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Abstract—Regression Trees (RTs) have been widely used in the
last decades in various domains, also thanks to their inherent
explainability. Fuzzy RTs (FRTs) extend RTs by using fuzzy sets
and have proven to be particularly suitable for dealing with
noisy and/or uncertain environments. The modelling capability
of FRTs depends, among other factors, on the model used in the
leaves for determining the output, and on the inference strategy.
Nevertheless, the impact of such factors on FRTs accuracy and
explainability has not been adequately investigated.

In this paper, we extend a recently proposed learning scheme
for FRTs by employing both linear models in the leaves and
the maximum matching inference strategy. The former extension
aims to increase accuracy, and the latter to improve explain-
ability. We carried out an extensive experimental analysis by
comparing the four FRT versions corresponding to any possible
combination of the two extensions introduced in the paper.
The results show that the best trade-off between accuracy and
explainability is obtained by employing both of them.

Index Terms—Fuzzy Regression Trees, Fuzzy Decision Trees,
Regression Models, Explainable Artificial Intelligence

I. INTRODUCTION

In the last years, machine learning (ML) and artificial
intelligence (AI) algorithms have spawned a new wave of
applications employed in a wide range of industrial settings. In
some fields, e.g., medicine, defence and finance, users’ trust
in such new AI tools depends on the ability to understand
their structure and reasoning [1], [2], [3]. Explainable AI
(XAI) is concerned with devising AI systems understandable
to humans, possibly keeping high levels of performance. In
fact, whenever the target task entails a certain complexity, and
enough training data are available, the accuracy of ML/AI
models and their interpretability are typically at odds: fre-
quently the most accurate approaches (e.g., neural networks
and deep learning) are the least interpretable, and the most
interpretable (e.g., decision trees) are not the most accurate
[4]. The inherent interpretability of AI/ML models can be
characterized from a global and a local point of view: the
former refers to the structural properties of the model, whereas
the latter refers to the adopted inference process, focusing on
how prediction is carried out for any single instance.
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Several approaches have been proposed to address regres-
sion problems: linear and generalized linear regression, least
absolute shrinkage and selection operator (LASSO) and ridge
regression, least and partial least squares regression (LS and
PLS), least angle regression (LARS), and multivariate adaptive
regression splines (MARS), among others [5]. Furthermore,
there exist methods developed in the field of ML/AI that have
been demonstrated to be universal function approximators.
Among them, Fuzzy Rule-Based Systems (FRBSs) [6] and
Fuzzy Regression Trees (FRTs) [7] are also characterized by
a high level of intrinsic interpretability. Indeed, collections of
linguistic if-then rules can be extracted from these models and
used for prediction purposes.

As regards FRBSs, several approaches have been proposed
for designing Mamdani-Type and Takagi-Sugeno-Kang (TSK)
models. In the former, both antecedent and consequent parts
of the rules are expressed linguistically. On the contrary, in
TSK models only antecedents are expressed linguistically,
while a regression model is used in the consequent part, thus
providing a higher modelling capability than the Mamdani-
Type. In several practical applications, zero-order and first-
order polynomial regression models are used.

FRTs can be considered functionally equivalent to TSK
fuzzy systems, as a rule can be extracted by following the
branches from the root to a leaf. As per the global inter-
pretability of FRTs, the model complexity can be ordinarily
expressed by the number of nodes or leaves, and it can be
controlled by properly tuning some stopping criteria, e.g., the
maximum depth of the tree. However, the system complexity
also depends on the specific regression model used in the
leaves: similarly to TSK fuzzy systems, also the leaves of
FRTs can hold regression models. In a recent work on a
decision support tool for oil spill response in the Arctic [8],
authors compared different regression models for leaf nodes
of an embedded FRT. Specifically, they adopted first-order
and second-order polynomial regression models, and a kernel-
based probabilistic regression (Gaussian process) model. The
latter model, based on a squared exponential kernel, proved to
be the most accurate in their case study. However, authors do
not investigate the implications of the adoption of a complex
non linear regression model over the system interpretability,
and no comparison is given with the classical, zero-order,
regression model.

