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Entropy Fuzzy System Identification for the
Dynamics of the Dragonfly-like

Flapping Wing Aircraft
Fendy Santoso, Matthew A. Garratt, Sreenatha G. Anavatti, and Osama Hassanein

Abstract—In this work we present non-linear system identi-
fication for a class of the dragonfly-like flapping wing aircraft.
We model the system in its vertical and all attitude loops (roll,
pitch, and yaw) as well as its actuator dynamics. Based on a set
of input-output data, obtained from first principle modelling; we
perform the entropy fuzzy system identification to derive the open
loop dynamics of the aircraft using the Mamdani Fuzzy inference
method, which is more intuitive, despite being non-linear. This
will make the proposed models well-suited to non-expert users
(e.g. average drone operators). Our research indicates that the
information entropy is very effective to maximize the system
accuracy while avoiding overfitting problems. Through numerical
simulation, we demonstrate the efficacy of the proposed fuzzy
models as we can achieve reasonably good average modelling
accuracy of around 90 % for all attitude loops.

Index Terms—Non-linear System Identification, Entropy
Fuzzy, Dragonfly-like Flapping Wing Aircraft.

I. INTRODUCTION

T He advent of intelligent robots has brought numerous

advantages in modern societies to improve safety and

productivity. For instance, robotic sensor networks can per-

form self-deployment to secure a protected region [1], [2],

[3] while unmanned underwater vehicles (UUVs) are suitable

for dangerous maritime and underwater explorations [4], [5].

Furthermore, the developments of unmanned aerial vehicles

(UAVs), also colloquially known as drones, have numerous

applications in both civilian and military domains (e.g. forest

and wildlife monitoring [6], aircraft inspection [7], search and

surveillance [8], law-enforcement [9], counter-drug operations

[10], and smart cities [11], to name a few.)

Today, current research trends in aerial robotics have led

to the developments of micro aerial vehicles (MAVs), which

can be defined as a class of UAVs that have much smaller

physical dimension (<15 cms) with a mass less than 90 grams

[10]. Its light-weight design can substantially conserve in-

flight power consumption leading to extended flight duration

(longer endurance) and minimum downtime, lower noise, and

also potential for low production costs [10], [12].

Mimicking avian aeromechanics, several researchers have

developed flapping wing MAVs. For instance, a 60 mg insect

scale MAV - with 3 cm wing span MAV in [13] as well
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as the 10 gram nano-hummingbird in [14] are some relevant

examples of artificial birds. However, in this paper, we refer

to the previous research conducted by Kok and Chahl in [15],

where the authors developed a low cost simulation platform

for a 40 gram flapping wing aircraft based on the concept of

the quasi steady blade element model.

Inspired by four-wing insects, the flapping wing of our

interest is known as the ‘Dragonfly’ MAV, which can offer

numerous advantages compared to the conventional fixed or

the rotary wing aircraft. The proposed system has a proficiency

in three flight modes, namely, glide, hover, and agile maneu-

ver, including (take-off, roll and yaw turns) [15], [16], [17].

Mimicking birds and insects, the system has the capability of

pitching up at higher angles-of-attack and decelerating rapidly

to approach the target [15]. Nonetheless, its small dimensions

and low velocities may lead to aerodynamic challenges due

to lower Reynolds number effects. However, this challenge

can be overcome by flapping the wings to increase Reynolds

number [10].

The system works based on the unsteady aerodynamics [10],

achieved by creating upstroke and down-stroke movements of

the wings. The size of the wing may be adjusted and rotated

about the chord to achieve high degree of freedom. As the

system flaps, the aircraft needs to make the correct angle-of-

attack in order to be able to generate an optimum lift. Flapping

wing aircraft offer diverse combinations of forces to support

their motions. Although there are two basic ways of flying,

such as flying with lift or with thrust; there are also some

flying combinations using both lift and thrust.

Unlike fixed-wing aircraft that employ their wings to pro-

duce lift and engine to produce thrust; flapping wing aircraft

can produce the combination of both forces simultaneously

through complex relationships between the frequency, ampli-

tude and phase relationships of the wing plunging and pitching

motions. Interested readers may refer to [13], [14].

Owing to its unique airframe construction, flapping wing

MAVs can also provide natural camouflage because of their

resemblance to insects or birds. Thus, MAVs are very suitable

for surveillance in military and law enforcement applications.

