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Abstract—Composite indices are used in many of the tradi-
tional approaches to measure risk to natural hazards. However,
such indices are often built assuming linear interdependencies
between the aggregated components, comprising in this way any
realistic representation of the intricate and unseen processes that
are behind each component along with their mutual influences
when it comes to encapsulate a complex reality in a single
construct. In this paper we used a Fuzzy Inference Systems type
Mamdami to aggregate physical seismic risk and social vulner-
ability indicators without assuming linearity. The aggregation is
made by establishing rules (if-then type) over the indicators in
order to get a fuzzy composite index. We generated solution
surfaces representing the outcome of a widely known linear
aggregation method and the fuzzy system. Finally we performed a
qualitative comparison between both to highlight their differences
and possible consequences in terms of risk management

Index Terms—Fuzzy Sets, Risk Management, Seismic Hazard,
Seismic Vulnerability, Inference System, Composite Indices

I. INTRODUCTION

The use of composite indices is a well established practice
over many field of knowledge. Ranging from simple marketing
schemes to natural sciences, a composite index is a suitable
way of representing a sort of encapsulated or compressed view
of a more complex reality. A composite index is formed by
indicators which are in turn raw data that has been collected,
organized and presented in order to give information about a
status or a condition of interest. Even if indicators can be used
solely as independent entities of measure, most of the time they
get aggregated to form indices. The aim is to include into a
single result a range of variables described by the indicators
in order to achieve a model, which covers reality in a more
comprehensive manner.
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In this way, a composite index may be used to handle
intangible process, hidden trends or matters of wider signifi-
cance than that which is actually measured and present them
all as quantifiable entities that can be compared across space
and time scales. One of the advantages of composite indices,
is their potential to be used as a reference point to assess
effects and trends or to be included later on into a more
comprehensive or complex model.

A composite index is then the final outcome of method
intended to compound a form of influence of all considered
indicators to describe a certain attribute. Since an index output
will consist most of the time on a single value or number,
the normal way to compound indicatorś influences is by
aggregation methods. Once such influences are joined, the
index can be considered as a representation of new attribute or
dimension that might be poverty, development, commitment,
vulnerability, etc. Examples are the Human Developed Index
[8], the Commitment to Development Index [13], or the Global
Risk index [14].

Generally, there are two main assumptions when aggrega-
tion among indicators is about to be performed: (1) they are
independent; (2) the influence among indicator follows a linear
pattern. A linear aggregation is useful though, just in the case
that all indicators share the same measurement units, since
they can be added without loosing generality as stated in [11].

One major assumption of a linear aggregation scheme is the
preference independence between indicators (or, that among
indicators there are no synergies), if this assumptions is to be
followed, a linear aggregation allows an accurate assessment of
the contribution of each indicator separately and allows that
such contributions be added to obtain a final score without
loosing generality.
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However, the preference independence assumption seems to
be an unrealistic assumption to represent complex processes,
for example a social system, where the interrelations among
variables are not totally understand and the infinite flux of
synergies make that the entire system behaves as a complex
system. Opting for a linear aggregation method will cause that
an unquantified amount of information be lost and that any
composite index resulting of this method will not represent
properly the influence and information of its individual indi-
cators as explained in [10].

Using first an artificial dataset we compared the surface
solution for the seismic level composite index of the Moncho’s
equation with the decision surface of a fuzzy inference system
based in logic rules and using an artificial dataset. With
real data we implemented both indices in Bogota, Colombia
performed a detailed analysis in both surfaces in this context to
analyze their differences and respective advantages. Section II
describes Moncho’s equation and its indicators, section III re-
sumes the analysis of the surfaces obtained with artificial data
and the implementation in Bogota and section IV highlights
the differences between both surfaces when they are adapted
to a particular range of indicator values observed in this area.

II. THE MONCHO EQUATION

The use of composite indices is a well established practice
over the field of Risk Management [2]. Its primary goal is
the definition of a scale of measurement that can be used for
different geographical areas. The scope of the measurement
can be either the impact of an external agent, such as natural
hazard or ex-ante conditions of resilience or vulnerability,
whether social or structural, over a human settlement. Since
the impacts of such agent will not be proportional, the
definition of ”levels” comes into place. Therefore we can
refer to these measurements as ”level of risk” or ”levels of
vulnerability”.