A recent algorithm for learning FRTs for large scale and



high dimensional regression problems has been proposed in
[9]. In this case, the improvement in interpretability due to the
adoption of zero-order regression models comes at the cost of
a reduction of global transparency, as a consequence of using
a binary version of the tree: here, the tests at decision nodes,
and thus the rules that can be extracted from the tree, are
not expressed in terms of linguistic values. Furthermore, the
inference stage is carried out by combining the estimations in
each leaf, thus reducing the local interpretability of the trees
as well.

In this paper, with the objective of improving both the global
and the local explainability of FRTs, while maintaining a good
level of accuracy, we extend the state of the art learning
scheme proposed in [9]: first, we adopt a multi-way rather
than a binary FRT, aiming to obtain highly interpretable rules
expressed in terms of linguistic values; second, in an attempt
to increase prediction accuracy, in each leaf we use a first-
order rather than a zero-order polynomial model; third, as
inference strategy, we just consider the most highly activated
path (maximum matching policy) rather than aggregating the
contributions of multiple rules. In the presented experimental
analysis, we compare four variants of the multi-way FRT, and
assess the impact of the proposed modifications: specifically,
we explore all the possible combinations between the order
of the polynomial in the leaves (zero-order and first-order)
and the inference strategy (maximum matching and weighted
rule aggregation). Results show that, as expected, the FRTs
with first-order polynomial models in the leaves outperform
the FRTs with zero-order polynomial models. Moreover, the
adoption of the maximum matching strategy only marginally
impacts the accuracy of FRTs, although yielding a higher
explainability level.

The paper is organized as follows: Section II provides some
background on fuzzy partitions, FRTs, and their interpretabil-
ity. Section III describes the proposed modifications on the
FRT in [9], to enhance accuracy and interpretability. The
setup and results of the experimental analysis are reported
and discussed in Section IV. Finally, Section V draws proper
concluding remarks.

II. BACKGROUND

In this section, we introduce some preliminaries about FRTs
and their interpretability.

A. Fuzzy Regression Trees

A decision tree (DT) is a rooted tree where the topmost
node and each internal (non-leaf) node represents a test on
an input variable. Each path from the root node to a leaf
node is a sequence of tests on input variables. In the case
of numerical input variables, tests are defined by intervals in
the form of Xf > xf,s and Xf ≤ xf,s, where Xf is an
input variable and xf,s ∈ R. In the case of categorical input
variables, tests evaluate whether Xf ⊆ Lf,s, where Lf,s is a
subset of possible categorical values for Xf . Each test results
in a number of branches originating from the node where the
test is applied. When a DT allows only two branches in each

non-leaf node, the tree is called a binary or two-way tree;
otherwise, the tree is called a multi-way tree.

In classification problems, the sequence of tests from the
root to the leaves partitions the input space into subspaces
the contain subsets of the training set as “pure” as possible,
i.e. containing training instances that belong to the same
class. Each leaf node is characterised by a class label, which
corresponds to the class of the majority of the instances in the
subset of the training set isolated by the sequence [10].

In regression problems, the sequence of tests aims to
partition the input space into subspaces that contain subsets
of training set with output values very close to each other.
Since the goal is the prediction of a real value, leaf nodes
are characterized by a regression model defined on the input
variables [11], [12]. In this case, DTs are named as regression
trees (RTs).

The choice of the input variable to be used in the decision
node is performed by exploiting appropriate indexes during the
learning phase. In DTs, very popular indexes are Gini Index
or Information Gain. In RT, variance of the output values is
generally used.

Fuzzy set theory has been integrated with DTs and RTs,
leading to Fuzzy DTs (FDT) [13], [14] and Fuzzy RT (FRTs)
[9].

