfaction degree. For each pair (?res, ?X), we retrieve all
the information needed for the calculation of µB and µA, i.e.,
the combination of fuzzy degrees associated with relationships
and node attribute values involved in B(?res,?x) and in A(?X),
respectively denoted by IB and IA.

SELECT ?res ?X IB IA WHERE {
B(?res,?X)
OPTIONAL { A(?X) } }

Listing 5. Derived query Rflat of RmostAlbums

A simple post-processing step makes it possible to calculate
the satisfaction degrees µB and µA according to IB and IA. If
the optional part does not match a given answer, then µA = 0.
For the sake of simplicity, we consider in the following that
the result of Rflat is made of the quadruples (?res, ?X, µB , µA)
matching the query.

Then, the answers to the initial fuzzy quantified query
R (involving the fuzzy quantifier Q) are answers to the

query Rflat derived from R, and the final satisfaction degree
associated with each answer e can be calculated according to
the three different interpretations mentioned earlier in section
II-C. Hereafter, we are going to illustrate this using Zadeh’s
approach [21] and Yager’s OWA-based approach [19] (which
are the most commonly used).

Following Zadeh’s interpretation we have:

µ(e) = µQ

(∑
(mi/?res=e)∈MRflat

min(µAi
, µBi

)∑
(mi/?res=e)∈MRflat

µBi

)
(5)

In the case of a fuzzy absolute quantified query, the final
satisfaction degree associated with each element e is simply
µ(e) = µQ

(∑
(mi/?res=e)∈MRflat

µAi

)
.

Example 5: Let us consider the query RmostAlbums of
Listing 4. We evaluate this query according to the graph GMB

of Figure 1. In order to interpret RmostAlbums, we first evaluate
the query Rflat of Listing 6, derived from RmostAlbums, that
retrieves “the artists (?art1) who recommended at least one
recent album (corresponds to B(?art1,?alb) in lines 2 and
3), possibly (OPTIONAL) highly rated and created by a young
friend (corresponds to A(?alb) in lines 6 to 8)”. This query
returns a list of mappings of artist variables (?art1) with
their recommended albums (?alb), satisfying the conditions
of query Rflat, along with their respective satisfaction degrees
µB = min(µrecent(?alb), ρrecommends(?art1, ?alb)) and
µA = min(µhigh(?rating), µyoung(?age), ρfriend(?art1, ?art2)).

1 SELECT ?art1 ?alb µB µA WHERE {
2 ?art1 recommends ?alb. ?alb date ?date.
3 FILTER (?date IS recent)
4 OPTIONAL {
5 ?art1 friend ?art2. ?art2 creator ?alb.
6 ?alb rating ?rating. ?art2 age ?age.
7 FILTER (?rating IS high && ?age IS young) } }

Listing 6. Query Rflat derived from RmostAlbums

In our example, Rflat concerns three artists X = {JustinT,
Shakira, Beyonce}. EnriqueI, Drake, Mariah and Rihanna do
not belong to the result set of Rflat because EnriqueI, Drake
and Mariah have not recommended any album made by any of
their friends and Rihanna did not recommend any somewhat
recent album. Then MRflat =
{(?art1→ JustinT, ?alb→ One dance, µB → 0.4, µA → 0.3),
(?art1→ JustinT, ?alb → Home, µB → 0.1, µA → 0.6),
(?art1→ Shakira, ?alb→ Euphoria, µB → 0.1 , µA → 0.07),
(?art1→ Shakira, ?alb → Butterfly, µB → 0.2, µA → 0),
(?art1→ Shakira, ?alb → Justified, µB → 0.3, µA → 0.4),
(?art1→ Beyonce, ?alb → Home, µB → 0.4, µA → 0.3)}.
Finally, assuming for the sake of simplicity that µmost(x) = x,
the final result of the query RmostAlbums evaluated on GMB using
Formula 5 is: {0.80/JustinT, 0.75/Beyonce, 0.62/Shakira}. �

Using Yager’s OWA-based approach, for
each element e returned by Rflat we calculate
µ(e) =

∑
(xi/?res=e)∈MRflat

wi × ci. Let us consider condition
B = {µB1/x1, ..., µBn/xn} such that µB1 ≤ ... ≤ µBn ,
condition A = {µA1/x1, ..., µAn/xn} and d =

∑n
i=1 µBi .
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The weights of the OWA operator are defined by wi =
µQ(Sxi

) − µQ(Sxi−1
) with Sxi

=
∑i

j=1

µBj

d
and the

implication values are denoted by cxi
= max(1 − µBi

, µAi
)

and ordered decreasingly such that c1 ≥ . . . ≥ cn.
Example 6: In order to calculate µ(Shakira) from Rflat,

let us consider B (resp. A) the set of satisfaction degrees
corresponding to condition B (resp. A ) of element Shakira as
follows B ={ 0.1/Euphoria, 0.2/Butterfly, 0.3/Justified}
and A= { 0.07/Euphoria, 0/Butterfly, 0.4/Justified}. We
have d = 0.6 and SEuphoria = 0.1

0.6 = 0.17, SButterfly = 0.1+0.2
0.6 =

0.5, and SJustified = 0.1+0.2+0.3
0.6 = 1.