Meanwhile, in agriculture, flapping wing MAVs have been

developed to control the population of certain birds and to

clear landfills and waste management sites of the unwanted

birds. An example of this application is a remotely piloted

robotic bird, known as ‘rhobird,’ an artificial prey bird, which

is realistic enough to frighten the unwanted birds [18].

It is not currently possible to effectively control a flapping
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wing aircraft with manual human controls due to the high

number of control variables and the required control bandwidth

in addition to being heavily over-actuated. Thus, the system

requires the availability of robust autopilot systems. While the

performance of traditional control systems are still heavily re-

liant on the accuracy of the mathematical model, fuzzy systems

allow simpler and more practical solutions for modelling and

control of complex non-linear systems, in particular for the

flapping wing aircraft of our interest. In addition, this paper

also serves as an initial study towards the development of the

evolutionary fuzzy controller for a flapping wing aircraft.

Known as the robust universal approximator [19], fuzzy

systems allow complex systems to be approximated using a

set of fuzzy ‘If-Then’ rules, allowing better robustness and

flexibility, compared to the traditional model-based control

systems, whose performance completely relies on the accuracy

of the proposed mathematical model in the form of the transfer

functions or the state space equations [20], [21]. It is clear that

traditional mathematical models often fail to capture the entire

behaviours of complex dynamical systems, such as those due

to strong non-linearity and time-varying characteristics.

Meanwhile, there are other advantages of employing fuzzy

systems for modelling and control of complex systems. Con-

sidering their intuitive nature [19], deeper insight into the

behavior of the systems could be drawn, even from the per-

spective of the non-expert users (e.g. average drone operators).

This way, non-specialist users could directly comprehend the

characteristics of the proposed systems by examining their

associated fuzzy rule-base, given they are sufficiently small

and simple [19].

A. Related Work

Most current research in robotic aircraft still heavily fo-

cuses on fixed and rotary wing aircraft (e.g. quadcopter

and helicopter [20], [22], [23]). Although some researchers

have studied the mathematical models of the flapping wing

aircraft [24], more studies are required to fully comprehend

its dynamics, especially for the dragonfly model [15]. Many

mathematical models seem to be very complicated and lack

of practical consideration, such as those derived from first

principle approaches [25], requiring complete knowledge of

the forces applied in wings, body and tails, which may not

be practical. Other non-linear approaches (e.g. Lagrangian

[26]) employ complex non-linear differential equations, in

which one needs to overly simplify several assumptions and

constraints to be able to solve the equations.

To the best of our knowledge, none has employed the

concept of the entropy fuzzy in robotic aircraft, despite their

numerous potential benefits, such as the ability to prevent

overfitting problems, while still maintaining reasonably high

accuracy. Overfitting, such as being excessively complex rel-

ative to the characteristics of the data, which is a common

problem in knowledge acquisition and data extraction [27],

can lead to many disadvantages that may hinder the real-

time applications of the control algorithms, especially for

small UAVs (e.g. DI-MAVs). This will lead to poor predictive

performance and computational expense.

Accordingly, the contribution of this paper, addressing cur-

rent research gap, is to firstly develop accurate entropy fuzzy

models, representing the non-linear dynamics of the DI-MAV

along its four loops in addition to its actuator. We believe

that our work can pave the way towards the development of

fuzzy logic in modelling and control of flapping-wing aircraft

(e.g. for its simplicity and computation, despite being non-

linear) compared to other model based and non-linear system

identification techniques. Using the well-known concept of

the ‘information entropy,’ we can optimise the accuracy of

the proposed fuzzy models while avoiding overfitting. We

demonstrate the efficacy of our proposed fuzzy models in

terms of its accuracy and simplicity.

The organisation of this paper is as follows. Section II

depicts the physics, governing the dynamics of the DI-MAV

while Section III describes the concept of the non-linear

system identification, in particular the concept of the fuzzy

entropy used in our system. Section IV highlights the efficacy

of the proposed fuzzy model while Section V concludes this

paper.