Let us consider a regression dataset defined by a set of input
variables X = {X1, X2, . . . , XF } and the output variable
Y ∈ R. Let Uf , f = 1, 2, . . . , F , be the universe of discourse
of variable Xf . Then, fuzzy partitions over Uf with Tf fuzzy
sets are defined as Pf =

{
Af,1, Af,2, . . . , Af,Tf

}
. In our

experiments, we adopt triangular fuzzy sets Af,i described
by the tuple (af,i, bf,i, cf,i), where bf,i is the core and
af,i and cf,i are the left and right extremes of the support
of Af,i. In order to maintain a high level of explainability
of the partitions, we adopt strong uniform fuzzy partitions,
where af,1 = bf,1, bf,Tf

= cf,Tf and, for j = 2, ..., Tf − 1,
bf,j = cf,j−1 and bf,j = af,j+1. Indeed, since strong fuzzy
partitions ensure a high level of coverage, completeness and
complementarity, they are widely recognized to be highly
interpretable [15]. Unlike classical DTs/RTs, in FDTs/FRTs
the tests on internal nodes use fuzzy sets and are expressed in
the form of Xf is Af,i, where Af,i is a fuzzy set defined over
the fuzzy partition of the input variable Xf . One instance may
activate different branches, thus reaching multiple leaves with
different activation degrees.

In this paper we focus on the zero-order polynomial FRT
proposed in [9]. Here, the value assigned to each leaf node is
computed as a weighted average (zero-order polynomial) of
the output values for all the training set instances that activate
such leaf node, using the activation degree as instance weight.
Unlike the version described in [9], however, we will adopt a
multi-way FRT (instead of a binary one) and uniform partitions
instead of the partitions generated according to the approach
in [16]. Section III provides more details.



B. Interpretability of Fuzzy Regression Trees
Transparency of ML models, i.e., the property whereby an

observer can understand the structure of the model itself, is
a key enabler towards XAI [4]. RTs are generally considered
among the most transparent models for regression tasks, as
the inference process, equivalent to the application of simple
if-then rules, is very much akin to human reasoning. Fur-
thermore, in the context of FRTs, the adoption of linguistic
representation of numerical variables allows a direct human
interaction, further enhancing the model interpretability. How-
ever, even within the scope of tree-based models, the degree
of interpretability may vary depending on several factors.

First, the structural properties, namely number of nodes
and leaves, impact on the so-called global interpretability
[17]: clearly, the more compact the trees, the easier their
interpretation is.

Second, the properties of the input variables partition affect
the semantic interpretability of FRTs: requirements of cov-
erage, completeness, distinguishability and complementarity,
fulfilled e.g. by strong uniform triangular fuzzy partitions, are
essential to achieve high interpretability [15].

Third, the inference strategy also plays a crucial role:
typically FRTs adopt a weighting approach, in which the
output is determined by combining the contributions of all the
leaves activated by an input pattern. Thus, the output depends
on different paths, making it hard to explain how the result
has been obtained. Instead, the maximum matching approach
guarantees that only one path is considered for generating the
output, leading to a very intuitive and easily comprehensible
explanation of how this output has been obtained, according
to the linguistic rule relative to the activation path.

Finally, the order of the polynomial model used in the leaf
nodes impacts not only global, but also local interpretability,
which is associated with the inference process and focuses
on how each instance is processed. The interpretability of
traditional FRTs with zero-order polynomial regression models
in the leaves can be easily ascertained by analysing the
formulation of the extracted rules, expressed as:

Rk : IF X1 is A1,jk,1
AND . . . AND XF is AF,jk,F

THEN yk = ck
(1)

However, also in the case of first-order polynomial regres-
sion models, when the consequent part is in the form yk =
γk,0 +

∑F
f=1 γk,f ·Xf , FRTs can be considered interpretable.