In the field of seismic risk, the Moncho’s equation as it
can bee seen in [4] and [5] has been used to produce an
integrated seismic risk index by different agencies around the
world, such as the probabilistic risk model CAPRA [15] or
the Global Earthquake Model of the Eucentre in Italy [3].
Moncho’s equation states that the level of seismic risk can be
understood as the result of two different dimensions, a physical
or structural and a social dimension. Its hypothesis is that any
final seismic risk level would be the result of the physical
risk, aggravated by social conditions and lack of resilience
capacities

Moncho’s equation is developed as a composite index. After
a careful selection of indicators, importance weights are related
to each of them through a hierarchical process, and then a
linear aggregation method is implemented.

This model comprises a Physical Risk (RPh), representing
the level of risk of structural elements, and an Aggravation
Coefficient (F ) where socioeconomic fragilities and lack of
resilience of the context are included. As we said before, the
final seismic risk level would be the result of the physical

risk, aggravated by social conditions and lack of resilience
capacities.

A calculation of the total risk index is then obtained by a
direct application of Equation 1,

RT = RPh (1 + F ) (1)

where RT is the total risk, RPh is the physical risk and F is
a aggravation coefficient. 1

III. NON-LINEAR AGGREGATION USING A FUZZY
INFERENCE SYSTEM

In order to compare the performance of the linear aggre-
gation method used in Moncho’s equation with a non linear
aggregation scheme, we developed a simple Fuzzy Inference
Systems type Mamdani (FIS) using the same three dimensions
defined previously: physical risk, aggregation and total risk.
Our goal was to aggregate different values of physical risk
with values of aggravation though the FIS to obtain a final
total risk level as an outcome. We defined 5 linguistic labels
for the fuzzification of the numerical values of aggravation
(very low, low, medium, high, very high) and 6 classes for the
physical risk (cero, very low, low, medium, high, very high).
The output space (total risk for us) uses 7 linguistic classes
(very low, low, medium-low, medium, medium-high, high,
very high) all represented by triangular membership functions
as well. We used triangular membership functions both for
inputs and output in order to represent the gradual change
between classes. The FIS final mapping is based on 26 if-
then type weightless rules describing the potential interactions
of the physical risk and aggravation inputs, as they map the
values of a total risk level. Table 1 shows the set of fuzzy rules
used in our experiment. These rules are easily interpretable and
manageable, and allows a more clear understanding of how a
certain total risk level was achieved.

The universe of discourse used in the FIS tries to resemble
the numerical range on which Moncho’s equation is moving.
Since physical risk and aggravation are normalized values in
the linear scheme, the universe of discourse of these inputs
in the FIS was defined to be inside of the interval [0 1]. For
the total risk dimension however, a quick look on Moncho’s

1Both: the Physical Risk Index RPh and the the Aggravation Coefficient
F are estimated through an additive aggregation method, where an analytical
hierarchical method is applied to assess weights to each indicator. RPh and
F are then estimated by equation (2) and (3) respectively.

RPh =

p∑
i=1

wRPhiFRPhi (2)

where FRPhi are physical risk indicators, wRPhi their respective weights,
and p represents the total number of considered indicators.

F =

m∑
i=1

wFSiFFSi +
n∑

j=1

wFRjFFRj (3)

where FFSi represent socio-economic fragility characteristics and FFRj the
lack of resilience of the exposed context FFRj . While wFSi, wFRj are the
assessed weights for each indicator; m and n the total number of indicators
for fragility and lack of resilience, respectively. A more detailed information
can be found in [6] and [7]



equation can note that the most extreme value of any estimated
total risk can only double its original value. Consequently we
define the universe of discourse of the FIS output as being
whitin the range [0 2].

TABLE I
RULES DEFINED FOR THE FIS MODEL USED TO ESTIMATE THE TOTAL RISK
LEVEL. TR = TOTAL RISK, PHR = PHYSICAL RISK, AG = AGGRAVATION,
VH = very-high; H = high; MH= medium-high; ML = medium-low; L = low;

VL = very-low

1. If (TR is zero) then (TR is VL)
2. If (Ag is VL) and (PhR is VL) then (TR is VL)

3. If (Ag is L) and (PhR is VL) then (TR is L)
4. If (Ag is M) and (PhR is VL) then (TR is ML)
5. If (Ag is H) and (PhR is VL) then (TR is ML)
6. If (Ag is VL) and (PhR is VL) then (TR is M)

7. If (Ag is VL) and (PhR is L) then (TR is L)
8. If (Ag is L) and (PhR is L) then (TR is ML)
9. If (Ag is M) and (PhR is L) then (TR is M)

10. If (Ag is H) and (PhR is L) then (TR is MH)
11. If (Ag is VH) and (PhR is VL) then (TR is MH)
12. If (Ag is VL) and (PhR is M) then (TR is ML)

