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Abstract—Transfer learning has emerged as a solution for the
cases where little or no labeled data are available in the training
process. It leverages the previously acquired knowledge (a source
domain with a large amount of labeled data) to facilitate solving
the current tasks (a target domain with little labeled data). Many
transfer learning methods have been proposed, and especially
fuzzy transfer learning method, which is based on fuzzy systems,
has been developed because of its capability to deal with the
uncertainty in transfer learning. However, there is one issue
with fuzzy transfer learning that has not yet been resolved:
the domain selection problem, which is heavily depended on the
knowledge transfer method and the applied prediction model. In
this work, we explore the domain selection problem in Takagi-
Sugeno fuzzy model when multiple source domains are accessible,
and define the similarity between the source and target domains
to provide guidance for the domain selection. The experiments
on synthetic datasets are designed to simulate the situations
of multiple sources in transfer learning, and demonstrate the
rationality of the proposed similarity in selecting the source
domain for the target domain. Further, the real-world datasets
are used to validate the proposed domain adaptation method,
and verify its capability in solving practical situations.

Index Terms—transfer learning, fuzzy systems, machine learn-
ing, multiple domains, domain selection

I. INTRODUCTION

The achievement of machine learning has deeply affected
in many areas, such as business management [1], biology [2],
medical imaging [3], and computer vision [4]. However, the
training process of many machine learning models require a
large amount of labled data, which is difficult or even impos-
sible to be obtained in the new emerging area. Additionally,
the rapidly changing environment makes the models outdated
quickly, and building a new model from scratch is time-
consuming and expensive.

Transfer learning addresses the problem of how to leverage
previously acquired knowledge to improve the efficiency and
accuracy of learning in one domain that in some way relates
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to the original domain [5]. Many work has been studied in the
transfer learning area from both the theory and application
aspects, and some survey papers are presented in a specific
area, such as activity recognition [6], reinforcement learning
[7], and computational intelligence [8].

These methods have gained great achievement in dealing
with domain adaptation problems but ignore the inherent
phenomenon of uncertainty, a crucial factor during the knowl-
edge transfer process [9]. There is a clear co-dependency
between the level of certainty in learning a task and the
amount of information that is available; problems with too
little information have a high degree of uncertainty. The few
labeled data in the target domain makes only a finite amount
of information can be extracted, and leads to a a high degree of
uncertainty. However, the introduction of fuzzy systems into
transfer learning has shown promising results in overcoming
this problem.

Many research work dedicates to the integration of fuzzy
logic with transfer learning, and this area has drawn con-
siderable attention. Deng et al. [10] developed the transfer
learning methods in fuzzy models, including the Mamdani-
Larsen-type fuzzy system and the Takagi-Sugeno-Kang fuzzy
model, by defining two new objective functions. Further, their
research results are also applied on the practical applications,
for example, the recognition of electroencephalogram signals
in environments with a data shortage. Behbood et al. [11]
proposed a fuzzy-based transfer learning approach to long-
term bank failure prediction models with source and target
domains that have different data distributions. Liu et al. [12]
focus on the unsupervised heterogeneous domain adaptation
problem, and presented a novel transfer learning model via n-
dimensional fuzzy geometry and fuzzy equivalence relations.

Despite these advancements in fuzzy system-based transfer
learning methods, there is still a main issue that has not been
resolved: how to select an appropriate domain for the target



domain when multiple source domains are available?

Some of our own previous research has focused on de-
veloping the domain adaptation ability of fuzzy rule-based
models in regression tasks [13]. A set of algorithms are
proposed for two different scenarios, where the datasets from
the source domain and target domain are in homogeneous and
heterogeneous spaces [14], separately. In this paper, based
on our previous work, we will explore the capability of
fuzzy systems in handling knowledge transfer problems when
multiple source domains are available. The contribution of this
work is developing a novel source domain selection method
based on the Takagi-Sugeno fuzzy model, which improves the
effectiveness of transfer learning in the situation with multiple
source domains.

The reminder of this paper is structured as followed. Sec-
tion II presents the preliminaries, including some important
definitions in transfer learning, and the Takagi-Sugeno fuzzy
model, the foundation of our domain selection and adaptation
method. Section III details the procedures of implementing
domain selection in the transfer learning problem with multiple
sources. The experiments in Sections IV and V validate the
effectiveness of the proposed method using both synthetic and
real-world datasets. The final section concludes the paper and
outlines future work.