The local linear model can be interpreted reporting the effect
of each input variable on the output value, as expressed by the
related coefficient. Furthermore, if all the input variables are
defined in the same range of values, we can adopt linguistic
labels to characterize the impact of an attribute on the output.
Formally,

Impactf =


Low if |γf | ≤ tan π

6

Medium if tan π
6 < |γf | ≤ tan π

3

High |γf | > tan π
3

(2)

Note that the requirement on the range of the values can be
easily met through normalization of the input variables. Figure

1 shows the resulting labelling. Trivially, the impact is positive
or negative (i.e., the output increases or decreases) depending
on the sign of the coefficient.

Fig. 1. Linguistic labels used to define the impact of a generic input variable
Xf on the output Y .

III. MULTI-WAY FUZZY REGRESSION TREES AS
EXPLAINABLE AND ACCURATE REGRESSION MODELS

In this section, first we describe the basic scheme of the
multi-way FRT learning algorithm that we adopted in our
experimental analysis. The algorithm is based on the FRT
learning scheme, discussed in [9], for generating binary FRTs.
Then, we discuss about two possible options for creating the
local regression models in the leaves of the trees. Finally,
we argue on the inference strategies that can be adopted to
estimate the output values, namely the maximum matching
approach and the weighted average strategy.

A. Model Learning Scheme

Algorithm 1 shows the pseudo-code of the scheme for learn-
ing multi-way FRTs, where TR = { (x1, y1), ..., (xN , yN ) } is
the training set, X is the set of input variables, SelectBestInput
is the method for selecting the most relevant input variable and
StopMet is the method that checks if a stopping condition is
verified.

The algorithm starts from creating a root node. Then,
it builds a multi-way FRT model by calling the recursive
function TreeGrowing. This function first checks if the node,
passed as a parameter, is a leaf node through the StopMet
function. In case this check is not satisfied, the SelectBestInput
function is called. This function selects the best input variable,
which partitions the input space. The SelectBestInput requires
the definition of a criterion for the choice of the input variable
to be used in the node. As in [9], we adopt the Partition Fuzzy
Gain (PFGain), which exploits the concept of fuzzy variance
[18], as a metric for selecting the most relevant input variable



Data: training set TR, set X of input variables, input
variable selection method SelectBestInput,
stopping method StopMet

Result: FRT
root←create a new node;
tree←TreeGrowing(root, TR, X, SplitMet, StopMet);
return tree;
Function TreeGrowing(node, S, X , SplitMet,
StopMet)

if StopMet(node) then
node←mark node as leaf ;

else
Xbest ←SelectBestInput( X, S, SplitMet);
X ← X −Xbest;
foreach AXbest,i in PXbest

do
SAXbest,i

←get instances from S falling in
AXbest,i;
childAXbest,i

←create a node by using
AXbest,i and SAXbest,i

;
node←connect the node with
TreeGrowing(childAXbest,i

, SAXbest,i
, X

SplitMet, StopMet) ;
end

end
return node;

end
Algorithm 1: Pseudo-code of the Multi-way FRT learning
process

at each recursive stage of the FRT learning algorithm. Once
the most relevant input variable has been selected, a splitting
node is created for each fuzzy set of its fuzzy partition and
the instances falling in its support are assigned to the new
node. After the creation of the new nodes, the TreeGrowing is
recursively called from each of them.

As regards the original learning scheme discussed in [9],
there are two main differences. First, with the aim of obtaining
the highest integrity level of the input fuzzy partitions, we
adopted strong triangular fuzzy partitions with only three
fuzzy sets, rather than running a fuzzy discretization algorithm.
Indeed, the fuzzy discretization algorithm can automatically
generate a strong fuzzy partition in which the fuzzy sets
in the partitions are optimized in terms of both granularity
(i.e. number of fuzzy sets) and the position of the cores.
We realized that running the discretization algorithm we can
take the risk of generating partitions with a large number
of fuzzy sets even very irregularly distributed. Second, it is
worth to notice that, in the original scheme for generating
binary FRTs, the method for selecting the most relevant input
variable chooses a splitting point from a subset of possible
splitting points for generating two branches. In the scheme
for learning multi-way decision trees, the decision branches
are represented by the fuzzy sets which compose the partition
of the selected input variable.