13. If (Ag is L) and (PhR is M) then (TR is M)
14. If (Ag is M) and (PhR is M) then (TR is M)

15. If (Ag is H) and (PhR is M) then (TR is MH)
16. If (Ag is VH) and (PhR is M) then (TR is H)
17. If (Ag is VL) and (PhR is H) then (TR is M)
18. If (Ag is L) and (PhR is H) then (TR is VH)
19. If (Ag is M) and (PhR is H) then (TR is VH)
20. If (Ag is H) and (PhR is H) then (TR is H)

21. If (Ag is VH) and (PhR is H) then (TR is VH)
22. If (Ag is VL) and (PhR is VH) then (TR is VH)
23. If (Ag is L) and (PhR is VH) then (TR is VH)
24. If (Ag is M) and (PhR is VH) then (TR is H)
25. If (Ag is H) and (PhR is VH) then (TR is H)

26. If (Ag is VH) and (PhR is VH) then (TR is VH)

IV. RESULTS AND COMPARISON

We generated an arbitrary set of 100 numerical values
ranging from 0 to 1 taking steps of 0.02 for both inputs and
we implemented both models for the complete dataset. Figure
1 shows the resulting surface for Moncho’s equation and for
the developed FIS respectively.

It is clear how the linearity assumed in Moncho’s equation
leads towards a smooth surface, but most importantly it is clear
how this equation tends to underestimate the influence of the
aggravation, especially in the lower part of the surface. This
cause that for high values of aggravation, and low values of
physical risk, the resulting total risk be low. At the contrary for
high values of physical risk and small values of aggravation
the opposite is accomplished and high levels of total risk are
achieved. En the extreme case, it is noticeably how when
aggravation values are always zero, the amount of total risk
corresponds to the exact same amount of physical risk for
every point.

The fuzzy inference system at contrary, displays a rough
surface more suitable to describe the non-linearity response of
the simultaneous influence of physical risk and aggravation. In
this case, when aggravation values are high and physical risk
values are small, the values of total risk are not exclusively
small and instead, an important influence of aggravation can

be seen in the final outcome. When aggravation values are
small and physical risk values are high, values of total risk
are certainly higher than the previous case (maintaining the
main assumption of Moncho’s equation that total risk is the
effect of physical risk aggravated by social vulnerability) but
still, the influence of aggravation is not longer underestimated.

As we mentioned before, the structure of the FIS model
concede a clear understanding of those exact characteristics of
the simulated system that coincided to form a particular total
risk level. Figure 2 shows two estimations made by the FIS
model and Mocho’s equation, respectively. Figure 2 shows part
of the set of fuzzy rules that where triggered by an aggravation
value of 0.6 and physical risk of 0.25, the same estimation
but using the Moncho’s equation can be seen at the bottom
part. Independently of the difference of total risk values, it is
noteworthy to mention how more information can be obtained
from the fuzzy approach.

Such values triggered only rules 9 and 10 or a situation
where the contribution of the aggravation medium level appear
to be the main responsible to generate the final total risk
value for low physical risk values. Moncho’s equation on the
contrary, does not provide this narrative maintaining then, a
black box structure. The repercussions for decision making are
clear, since it would be possible to know in advance which is
the variable and its precise level to improve or decrease in
order to achieve a certain level of total risk. The economic
or operative efficiency cost of achieving one level or another,
could be use in parallel to decide which level is the best option
to allocate resources for, once the desired level is known. This
could save precious resources to be used in other critical areas.

V. IMPLEMENTATION IN BOGOTA COLOMBIA

We implemented both models in 19 of 20 administrative
localities in Bogota, Colombia 2 using data reported in [6]
and [7]. Such data showed that the non-normalized values of
physical risk always tended to be whitin a range of 0 to 0.3.
Therefore we adapt the axis representing physical risk in the
fuzzy inference system to have boundaries between zero and
0.5 (and grid steps of 0.005). We then analyzed the response
of the model in this range only. The Moncho’s model was not
modified.

Figure 3 shows the spatial pattern for values of aggravation,
physical risk and total risk obtained by means of the fuzzy
inference system (up) and the Moncho’s equation (down). The
distribution pattern of these values reflect the consequence
we were describing in previous lines; starting from left to
right, it is clear how aggravation and physical risk spatial
distribution maps are similar for both models and therefore,
a large aggravation area at the southwest part of the city and
an important physical risk area at the northern part of the
city can been seen. However, when total risk is calculated
both models start to differ. For example, the influence of the
aggravation area mentioned before cannot be clearly seen if

2In this study we are not taking into account Sumapaz since it corresponds
to the rural area of the city



Fig. 1. Solution Surface for Moncho’s equation and Fuzzy Decision Surface

Fig. 2. Triggered Rules

Moncho’s equations is used, which translates as the remarkable
resembling between the spatial distribution of physical risk and
total risk obtained by this method (Figure 3, down).