II. PRELIMINARIES

This section begins with some basic definitions of transfer
learning, followed by an introduction to the Takagi-Sugeno
fuzzy model, which is the basic prediction model applied in
our domain selection and domain adaptation methods.

A. Definition

Definition 1 (Domain) [5]: A domain is denoted by D =
{F,P(X)}, where F is a feature space, and P(X),X =
{z1,z9,...,x,} are the probability distributions of the in-
stances.

Definition 2 (Task) [5]: A task is denoted by T' = {Y, f ()},
where Y € R is the response, and f(-) is an objective
predictive function.

Definition 3 (Transfer Learning) [5]: Given a source domain
Dy, a learning task T, a target domain D;, and a learning
task T3, transfer learning aims to improve the learning of the
target predictive function f;(-) in D; using the knowledge in
Dy an T, where D # Dy, or T #£ Ty.

In brief, transfer learning aims to use knowledge of a
domain (from a source domain) to support the construction
of prediction model in a new, but related domain (the target
domain).

B. Takagi-Sugeno Fuzzy Model

A Takagi-Sugeno (TS) fuzzy model [15] is a commonly
used regression model based on the combination of fuzzy rules
in an nonlinear way. The TS model consists of ¢ rules with
the following representation:

ifais A;(x, v;), thenyis L;(x, a;) i=1,2,---,c (1)

where v; are the centers of the clusters that determine the
layout of the fuzzy rules, and a; are coefficients of the linear
functions, which defines the action of each rule on the input
variables.

The construction of the TS model, a set of fuzzy rules, is
based on a labeled dataset {(x1, 1), ..., (N, yn)} using two
procedures. In the first procedure, fuzzy C-means (FCM) is
applied to divide the data in an unsupervised learning process,
so that clusters are learned and the centers of the clusters
are obtained. After getting the clusters, the coefficients of
the linear functions, which are defined in each cluster, are
computed using the labeled datasets. [16].

III. DOMAIN SELECTION METHOD IN TS Fuzzy MODELS

This section presents the method of selecting an appropriate
domain for the target domain when multiple source domains
are available. The domain selection problem in TS fuzzy
model is stated with formulas firstly, then the procedures
of selecting source domain are given with details, and at
last, a theoretical analysis of the method performance index
is included to benefit the illustration and analysis in the
experiments.

A. Problem Statement

Consider h source domains, Sy, So,...,Sp, with large
amounts of labeled data, and a target domain with very little
labeled data.

In the source domains, one of the dataset S; is illustrated
as an example:

S5 = @y, (@, 57, o @40} € {1, k)
2
where (z}’,y;7) represents the kth input-output data pair in
the jth (j € {1,..,h}) source domain, x;’ € R"(k =
1,...,Ng;) is an n-dimensional input variable, the label y;” €
R is a continuous variable, and N; indicates the number of
pairs.
The dataset T in the target domain consists of two subsets:
one with labels and one without:

T={T.,Tv}={{(=},y0),....(@N, . un,)}>
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where zf € R"(i = 1,..,N;) is an n-dimensional input
variable, y. € R is the label only accessible for the first
N;; data. T'p includes the instances with labels, and Ty
contains the data without labels. The numbers of instances
in Ty, and Ty are Ny and N; — Ny, respectively, and satisfy
Ny << Ni, Ny << Ngi,..., Ny << Ngp.

B. Select Domain from Multiple Sources

The method of selecting an appropriate source domain
from multiple sources, and implementing knowledge transfer
between the source and target domains can be summarized
into five steps:



Step 1: Train TS fuzzy model for each source domain,
separately.

Since a large amount of labeld data are available, a TS fuzzy
model could be built for each source domain. A set of fuzzy
rules, correspondingly, is obtained, denoted as R R, ...,
and R*":

, o e i e o e
RY = {r(vy,ay),r(vy,ay),..r(vii,a)} (4
where r(vfj,afj ) represents a fuzzy rule in the jth source
domain with the center v}’ and coefficients of linear functions
a;’. And the rule r(v;?,a;?) is represented as:

if &7 is Aj(z}?, v¥), then v’ is Li(x),a SJ)

' 5
=12 )

where j € {1,...,h}.
From the obtained fuzzy rules, the centers of the clusters in
each domain are also accessible and denoted as V'*7:

e {vl , U5 I v (6)

cj

Step 2: Obtain the centers of clusters in target data.