In our experimental analysis, as in [9], we use the following

criteria to stop the tree growth (StopMet function):
• when the number of instances in a node is lower than a

fraction λ of instances in the training set;
• when PFGain computed for the best-selected attribute is

lower than a fixed threshold ϵ;
• when the maximum depth allowed in the FRT, defined

by the parameter β, is achieved.

B. Local Regression Model Estimation

After learning the tree structure, each leaf node estimates
a regression model from the instances of the training set that
belong to the leaf node with a membership degree larger than
zero. In our experimental analysis, we adopted both zero-order
and first-order polynomial models.

Let K be the number of leaf nodes in an FRT. The path
from the root to the generic kth leaf node can be described
by the following rule:

Rk : IF X1 is A1,jk,1
AND . . . AND XFk

is AFk,jk,F

THEN Y = fk(X)
(3)

where jk,f ∈ [1, Tf ] identifies the index of the fuzzy set of
partition Pf of input variable Xf used in the rule Rk. In the
case of the zero-order polynomial regression model, which has
been adopted in [9], fk(X) = ck, where ck is calculated as
the weighted average of the output values yz of each training
instance. The weight is the strength of activation of the rule
Rk, which, given the input pattern xz corresponding to the
output value yz , is computed as:

wk(xz) =

Fk∏
f=1

µk
f,jk,f

(xz,f ) (4)

where µk
f,jk,f

(xf ) is the membership degree of xz,f to the
fuzzy set Ak

f,jk,f
of the partition of each input variable chosen

in the path from the root to the kth leaf node. We observe that
only the instances xn with wk(xn) > 0 are considered in the
computation of ck.

In the case of first-order polynomial regression model,
fk(X) = γk,0 +

∑F
f=1 γk,f · Xf . The coefficients γk =

{γk,0, γk,1, . . . γk,F } of the consequent part of each rule can be
estimated by applying a local weighted least-squared method.
Specifically, in the estimation of the parameters, each training
sample (xz , yz) with a membership value different from 0 to
the specific leaf is weighted by its strength of activation of the
rule.

C. Inference Stage

In the inference stage, an input pattern is fed to the FRT
for estimating the corresponding output value. Due to the
fuzzy partitioning of the input variables, the input pattern
may activate more than one path from the root to the leaves.
Thus, more than one rule is fired with different strengths
of activation. Two main strategies have been adopted in the
literature for generating an output value: voting method and



maximum matching [19]. Traditional fuzzy models based on
rules for regression problems adopt the weighted average as
voting method: the output values estimated by each rule are
weighted by the strength of activation. This approach has been
also adopted in the binary FRT proposed in [9].

When the maximum matching approach is adopted, only
the rule with the highest strength of activation is used for
estimating the output value. Using a single rule may reduce the
modelling capability of the FRT, and consequently decrease its
accuracy. However, the local interpretability of an FRT which
takes its decision based on a single rule is much higher than
the one of an FRT which adopts the weighted average for
taking decisions [17].

In our experimental analysis we compare the two inference
strategies, assessing their impact on the modelling capability of
FRT models. In the experiments, we consider the two cases in
which zero-order and first-order polynomial regression models
are used in the leaves.

IV. EXPERIMENTAL ANALYSIS

In this section, we first describe our experimental setup,
including details regarding the datasets employed and the FRTs
configuration. Then, we show and discuss the results obtained
by four variants of multi-way FRTs. Such variants pursue
different trade-offs between interpretability and accuracy, and
stem from the state-of-the-art proposal for building FRTs [9],
as widely discussed in Section III.