The fuzzy inference system at the contrary, is able to
estimate that this aggravation area does have an influence in
the origin of total risk estimated levels, which is reflected in
the red colored area of the upper part of Figure 3. As we
mentioned, this pattern’s difference is largely a consequence
of the the non-linear aggregation scheme used by the fuzzy
system. Under this optic, total risk final level would not depend
exclusively on the value (or behavior) of physical risk levels
and instead, the influence of a certain aggravation level could
be acting more as a driving variable than as an aggravation
factor, as it is regarded now in Moncho’s equation. A fuzzy
approach for the aggregation of indicators of this nature, could
allow then a more accurate estimation of the influence that a
different indicators or variables may have for the development
of further and more complex dynamics.

To observe more clearly how aggravation values where

playing this role, we estimated the difference between the
Moncho’s solution’s surface and the fuzzy decision surface
used in this last experiment showed in Figure 4. The aggrava-
tion influence over the numerical value of such difference is
now clear. We can note that when aggravation values remain
low and physical risk values increases up to its maximum,
the difference between models is minimal, but if aggravation
values increase then the difference, in absolute value, will
increase accordingly.

Important consequences in terms of Risk management are
clear: if a linear scheme such as Moncho’s equation is chosen,
then valuable information could be lost, and the influence of a
particular component might be underestimated. This translates
as a bias for an accurate decision making process for example,
to allocate resources since there could be areas reporting
both low levels of physical and total risk, but concealing
at the same time important aggravation levels. In terms of
strategic planning this same bias could cause that those areas
presenting high level of social fragility and important levels



Fig. 3. Seismic risk components obtained for Bogotà city by: (upper part) the Fuzzy Model and (lower part) the Moncho’s Model. From left to right:
aggravation, physical risk, and total seismic risk. Administrative Localities: (1) Usaquén, (2) Chapinero, (3) Santa Fe, (4) San Cristóbal, (5) Usme, (6)
Tunjuelito, (7) Bosa, (8) Ciudad Kennedy, (9) Fontibón, (10) Engativá, (11) Suba, (12) Barrios Unidos, (13) Teusaquillo, (14) Mártires, (15) Antonio Nariño,
(16) Puente Aranda, (17) Candelaria, (18) Rafael Uribe, (19) Ciudad Bolı́var

of vulnerability not be taken into account, perpetuating in this
way a vicious circle that will cause that this aggravations
increases with time even more, and more disaster prone areas
appear or increase its size. Adopting a fuzzy scheme, let that
each of the risk components, physical risk and aggravation,
maintain an independent non-linear influence on each other
when an aggregation of both is performed allowing that the
final output, in this case total risk levels, reflect such non-
linearity as well, without assuming that one of the component
is the driving variable for the whole process.

VI. CONCLUSIONS

In this paper we showed the difference between a linear
methodology and a fuzzy approach to aggregate indicators
representing dissimilar realities. We exemplified this difference
by considering a composite index that is obtained through the

so called Moncho’s equation, a widely used method in the
field of seismic risk. This index, labeled as total risk, was
compared to the composite index obtained by a fuzzy inference
system type Mandami, which maintains the same conceptual
elements stated in the Moncho’s equation but aggregate their
indicators assuming non-linearity. Using a dataset of artificial
data we implemented both models and generated their solution
surfaces. We showed that the smooth surface representing the
possible solutions for Moncho’s equation does not accurately
represent the complex nature neither of the interrelations
between involved concepts nor their final outcome. A fuzzy
inference system at the other hand, allows a more realistic
representation of the non-linear influences that each risk com-
ponents may produce to the final risk level. We implemented
both methods in Bogota Colombia to estimate a total seismic
risk level. As we discussed, a fuzzy inference system allows a



Fig. 4. Difference Solution Surface for Moncho’s equation and Fuzzy Decision Surface

more realistic representation of the non-linear influences that
each risk components may have to produce a final risk seismic
level. Using a simple Mamdani inference system, we produce
a surface which does not re-create the submissive dependence
of aggravation to physical risk featured in Moncho’s equation.
In the developed fuzzy system, the aggravation influence is
not coerced by the physical risk behavior exclusively and
instead, both components are interacting more freely, enabling
a more reasonable evolution of these two variables to generate
a particular total risk level.
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