Then, with µmost(x) = x, we get µQ(SEuphoria) = 0.17,
µQ(SButterfly) = 0.5 and µQ(SJustified) = 1. Therefore, the
weights of the OWA operator are W1 = µQ(SEuphoria) −
µQ(S0) = 0.17, W2 = µQ(SButterfly) − µQ(SEuphoria) = 0.33,
and W3 = µQ(SJustified)− µQ(SButterfly) = 0.5.

The implication values are cEuphoria = max(1−0.1, 0.07) =
0.9, cButterfly = max(1−0.2, 0) = 0.8, and cJustified = max(1−
0.3, 0.36) = 0.7.

Thus, c1 = 0.9, c2 = 0.8 and c3 = 0.7. Finally, we get
µ(Shakira) = 0.17 × 0.9 + 0.33 × 0.8 + 0.5 × 0.7 = 0.15 +
0.26 + 0.35 = 0.77. �

IV. IMPLEMENTATION

The evaluation strategy we propose for processing these
queries consists of a software add-on layer over a stan-
dard classical SPARQL engine. This software, called SURF3

(Sparql with fUzzy quantifieRs for rdF data), is implemented
within the Jena Semantic Web Java Framework4 for creat-
ing and manipulating RDF graphs. SURF evaluates FURQL
queries that contain fuzzy quantified statements whose syntax
was presented above. It basically consists of two modules.

1) A pre-processing module, the query compiler, produces
(i) the query dependent functions that allow us to com-
pute µB , µA and µ, for each returned answer, according
to the chosen interpretation, and (ii) a (crisp) SPARQL
query Rflat, which is then sent to the SPARQL query

3https://www-shaman.irisa.fr/surf/
4https://jena.apache.org

engine for retrieving the information needed to calcu-
late µB and µA. The compilation uses the derivation
principle introduced in [2].

2) A post-processing module first performs a GROUP BY of
the elements and, then, calculates µB , µA and µ for each
returned answer, ranks the answers, and filters them if
an α-cut has been specified in the initial fuzzy query.

Figure 3 illustrates this architecture.

FURQL query R

Compiling
RDF data

SPARQL
query (Rflat)

µB , µA and
µ functions

Crisp results

SPARQL query
evaluator engine

Score Calculator
(computation of µ,
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Software
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pre-processing
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Classical
SPARQL querying

Figure 3. SURF software architecture

For quantified queries of the type “Q B X are A”, the
principle is to first evaluate the fuzzy query Rflat derived from
the original query. For each tuple x from the result of Rflat,
we return the satisfaction degrees related to conditions A and
B, denoted respectively by µA and µB . The final satisfaction
degree µ can be calculated according to Formulas (1), (2)
or (4) using the value of µB and µA. At the current time,
Zadeh’s approach [21] and Yager’s OWA-based approach [19]
have been implemented, and the choice of the interpretation to
be used is made through the configuration tool of the system.
Finally, we get a set of answers ranked in decreasing order of
their satisfaction degree.



Table 1
SET OF FUZZY QUANTIFIED QUERIES

Query PB PA Conditions
Q1crisp simple simple crisp
Q2crisp complex simple crisp
Q3crisp simple complex crisp
Q4crisp complex complex crisp
Q1fuzzy simple simple fuzzy
Q2fuzzy complex simple fuzzy
Q3fuzzy simple complex fuzzy
Q4fuzzy complex complex fuzzy

V. EXPERIMENTAL RESULTS

In order to demonstrate the performances of our approach in
the case of selection SPARQL graph pattern queries, we run
some experiments. We considered a set of fuzzy quantified
queries divided in two types: Qcrisp and Qfuzzy where Qcrisp

(resp. Qfuzzy) is a fuzzy quantified query involving crisp
conditions (resp. fuzzy conditions). We processed four crisp
and four fuzzy queries by changing each time the nature of
the patterns corresponding to condition B and A from simple
to complex ones. A complex pattern differs from a simple one
by the number and the nature (including structural properties)
of its statements. These queries are summarized in Table 1.

Our RDF data is inspired by Musicbrainz linked data (which
is originally crisp), and for representing fuzzy information, we
used the reification mechanism that makes it possible to attach
fuzzy degrees to triples, as proposed in [22].