A. Experimental Setup

The four different variants of FRTs used in the experiments
are generated by combining two dimensions, namely the
inference strategy (maximum matching or weighted average)
and the model used in the leaves (zero-order or first-order
polynomial regression models). The resulting variants are
described in the following:

• FRT-MM-0: FRT with zero-order polynomial regression
model in the leaves and maximum matching strategy for
inference.

• FRT-WA-0: FRT with zero-order polynomial regression
model in the leaves and weighted average strategy for
inference.

• FRT-MM-1: FRT with first-order polynomial regression
model in the leaves and maximum matching strategy for
inference.

• FRT-WA-1: FRT with first-order polynomial regression
model in the leaves and weighted average strategy for
inference.

All the variants use the following parameter configuration:
• Tf = 3, ∀f ∈ {1, . . . , F}, to ensure high interpretabil-

ity: the three fuzzy sets in the partitions are associated
with the linguistic terms Low, Medium and High, respec-
tively, for linguistically describing the rules;

• λ = 0.05, as the minimum fraction of instances of the
training set that activate a node to continue building the
tree; it is used as a stopping criterion (see Section III-A);

• ϵ = 0.0001, as the minimum PFGain threshold for a split
during the FRT induction; it is used as a stopping criterion
(see Section III-A)

The configurations of FRTs with zero-order and first-order
polynomial regression models in the leaves only differ in the
value of the parameter β, which defines the maximum depth
of the FRT. For a fair comparison, we set the parameter β so
as to achieve a comparable complexity between the two types
of FRT and specifically β = 8 for FRT-MM-0 and FRT-WA-0,
and β = 4 for FRT-MM-1 and FRT-WA-1.

Model complexity (CFRT ) depends on the structural proper-
ties of the FRT and is defined as follows. For FRTs with zero-
order polynomial regression model in the leaves, complexity
is defined as the total number of nodes NFRT in the FRT.
Formally:

CFRT−0 = NFRT (5)

For FRTs with a first-order polynomial regression model
in the leaves, complexity is defined as the sum of the total
number of internal nodes plus the total number of coefficients
defined in the first-order polynomial regression model for all
leaf nodes. Formally:

CFRT−1 = INFRT +
∑

LN∈FRT

NCoeff (LN) (6)

where IN is the total number of internal nodes, LN is a
generic leaf node in the FRT, and NCoeff (LN) is the number
of the coefficients of the linear model used in LN . As the first-
order polynomial regression model is estimated considering all
the attributes of the input patterns, the number of coefficients
is F + 1 for any leaf.

We employ ten well-known regression datasets avail-
able within the KEEL [20] and Torgo’s1 dataset reposito-
ries: Weather Izmir, Treasury, Mortgage, Computer Activity,
California Housing, Analyzing Categorical Data, Elevators,
House 16H, MV Artificial Domain and Pumadyn. Details
about the datasets are reported in Table I.

TABLE I
DATASET DESCRIPTION

Dataset Dimensionality (F) Samples (N)
Weather Izmir (WI) 9 1461

Treasury (TR) 15 1049
Mortgage (MO) 15 1049

Computer Activity (CA) 21 8192
California Housing (CH) 8 20460

Analyzing Categorical Data (AN) 8 4052
Elevators (EL) 19 16599

House 16H (HO) 17 22784
MV Artificial Domain (MV) 11 40768

Pumadyn (PM) 9 8192

The quality of prediction of the FRTs is evaluated through
the Mean Squared Error (MSE):

MSE =
1

Ntest

Ntest∑
i=1

(yi − ŷi)
2 (7)

1https://www.dcc.fc.up.pt/ ltorgo/Regression/DataSets.html



where Ntest is the number of samples considered for the
evaluation, yi and ŷi are the ground truth value and the
predicted value associated with the i-th instance of the test set,
respectively. Results are evaluated in terms of average values
over 5-fold cross-validation: for a fair comparison, at each
iteration of the cross-validation, the same split is used for the
four types of FRTs.