II. DRAGONFLY-INSPIRED MICRO AERIAL VEHICLE

(DI-MAV) DYNAMICS

This section discusses the physical laws, governing the

dynamics of the flapping wing aircraft. We employ the quasi-

steady state element as discussed in [15] to analyse the

aerodynamic forces, which will later be combined with the

environmental forces to determine the overall dynamics of the

DI-MAV.

Firstly, the flapping angle φ of all four wings can be

represented using the following equation:

φ(t) = φ0 cos(π f t), (1)

where f indicates the flapping frequency, φ0 denotes the

flapping amplitude, and t indicates time. Moreover, the angle-

of-attack α can be represented as follows:

α = αm −α0 sin(ωt +Δφ), (2)

where ω = 2π f represents the angular flapping velocity, αm
indicates the mean angle-of-attack, α0 denotes the amplitude

of the pitching oscillation, and Δφ highlights the rotational

phase. The schematic diagram, detailing the position of each

actuator with respect to the rigid body is given in Fig. 1.

Fig. 1. An illustration of the flapping wing airframe in the body coordinate
system. Numbered circles denote the position of the actuator controls.



3

According to Wang [28], [29], [30], the equations for the

lift CL, and the drag CD coefficients as well as the rotational

pressure Cr employed as the basis for calculating the flight

dynamics can be presented as follows:

CL = 0.225+1.58sin2.13α −7.2

CD = 1.92−1.55cos2.04α −9.82

Cr = π(0.75− x̂0),

(3)

where x̂0 is the rotational axis from the leading edge. Thus, the

aerodynamics forces due to the translational and the rotational

motions of the wings can be calculated as follows:

dL = 0.5ρV 2CLdS

dD = 0.5ρV 2CDdS

dFrot =Crρc2Uα̇dr,

(4)

where L, D and S indicate lift, drag, and the surface area of

the wing, respectively. Meanwhile, ρ indicates the density of

the air, V and U represent the velocity due to wind speed and

the translational velocity of the wing, and Frot is the rotational

force. Thus, the following vector summaries some important

input variables or the flapping parameters of each wing: u =
[β f φ0 θm θ0 Δφ ]T , where β indicates the stroke plane angle.

One important characteristics of the dragonfly flight is the

phase relation between the fore-wings and the hind-wings,

whose aerodynamic interactions may enhance the net vertical

force, as opposed to the two independent wings [30]. Thus,

the wings beat out of phase (counter-stroke) during steady

hovering to slightly decrease the net vertical force, the force

fluctuation, the body osculation as well as to minimise the

aerodynamic power. Meanwhile, during take off the wings beat

nearly in-phase.

While the amplitude and the frequency of the wing-beat

plays an important role in creating the vertical take-off ac-

celeration, the flapping amplitude and the stroke angle de-

termine the roll and yaw rate, respectively. For instance, 10

% frequency increase will result in a 2g increase in vertical

acceleration while an increase in the flapping amplitude of the

left pair wing creates right roll of 1.76 rad/s within two beats.

The decrease of the stroke plane angle of the left wing results

in the averaged yaw rate of 2.54 rad/s within two wing beats

[15].

Furthermore, the relation between environmental factors

(e.g. the gravity and the wind) with respect to the body force

vectors F can be defined as follows [31]:

F̄ = [Fx, Fy Fz] = m(a+ ω̄ ×V̄b), (5)

where m represents the mass (kg), Vb indicates the velocity

of the body frame (m/s), a denotes the acceleration (m/s2).

Likewise, the rotational dynamics of the rigid body frame with

respect to the moments [L M N] can be depicted as follows

[31]:

M̄b = [L M N] = I ˙̄ω + ω̄ × Iω̄ , (6)

where I denotes the moment of inertia of the body.

III. ENTROPY FUZZY SYSTEM IDENTIFICATION

In this section, we will discuss the concept of the entropy

fuzzy system identification, employed to model the dynamics

of the DI-MAV.

A. Problem Statement

General problem statement of the non-linear system iden-

tification can be described using the following vector of

measurements (7):

ŷ(k+1)= f{u(k), ...,u(k−m+1),y(k),y(k−1), ...,y(k−n+1)},
(7)

where ŷ(.) denotes the output of the identified model, f{.}
denotes the unknown function, m and n are the numbers of

the past input u and output y data, respectively. We employ

the concept of the black box modelling since the physical

insight of the system is not understood a-priori, as apposed to

the white box counterparts, where the dynamics of the system

will be derived from first principle.