The distribution of target data plays a crucial role in the
domain selection and adaptation process. First, the number of
data clusters in the target domain is determined using Infinite
Gaussian mixture model (IGMM) [17], which explores the
structure of data based on distributions. Suppose the number of
clusters in the target data is ct. Then, based on the obtained ct,
the clustering algorithm FCM is applied to capture the centers
of the clusters, denoted as V?:

vt = {vﬁ,vg,‘.qv’;t} @)

Step 3: Augment the labeled target data using active learning
technique.

The purpose of this procedure is to increase the amount
information in the target domain by actively selecting and
labeling some of the unlabeled target data. The idea is first
evaluating the labeled target data in each cluster, and then
labeling some unlabeled target data if the amount of labeled
target data is less than a given threshold. The technique of
active learning is applied to select the unlabeled data for
labeling, and the detailed procedure could be referred in our
previous work [18].

Step 4: Calculate the similarity between domains, and select
a source domain for the target.

The similarity of a source domain and a target domain is
defined as:

cj ct

sim(S;,T) = 1/(1 4 exp( CJ*CtZZHv” vil)) ®)

=1 k=1

where v}’ and v, are the centers of clusters in the source and
target domalns separately.

Step 5: Modify the rules from the selected source domain
to fit the target data.

Suppose the selected source domain is S7, and then the
rules in R*! will be modified to be compatible with the target
data. The input and output space of the fuzzy rules are changed
through the mappings, and the parameters of the mappings are
optimized using the labeled target data. The modified fuzzy
rules under the mappings are represented as:

1)), then y, is ¥;(L;(®(x}, as))
i=1,2--,cl
9)

where ® and ¥ are the mappings used to change the input
and output spaces, separately.

The mappings of ® and ¥ are constructed by a three layers
network with one hidden layer. The transformation of the
neurons through the hidden layer modifies the input and output
space so that the new rules could fit the target data. The
parameters of the mappings are optimized using the labeled
target data [13].

if xf is A;(®(xh, vf

i

C. Performance Index

This section provides the formulation of performance index
for the models, so the proposed method is evaluated in a clear
way in the experiment parts.

Two types of models are evaluated: the "no transfer mod-
els”, and the “single source transfer models”. ”No transfer
models” mean the models in the source domains are used
directly to solve the regression tasks in target domain. ’Single
source transfer models” represent that one source model is
modified and optimized to fit the target data. All the models
will be tested on the unlabeled target dataset Ty to verify
the ability of the models in solving regression tasks in the
target domain. Next, the performance of these models will be
represented with formulas.

The ”no transfer models” contains & models: the prediction
model for each source domain, separately. The performance
of these models on T’y are calculated as follows:

1 Nt =N¢1 ej .
QSjT - Ny — Ny kgl ,-;1 Ailee
where j € {1,...,h}.
The prediction accuracy of the “’single source transfer mod-
els” on Ty is represented as:

g aj
vi L=t ai?) — y})2 (10)
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where j € {1,...,h}.

IV. EXPERIMENTS ON SYNTHETIC DATASETS

The experiments using synthetic datasets are implemented
to explore the performance of the domain selection method.
The experiments includes two parts: the first part verifies the
rationality of the defined similarity, and the second group of



experiments consider the domain selection problem when the
multiple source domains have the similar data structure. All
the models’ construction follows the five-fold cross validation,
and the results are shown in the form of mean + variance.

A. Verify the Rationality of the Defined Similarity

Two groups of experiments are designed to simulate the
domain adaptation problem with multiple source domains.

In the first group of experiments, two source domains and a
target domain are accessible, and the input data of the datasets
in the three domains are illustrated in Fig. 1. The points in blue
and yellow are the source data, denoted as ”source 17, and
”source 2” respectively, and the red points represents the target
data. However, the relations between the datasets in domains
are quite different. We can see that only “source 1” has the
similar data structure with the target data, and the distribution
of ”source 2” is not identical with the target data.