B. Experimental Results

Table II shows the results obtained by the four FRT variants
described in subsection IV-A. As 5-fold cross-validation is
adopted, for each FRT configuration and each dataset, we
report the average MSE over 5 values measured on both the
test and training sets. Best values are in bold.

Results point out that FRT-MM-1 and FRT-WA-1 always
outperform FRT-MM-0 and FRT-WA-0. Further, none of the
FRTs is particularly affected by overtraining. Also, results
suggest that the impact of the inference strategy is more
evident in FRTs with zero-order rather than first-order poly-
nomial models in the leaves: the generalization capability
(measured as MSE on test set) of FRT-MM-0 is almost
halved compared to FRT-WA-0 in four out of ten datasets
(WeatherIzmir, Treasury, Mortgage, MV Artificial Domain);
on the other hand, the increased modelling capability of first-
order polynomial models makes the FRTs more robust with
respect to the choice of the inference strategy: FRT-MM-1 is
comparable or just slightly outperformed by FRT-WA-1, which
in turn is less interpretable than FRT-MM-1.

In summary, when the interpretability of the model is
an essential requirement, FRT-MM-0 has to be used as it
provides the highest degree of interpretability; however, it has
a restricted modelling power. Instead, the proposed FRT-MM-
1 represents a suitable trade-off in applications for which both
accuracy and interpretability are deemed crucial.

Table III reports the complexity of the models, as discussed
in Section IV-A. The lowest values of number of rules and
complexity are highlighted in bold.

As the depth parameter is discrete, it does not allow for
an exact match between the complexity of zero-order and
first-order polynomial models; indeed, first-order polynomial
models are in general slightly more complex than the zero-
order counterparts, based on the definition of complexity
provided in Eq. 5 and Eq. 6. However first-order polynomial
model (FRT-MM-1 and FRT-WA-1) features a lower number
of leaves (and consequently of rules) compared to the zero-
order model (FRT-MM-0 and FRT-WA-0) and the antecedent
of each rule has a lower maximum number of conditions.

Finally, in the following, we report an example of rule
generated from an FRT learned from the California dataset.

TABLE II
AVERAGE MSE AND STANDARD DEVIATION OVER CROSS-VALIDATION

FOR EACH DATASET AND FOR EACH FRT VARIANT.

FRT MSE train STD train MSE test STD test
Weather Izimir

FRT-MM-0 27.56 6.83 27.98 6.31
FRT-WA-0 14.55 0.29 14.89 1.14
FRT-MM-1 1.31 0.07 1.40 0.30
FRT-WA-1 1.22 0.07 1.32 0.28

Treasury (x 10-3)
FRT-MM-0 789.32 66.74 844.54 91.02
FRT-WA-0 398.72 6.31 407.18 73.62
FRT-MM-1 31.49 4.29 43.03 19.13
FRT-WA-1 30.45 4.14 39.05 19.67

Mortgage (x 10-3)
FRT-MM-0 635.03 71.88 620.32 125.12
FRT-WA-0 303.06 1.05 310.16 24.13
FRT-MM-1 5.90 0.32 8.31 1.84
FRT-WA-1 5.12 0.20 6.90 1.36

Computer Activity
FRT-MM-0 66.89 8.96 68.14 9.92
FRT-WA-0 61.36 8.89 62.18 9.90
FRT-MM-1 5.94 0.09 6.30 0.29
FRT-WA-1 5.95 0.04 8.48 4.39

California Housing (x 10-9)
FRT-MM-0 8.56 0.08 8.57 0.16
FRT-WA-0 9.54 0.03 9.54 0.14
FRT-MM-1 4.25 0.06 4.28 0.19
FRT-WA-1 4.11 0.03 4.15 0.14

Analyzing Categorial Data
FRT-MM-0 0.14 0.00 0.14 0.02
FRT-WA-0 0.14 0.00 0.15 0.02
FRT-MM-1 0.04 0.00 0.04 0.00
FRT-WA-1 0.03 0.00 0.03 0.01