In terms of the system configuration, there are two major

identification techniques, namely, the parallel and the series-

parallel models. While the parallel model employs the output

Fig. 2. Block diagram of the serial-parallel system identification. Prediction
error e is defined as the difference between the output of the plant y and the
output of the identified model ŷ, that is, e = y− ŷ and is used to improve the
accuracy of the model.

history from the identified model; series-parallel configuration,

as in Fig. 2, employs true output of the plant directly as the

input to the model. Thus, it is apparent that the series-parallel

configuration can provide better robustness since the system

does not propagate or accumulate the prediction error.

B. Entropy-Based Fuzzy System Identifier

In this section, we will discuss the concept of the entropy

fuzzy, followed by the structure of the fuzzy network identifier.

We also recall the concept of the back propagation of the error

to fine-tune the parameters of the fuzzy membership functions.

1) The Concept of the Entropy Fuzzy: Entropy, in physics,

generally refers to the degree of the disorder or uncertainty in

closed dynamic systems. In the context of information theory,

nonetheless, the concept of the Shannon’s Entropy (named

after Claude Shannon) indicates the expected value of the

information contained in each message, which also indicates

the limit of the best average length of the lossless encoding

of an information source.

Intuitively, given the fuzzy set F defined on X with F(x)
and G(X) represent the membership function and the overall

fuzzy sets, defined on X ; the entropy fuzzy of F , denoted
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by H(F) satisfies the following requirements [27]: (1) H(F)
will be minimum iff ∀x ∈ X , F(x) = 0 ∨ F(x) = 1, (2)

H(F) will be maximum iff ∀x ∈ X , F(x) = 0.5. Maximum

entropy implies more information will be received. Thus,

it is desirable. Mathematically, Shannon’s Entropy can be

formulated as follows:

H(X) =−
n

∑
i=1

P(xi) logb{P(xi)}, (8)

where b is the base of logarithmic, normally b = 2. However,

some commonly used values include b = e and b = 10. The

equation in (8) will be used as a threshold of decision, to

determine whether it is necessary or not for the system to add

a new rule. This way, one can make the most of the existing

fuzzy rules and to avoid overfitting issues.

Within our research group, the authors in [32] implemented

the concept of the entropy-based fuzzy modelling and control

techniques for an underwater vehicle. The process consists of

two major steps. While the off-line step employs the concept of

entropy to avoid over fitting while still maintaining reasonably

good accuracy, the back propagation of the error is employed

to fine tune the parameters of the fuzzy systems.

More specifically, the entropy will be determined based on

the firing strength of each rule, indicating the association of the

incoming pair to a certain cluster. Accordingly, the maximum

entropy can be calculated as follows:

HLmax = max
1≤X≤R(t)

HL, (9)

where R(t) indicates the number of the existing rules at time

kT .

The error between the data employed in the structure

generating phase and the output of generated model will be

calculated. Should the design objectives are met, the generated

model will enter the next phase, otherwise, HL as in (9) will be

adjusted. A new rule will be generated if HLmax ≤ H̄L, where

H̄L denotes a predefined threshold. Thus, lower H̄L indicates

fewer rules, while higher H̄L denotes the requirement of having

more rules. The selection of the threshold of the entropy will

accordingly affect the accuracy of the modelling.

After the generation of new rules, the next step is to define

the initial mean and variance for that membership functions

and the consequent part, namely, c ji, σ ji, b ji and σi where

c ji and σ ji denote the centre and the width of the Gaussian

membership functions of xi while b ji and σi denote the pa-

rameters of the consequent layer. The process will be repeated

until all the input-output data has been fully examined. The

system employs the supervised learning technique by means

of the back-propagation technique.

2) Fuzzy Network Identifier: Unlike conventional mathe-

matical modelling techniques, fuzzy systems can be regarded

as a method of describing the dynamics of complex systems

by means of the linguistic ‘If-Then’ rules:

R(1) : IF(x1 is F1
1 , and ... and xn is F1

n ) Then y1 is G1, (10)

where x ∈ Un and y ∈ Rm indicate the input and output

variables of the fuzzy system, respectively, while A and B are

the labels of the fuzzy sets in U and R domains, respectively.