In the second group of experiments, three source domains
are available for the target domain. The input data of the four
domains are shown in Fig. 2. Similarly, the target data are
represented with red points, and the data in the three source
domains , which are denoted as ”source 17, ”source 2” and
”source 37, are represented with points with blue, yellow, and
black.

Fig. 2. Input data for datasets 2

The experimental results are shown in Tables I and II.
The first column is the index of the source domains, and
the second column shows the similarity of individual source
domain and the target domain using formula 8. The third
and fourth columns include the performance of two types of
models on the target data: no transfer models and transfer
models.

TABLE I
RESULTS OF DATASET 1

Source similarity Performance on target data
Domains No transfer Transfer
Source 1 0.4041 1.351940.0000 | 0.2544 4+ 0.0003
Source 2 0.4005 3.63464-0.0000 | 0.6006 £ 0.0065

TABLE 11
RESULTS OF DATASET 2

Source similarity Performance on target data
Domains No transfer Transfer
Source 1 0.4034 1.1981£0.0007 | 0.3611 % 0.0007
Source 2 0.3989 4.3106£0.0001 | 0.5143 £ 0.0064
Source 3 0.3940 3.7372+0.0001 | 0.7076 £ 0.0195

From the results shown in Tables I and II, the performance
of the models applying transferring technique is supervisor
than the no transfer models, which validates the effectiveness
of our transfer learning method. Comparing the similarity in
the second column and the results in the last column, we find
that the similarity determines the performance of the transfer
learning, i.e. the higher the similarity of the source and target
domains, the better of the models implementing knowledge
transfer. For example, in Table II, ”source 1” has the highest
similarity with target domain than other two source domains,
so the transfer model with “source 1” has the best results in
solving the target tasks.

B. Multiple Source Domains with Similar Structure

In the last section, we get the conclusion that if the source
domain has the similar data structure with the target domain,
then the model will have a good transferring performance.
Therefore, in this subsection, we generate multiple source
domains, which all have the similar structures with the target
domain, but with different distances. The input data of these
source domain and the target domain are shown in Fig. 3.

From Fig. 3 we can see that, the data distributions in the
three source domains and target domain are quite similar, but
the similarity or distance between the source domains and
the target domain are different. And The experimental results
of implementing transfer learning from the multiple source
domains to the target domain are shown in Table III. The
results in second and fourth columns further verify that, the
source domain with similar structure with target data will lead
to a good transferring result.



Fig. 3. Input data in multiple domains

TABLE III
RESULTS WITH MULTIPLE SOURCE DOMAINS WITH SIMILAR STRUCTURE

Source similarity Performance on target data
Domains No transfer Transfer
Source 1 0.4576 2.1413+0.0000 | 0.3605 £ 0.0046
Source 2 0.4680 1.1080£0.0000 | 0.3144 + 0.0101
Source 3 0.4848 0.3867£0.0000 | 0.3132 &+ 0.0038

V. EXPERIMENTS ON REAL-WORLD DATASETS

In this section, datasets from the real world are used to
validate the effectiveness of the proposed domain selection
method. Since the studies on regression problems of domain
adaptation are scarce, there are no public datasets in these
scenarios. In this work, therefore, two datasets from UCI Ma-
chine Learning Repository are used and modified to simulate
the multiple sources transfer learning scenarios. The way of
modifying the datasets is crucial, so a detailed description to
the datasets is provided.

The first dataset concerns air quality. We selected two of
the existing attributes, temperature and relative humidity, as
the input data and chose absolute humidity as the output. All
the attributes were normalized, and the dataset was split into
two domains based on relative humidity. Data with a relative
humidity greater than 0.5 were chosen as the source domain,
with 3600 instances, and the remaining data were used to form
the target domain, with 1200 instances. Further, the first 2000
source instances are as source domain 1, and the remaining
1600 instances are as source domain 2. All the instances in
the source domains are labeled, but only 10 instances in the
target domain are labeled.