Elevators (x 10-5)
FRT-MM-0 3.03 0.03 3.05 0.18
FRT-WA-0 2.67 0.03 2.67 0.16
FRT-MM-1 0.62 0.01 0.62 0.03
FRT-WA-1 0.60 0.00 0.60 0.02

House 16H (x 10-9)
FRT-MM-0 2.43 0.03 2.44 0.10
FRT-WA-0 2.43 0.03 2.44 0.10
FRT-MM-1 1.63 0.03 1.68 0.14
FRT-WA-1 1.63 0.02 1.68 0.10

MV Artificial Domain
FRT-MM-0 27.51 0.25 27.49 0.74
FRT-WA-0 14.77 0.06 14.78 0.25
FRT-MM-1 0.05 0.00 0.05 0.00
FRT-WA-1 0.05 0.00 0.05 0.00

Pumadyn
FRT-MM-0 16.22 0.81 16.56 0.64
FRT-WA-0 16.90 0.19 17.24 0.62
FRT-MM-1 11.82 0.28 12.33 0.55
FRT-WA-1 11.25 0.13 11.62 0.58



TABLE III
COMPLEXITY ANALYSIS: NUMBER OF RULES AND OVERALL COMPLEXITY

OF FRTS (SEE EQ.5 AND EQ. 6)

Dataset Num. rules Complexity
FRT-MM-0 / FRT-WA-0

Weather Izimir 241 361
Treasury 335 553
Mortgage 453 752
Computer Activity 285 428
California Housing 229 366
Analyzing Categorial Data 17 28
Elevators 202 305
House 16H 248 372
MV Artificial Domain 63 99
Pumadyn 733 1098

FRT-MM-1 / FRT-WA-1
Weather Izimir 64 674
Treasury 46 761
Mortgage 53 872
Computer Activity 42 952
California Housing 51 486
Analyzing Categorial Data 11 88
Elevators 36 618
House 16H 24 448
MV Artificial Domain 37 426
Pumadyn 47 442

Rk : IF MedianIncome is Low

AND Latitude is Low

AND Longitude is Medium

THEN : MedianHouseV alue = 0.89+

− 1.10 · Longitude− 1.03 · Latitude+
+ 0.10 ·HousingMedianAge− 1.56 · TotalRooms+

+ 2.08 · TotalBedrooms− 2.33 · Population+

+ 0.41 ·Households+ 1.27 ·MedianIncome
(8)

As discussed in Section II-B, we can characterize the impact
of each attribute on the output value produced by the local
linear model. For instance, the Population has a high negative
impact on the MedianHouseValue (coefficient −2.33), whereas
the TotalBedrooms has a high positive impact on it (coefficient
+2.08).

V. CONCLUSION

In this paper we presented some variants of a state-of-the-
art Fuzzy Regression Tree (FRT), and analysing the possi-
ble different trade-offs between accuracy and interpretability
provided by such variants. In particular, we compared the
impact of adopting a first-order versus a zero-order polynomial
regression model at each leaf node; moreover, we analysed two
different inference strategies, namely maximum matching and
weighted average. The FRTs rely on strong uniform triangular

fuzzy partitions of the input variables. The empirical compar-
ison has been carried out on ten publicly available datasets,
and results are evaluated in terms of Mean Squared Error.
It has been observed that, given a comparable complexity
measured in terms of number of parameters in the FRT, the
adoption of a first-order polynomial model in the leaves leads
to better results than the classical approach based on zero-
order polynomial models. Furthermore, the adoption of a max-
imum matching approach does not significantly degrade the
modelling power of FRTs compared to the weighted average
strategy, yet ensuring a higher level of interpretability. The
proposed FRT variant with first-order polynomial model in the
leaves and maximum matching as inference strategy represents
thus an effective solution for applications that demand for both
high accuracy and high explainability.
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