Fig. 3. The structure of the five layers of the Mamdani fuzzy network
identifier, employed to model the dynamics of the flapping wing aircraft.

As discussed in [33], fuzzy systems can be represented in

the form of five layers of feed-forward network, as seen in

Fig. 3. While the first layer, as in (10), passes the crisp input

to the subsequent layer, the calculated membership in layer

two can be presented as follows:

L(2)
ji = exp

(
−0.5

(xi − c ji)
2

σ2
ji + ε

)
, (11)

where ε > 0 indicates a small constant, so that given σi j =
0, the function is still well-defined. Given (11), the output

function of the third layer can be described as follows:

L(3)
j =

N

∏
i=1

L(2)
ji , (12)

where L(3)
j indicates the firing strength of the corresponding

rule. Considering (12), the output of layer 4, known as the

consequent layer can be computed as follows:

L(4)
j = bi

L(3)
j

σ2
i + ε

. (13)

Finally, the outcome of layer 5 can be described as follows:

ŷ(x) =

M

∑
j=1

b j

[
N

∏
i=1

exp
(
−0.5

(xi−c ji)
2

σ2
ji+ε

)
σ2

i + ε

]

M

∑
j=1

[
N

∏
i=1

exp
(
−0.5

(xi−c ji)
2

σ2
ji+ε

)
σ2

i + ε

] , (14)

where N denotes the number of fuzzy rules. The free param-

eters of the fuzzy model in (14), updated in the adaptation

process, are c ji, σ ji, b j, and σi.

3) The Back Propagation of Error: We employ the

gradient-based learning method, known as the back propaga-
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tion of the error, adjusting the parameters of the system based

on the negative gradient of a certain cost function (15).

J =
1

2

q

∑
i=1

(ŷ(k+1)− y(k+1))2, (15)

where ŷ(k) denotes the predicted output and y(k) highlights

the actual output of the system. Meanwhile, fuzzy parameters

z(k) can be optimised using the following rules:

z(k+1) = z(k)−α
∂e
∂ z

, (16)

where α indicates the rate of the learning, determining the

stability and the convergence of the system.

Considering (16), we train the fuzzy systems and update bi
as follows:

b(k+1) = b(k)−α
L(3)

j

Biσ2
i j + ε

, (17)

while σi is optimised as follows:

σi(k+1) = σi(k)−
{

α
bi − y

Bi

}{
L(3)

j

(σ2
ji + ε)2

}
(−2σ ji). (18)

Moreover, c ji is defined as follows:

c ji(k+1)= c ji(k)−α

{
bi − y

Bi

}{
L(3)

j

σ2
ji + ε

}{
x j − c ji

σ2
ji + ε

}
, (19)

while σ ji is trained as follows:

σ ji(k+1)=σ ji(k)−α

{
bi − y

Bi

}{
L(3)

j

σ2
ji + ε

}{
2(xi − c ji)

2

(σ2
ji + ε)2

}
σi,

(20)

where Bi =
N

∑
i=1

L(3)
j

σ2
i + ε

. In what follows, we will study the

performance of the entropy fuzzy system identification to

model the dynamics of the DI-MAV.

IV. SYSTEM PERFORMANCE

In this section, we study the effectiveness of the proposed

entropy fuzzy models. We first study the dynamics of the

actuators before moving into the open loop dynamics of the

rigid body of the flapping wing aircraft in its vertical and all

attitude loops. For the purpose of data collection, we employ

a sampling rate of 100 Hz.

A. The Aerodynamic Force of the Actuator

The actuator of the DI-MAV aircraft can be regarded as a

multi-input, multi-output system since it has 6 major inputs:

u = [β f φ θm θ0 Δφ ]T (see Section II) and 2 major outputs in

terms of the actuator forces Fa, namely, Fa = [Fax Faz ]
T , since

Fay ≈ 0. However, for each actuator, Faz is the most dominant

component compared to Fax . Also, it should be pointed out that

flapping amplitude and frequency are the two most dominant

inputs, compared to the rest, namely, angle of attack and stroke

plane whose effects are negligible.