In the “Condition based maintenance of naval propulsion
plants dataset (CBM)”, fourteen features, such as ship speed,
gas turbine shaft torque and so on, are used to predict the gas
turbine decay state coefficient. The dataset was split based on
the ship speed value. Data with a ship speed of greater than
10 knots formed the source domains, with 7500 instances,
the remaining data, 3500 instances, was used for the target
domain. Further, the first 4000 source instances are as source

domain 1, and the remaining 3500 instances are as source
domain 2. All the instances in the source domains are labeled,
but only 10 instances in the target domain are labeled.

Although there is a step in the algorithm to find out the
number of clusters in target data, it is not easy to determine
in the real cases, especially in the high-dimension datasets.
Therefore, the number of cluster is set as a hyper-parameter
in the following experiments to explore the impact of it to the
performance of transfer learning in fuzzy models.

With different numbers of clusters, domain selection and
domain adaptation will be implemented. Tables IV and VI
show the similarity between the source domains and target
domain in two datasets, separately. And Tables V and VII
display the transferring results.

TABLE IV
SIMILARITY OF SOURCE AND TARGET”
Number of cluster | Source 1 | Source 2
2 0.4074 0.4264
3 0.4042 0.4144
4 0.4010 0.4105
5 0.3954 0.3996
6 0.3967 0.4002
7 0.3948 0.3998
TABLE V
RESULTS OF DATASET ”AIR QUALITY”
Number of No Transfer Transfer
clusters source 1 | source 2 | source 1 | source 2
2 0.2186 0.1052 0.0917 0.0910
+0.0000 | 40.0000 | 40.0000 | =+0.0001
3 0.2176 0.0984 0.0922 0.0848
+0.0000 | 40.0000 | 40.0000 | =+0.0000
4 0.2106 0.0986 0.1053 0.0875
+0.0000 | 40.0000 | 40.0001 | =+0.0000
5 0.2140 0.0957 0.0917 0.0847
+0.0000 | 40.0000 | 40.0000 | =+0.0000
6 0.2098 0.0949 0.1044 0.0873
+0.0000 | 40.0000 | 40.0000 | =40.0000
7 0.2110 0.0951 0.1063 0.0924
+0.0000 | 40.0000 | 40.0000 | =0.0000

Analyzing the results in Tables IV and V, we can see that
”source 2” is closer to the target domain than “source 17 with
all the values of clusters, so the transferring results of using
”source 2” is the best in all the models.

TABLE VI

SIMILARITY OF SOURCE AND TARGET CBM”
Number of cluster | Source 1 | Source 2

2 0.1981 0.1982

3 0.1925 0.1926

4 0.1844 0.1845

5 0.1807 0.1890

6 0.1850 0.1671

7 0.1563 0.1886

From the results in Tables IV and V, we can see that the
results in Table VII is not always consistent with the similarity



TABLE VII
RESULTS OF DATASET "CBM”
Number of No Transfer Transfer
clusters source 1 | source 2 source 1 source 2
2 12.6452 11.5698 0.3528 0.9865
4+0.0400 | +0.0118 +0.0040 +0.4415
3 7.5414 7.2834 1.0210 0.4839
+4.6245 | 40.4401 +1.0283 0.0751
4 6.8498 7.0976 1.8728 1.5630
+0.1799 | 40.4232 +0.8535 +0.5046
5 5.7624 5.0380 3.4981 1.4300
+1.7224 | 4£2.0067 | £17.1539 | +0.2451
6 5.8152 5.1217 1.1194 2.9732
+0.1625 | +0.1689 +0.4887 +5.7228
7 5.7530 5.5072 2.4206 2.6721
+0.1272 | 4+0.1799 +4.2064 +2.8046

in Table VI. This may due to the high dimension of the dataset,
which makes the similarity calculation imprecise. This also
shows the limitation of the proposed domain selection method.

VI. CONCLUSION AND FUTURE STUDY

This work explores the transfer learning problems when
multiple source domains are available. A similarity is defined
between domains to help select an appropriate source domain
from multiple sources for the target domain. And based on
the seleced source domain, fuzzy rules are modifies and trans-
ferred to support target domain in solving regression tasks. The
experiments on both synthetic and real-world datasets validate
the effectiveness of the proposed domain selection method in
transfer learning.

The domain selection method presented in this paper is
a preliminary attempt in dealing with transfer learning in
multiple source domains situation. The limitation of the pro-
posed method, imprecise selection result in handling high-
dimensional dataset, will be resolved in the future studies.
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