For these experiments, we used four different sizes of fuzzy
RDF datasets containing crisp and fuzzy triples (DB1 of 11796
triples, DB2 of 65994 triples, DB3 of 112558 triples and DB4

of 175416 triples. The results according to Yager’s OWA-based
interpretation are depicted in Figure 4. Figure 4 presents the
execution time in milliseconds of the processing of the fuzzy
quantified queries involving fuzzy conditions from Table 1
over the considered RDF datasets (due to space limitations,
results for queries involving crisp conditions are note given
but are quite similar). All experiments were carried out on a
computer running Windows 7 (64 bits) with 8GB of RAM.

An important result is that, for all the fuzzy quantified
queries involving fuzzy and crisp conditions presented in
Table 1, the processing time of the overall process is pro-
portional to the size of the dataset. It is especially striking
to see that the processing time taken by the compiling step
and the score calculation step, which are directly related to
the introduction of flexibility into the query language, are
very strongly dominated by the time taken by the SPARQL
evaluator (which includes the time for executing the query and
getting the result set).

Moreover, The FURQL compiling step takes so little time
compared to the other two steps that it cannot even be
seen in Figure 4. This time remains almost constant, and is
independent on the size of the dataset while slightly increasing
with complex patterns or fuzzy conditions. As to the score
calculation step, it represents around 10% of the time needed
for evaluating a crisp SPARQL query. The time used for

calculating the final satisfaction degree is of course dependent
on the size of the result and the nature of the patterns.

Finally, these results show that introducing fuzzy quantified
statements into a SPARQL query entails a very small increase
of the overall processing time.

This conclusion can obviously be extended to the case of
Zadeh’s interpretation, inasmuch as it is even more straightfor-
ward than Yager’s OWA-based approach. Thus, the processing
time of the score calculating step can only be smaller than in
the case of Yager’s OWA-based interpretation.

VI. RELATED WORK

In a graph database context, there have been some recent
proposals for incorporating quantified statements into user
queries. In [3], Bry et al. propose an extension of SPARQL
(called SPARQLog) with first-order logic (FO) rules and
existential and universal quantification over node variables.
This query language makes it possible to express statements
such as: “for each lecture there is a course that practices this
lecture and is attended by all students attending the lecture”.

More recently, in [6], Fan et al. introduced quantified graph
patterns (QGPs), an extension of the classical SPARQL graph
patterns using simple counting quantifiers on edges. On the
other hand, quantified graph patterns make it possible to
express numeric and ratio aggregates, and negation besides ex-
istential and universal quantification. The authors also showed
that quantified matching in the absence of negation does not
significantly increase the cost of query processing.

However, to the best of our knowledge, there does not exist
any work in the literature that deals with fuzzy quantified
patterns in the SPARQL query language, which was the main
goal of our work. Fuzzy quantified queries have been long
studied in a relational database context, see e.g. [1] whose
authors distinguish two types of fuzzy quantification: horizon-
tal quantification [9] used for combining atomic conditions
in a where clause and vertical quantification for which the
quantifier appears in a having clause in order to express a
condition on the cardinality of a fuzzy subset of a group. This
is the type of use we make in our approach.

In a graph database context, fuzzy quantified queries have
an even higher potential since they can exploit the structure
of the graph, beside the attribute values attached to the nodes
or edges (see, [20], [4], [5], and [14]). The work the most
related to that presented here is [14], where we considered
a particular type of fuzzy quantified structural statement in
the general context of fuzzy graph databases. An example of
such a statement is: “most of the recent papers of which x is
a main author, have been published in a renowned database
journal”. We showed how this statement could be expressed
in the language FUDGE (which is a flexible extension of the
CYPHER query language) that we previously proposed [15].

VII. CONCLUSION

In this paper, we have investigated the issue of integrating
fuzzy quantified queries of the type “Q B X are A” into a
language aimed to query fuzzy RDF graph databases. We



Figure 4. Fuzzy Quantified queries involving fuzzy conditions over different size of DB

have defined the syntax and semantics of an extension of
the FURQL query language, that makes it possible to deal
with such queries. A query processing strategy based on
the derivation of non-quantified fuzzy queries has also been
proposed, and we performed some experiments in order to
study its performances. The results of these experiments show
that the extra cost induced by the fuzzy nature of the queries
remains very limited, even in the case of rather complex fuzzy
quantified queries such as those considered in this approach.

As a future work, we plan to study other types of (more
complex) fuzzy quantified queries, in particular, those that aim
to find the nodes x such that x is connected (by a path) to
Q nodes reachable by a given pattern and satisfying a given
condition C.
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