1) The Dynamics of the Vertical Force Faz: To perform the

fuzzy system identification of the Faz , we first set the target

entropy to 0.178 and vary both f and φ0 while other variables

are set to be constant. We record the average value of the

vertical output forces Faz . The identification outcome for the

mean of the Faz is given by Fig. 4 while the entropy fuzzy

model (system parameters) for the mean of the vertical force

Faz are given by Fig. 5. As indicated, the prediction of our

fuzzy model is highly accurate as it can closely mimic the

actual force output of the actuator. For the target entropy
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Fig. 4. (a) Top left: Modelling of the vertical force of an actuator along z-axis
under varying frequency between 5.5-6.5 Hz and varying φ0 as given by a
chirp signal with an amplitude of ± 30 and a sweeping frequency up to 5
Hz, (b) Top right: modelling error of Fz, (c) Bottom Left: The validation of
Fz where we feed the system with a set of different signal up to 7 Hz and
varies its amplitude as given by the chirp signal with a sweeping frequency
up to 8 Hz, (d) Bottom right: the validation error of Fz.

HL of 0.007, we can achieve a fuzzy system containing 18

membership functions as indicated in Fig. 5. The proposed

0 200 400 600 800 1000
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-60

-40

-20

0

20

40

60

b
(k

)

Fig. 5. The evolutionary process of our fuzzy parameters: (a,b) Left: σi, j and
ci, j as a function of k, (c) Right: b j as a function of time in seconds.

model performs well as indicated by its accuracy.

2) The Dynamics of the Horizontal Force Fax : In this

section, we will model the mean of the horizontal force Fax as

a function of the similar actuator inputs. We decrease the target

entropy HL into 0.002 to achieve fewer membership functions.

The proposed fuzzy model now only contains 8 membership

functions as indicated in Fig. 7. Accordingly, we can achieve

simpler fuzzy model to reduce the computational burden of

the system.
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Fig. 6. (a) Top left: modelling of the horizontal force of an actuator along
x-axis under the frequency between 5.5-6.5 Hz and varying φ0 as given by the
chirp signal with an amplitude of ± 30 deg and with a sweeping frequency up
to 5 Hz, (b) Top right: the modelling error of Fx, (c) Bottom left: validation
signal of the Fx, where we feed the system with a set of different chirp signal
up to 7 Hz and varying amplitude as given by the chirp signal with a sweeping
frequency up to 8 Hz, (d) Bottom right: the validation of the error of Fx.

The resulting fuzzy parameters for the input membership

function ci, j, σi, j, and the output membership function b j are

given in Fig. 7. This way, one can also claim that the algorithm

0 100 200 300 400 500 600 700 800 900 1000
Sampling Time k
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-100

-50

0

50

100

150

b(
k)

Fig. 7. (a, b) left: σi, j and ci, j as a function of k given Ts = 0.01s, and (c)
Right: b j as a function of time in seconds.

is sufficiently robust in the face of the frequency variation.

The performance of the entropy fuzzy system identification is

fairly stable in the higher frequency regions as in the lower

frequency counterparts. This will bring more confidence about

the feasibility of the identification algorithm to be employed

in the real-time control systems. In this scenario, the accuracy

of the proposed model is greater than 80 %.

B. Rigid Body Dynamics

The DI-MAV of our interest has four actuators and each

actuator, as earlier discussed, can be regarded as a 6 input

system. Thus, the overall rigid body dynamics of our DI-

MAV has 24 inputs with 6 degree of freedom as the output,

namely, y = [Vbx Vby Vbz ωbx ωby ωbz ]
T . However, to simplify

the analysis we will consider the frequency, amplitude, and

phase as the most dominant input. The output of interest is

given by the vertical velocity Vbz , and the attitude of the aircraft

[φ θ ψ ]T , representing the roll, pitch, and yaw, respectively.

1) Vertical Velocity Dynamics: To model the vbz , we apply

the same φ0 for each actuator, which is fed by the same

chirp signal. We set the target entropy HL = 0.05. We also

consider the worst-case scenario, where the input signals for

modelling is made different from the input signal we employ

for validation. For each actuator, the frequency of the chirp

signal is set around 5 Hz for modelling and around 6 Hz for

validation. Likewise, we set a chirp signal with an amplitude

of ±70 deg, while for validation we adjust it to become ±60

deg. To make it more realistic we introduce Gaussian noise of

0.01 Watt in both chirp signals.

While the quality of the prediction and the validation

performance of the Vbz can be found in Fig. 8, the adaptation

process of all fuzzy parameters in all membership functions

can be obtained in Fig. 9. In what follows, we will model
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Fig. 8. (a) Top: modelling of the vertical velocity vz of the rigid body of
the aircraft under varying f and φ0 (b) Bottom: the validation outcome of the
proposed fuzzy model.
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Fig. 9. The optimisation process of the fuzzy parameters of the vbz with 41
membership functions.

the dynamics of the attitude loops, namely, the roll, pitch, and

yaw.
2) Roll Dynamics: For the purpose of data collection,

we need to generate an oscillating roll to comprehensively

capture the dynamics of the system. We will apply a couple

of the inverse chirp signals with a magnitude of 15 deg.

Thus, the input of the right actuators (no. 3 and 4) is in the

opposite sign of the input of the left actuators (no. 1 and 2).

Furthermore, we set the input flapping frequency f = 5−6 Hz.

Likewise, for validation, we do a similar thing, except we
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change the magnitude of the amplitude to become 25 deg

and with the sweeping rate of the chirp signal around 6-7

Hz. With HL=0.01, we can achieve as few as 6 membership
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Fig. 10. Modelling the dynamics of the roll loop φ of the rigid body under
varying f and φ0.

functions only, whose parameters in time are given in Fig. 11.

Overall, we can achieve a very good model whose accuracy is

highlighted in Fig. 10 with a validation accuracy of 92.5 %.

Fig. 11. Fuzzy parameters of the roll loop as represented by (a) σi, j , (b) ci, j
as a function of k, and (c) b as a function of sampling time k.

3) Pitch Dynamics: As with the roll dynamics, we create

an oscillating pitch by applying different inputs e.g. front

actuator (no. 1 and 4) with respect to the back actuator (no.

2 and 3), see Fig. 1. This can be achieved by setting a

different amplitude and frequency in the inverse pair, similar

to the case of the roll loop. To obtain the fuzzy model with

fewer membership functions, we set HL=0.001. This way,

we end up having a fuzzy model, comprising of three fuzzy

membership functions as given in Fig. 13. We should point out

that the accuracy of both modelling and validation, as given

by Fig. 12, is reasonably good. This indicates the effectiveness

of the proposed model, despite the system only employs 3

membership functions.

4) Yaw Dynamics: In this section, we will discuss the

dynamics of the yaw loop. To control yaw, we can use either:

phase, amplitude, frequency or any combination of them.

Unlike the roll and pitch, we choose a pair of actuator in
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Fig. 12. Modelling of the pitch θ of the rigid body under varying f and φ0.

Fig. 13. Fuzzy parameters of the pitch loop as represented by (a) σi, j , (b)
ci, j , and (c) b as a function of k.

the diagonal position, namely, the actuators (1,3) to interact

with the force produced by another pair of actuators (2,4)

to create a sufficient yaw moment. The performance of the

proposed fuzzy model is given in Fig. 14. With HL = 0.25,
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Fig. 14. Modelling of the yaw ψ of the rigid body under varying φ0 and θ .

we acquire a fuzzy model with 34 membership functions,

achieving modelling accuracy of around 98 %.

As can be seen, the system can achieve reasonably good
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accuracy as it can adapt to the totally new input signal during

the validation process.

V. CONCLUSION

We have performed non-linear system identification for a

class of the dragon-fly inspired micro aerial vehicles. Lever-

aging on the benefits of the information entropy, we come up

with highly accurate fuzzy models with accuracy ≥ 90% for

all attitude loops.

The proposed fuzzy models are also very computationally

efficient since they can accurately represent the non-linear

dynamics of the flapping wing aircraft with only as few as

three membership functions only given the complex nature

of the dragonfly-like flapping wing aircraft, which can be

regarded as a 12 input rigid body system. The ability to avoid

overfitting is another advantage of the entropy fuzzy system.

This feature is critical for real time applications, especially for

small aircraft, where we are often faced by the limitation of

the on-board computer.

Owing to the nature of the Mamdani fuzzy system which

is knowledge-based, the proposed model is also known for

its transparency, despite being non-linear; making it easier for

the average drone operators to get the message. Our research

also indicates the robustness of the proposed model in the face

of parameter changes and frequency variations, an important

feature for robust control systems.
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