
fuzzy-rough-learn 0.2: a Python library for fuzzy
rough set algorithms and one-class classification

Oliver Urs Lenz∗, Chris Cornelis∗, Daniel Peralta†
∗Computational Web Intelligence

Department of Applied Mathematics, Computer Science and Statistics
Ghent University, Ghent, Belgium

Email: {oliver.lenz,chris.cornelis}@ugent.be
†IDLab

Department of Information Technology
Ghent University – imec, Ghent, Belgium

Email: daniel.peralta@ugent.be

Abstract—We have expanded the scope of fuzzy-rough-learn
0.2 from fuzzy rough sets to also cover one-class classification, fa-
cilitating the exploration of practical and conceptual connections
between these two areas of machine learning. The new algorithms
for one-class classification consist of nine data descriptors and one
feature preprocessor. In addition, we have added Fuzzy Rough
Nearest Neighbour regression and a number of preprocessors for
feature scaling. Apart from these new core algorithms, we have
rewritten fuzzy-rough-learn from the ground up, and included a
large number of utility functions, to allow users to easily adapt
any of the algorithms to their use case.

I. INTRODUCTION

fuzzy-rough-learn is a Python library for machine learning
algorithms based on fuzzy rough sets. Version 0.1 of fuzzy-
rough-learn has been documented in [1]. This paper is devoted
to version 0.2, which is greatly expanded.

The principal goal of fuzzy-rough-learn is to make promis-
ing soft computing algorithms from the literature available to
other researchers, both to enable their application to practical
problems and to facilitate empirical comparisons and further
development. fuzzy-rough-learn is inspired by scikit-learn [2]
and relies on some of its algorithms as a backend. scikit-learn
is one of the most popular Python libraries for general machine
learning, and only admits “well-established algorithms” with
at least 200 citations1, a criterion not (yet) satisfied by most
algorithms in fuzzy-rough-learn.

The new content of fuzzy-rough-learn 0.2 consists, broadly
speaking, of four parts:

1) We have expanded the scope of fuzzy-rough-learn to
also cover one-class classification [3], also known as
novelty detection or semi-supervised outlier or anomaly
detection. One-class classification algorithms, known as
data descriptors, can be seen as providing a generalisation
of a finite set (expressing a concept) to a fuzzy set on the
entire attribute space. In this sense, they are conceptually
similar to the upper approximation of a fuzzy rough set,
which encapsulates all instances possibly belonging to
a concept. Conversely, it is possible to implement both

1https://scikit-learn.org/stable/faq.html

the upper and lower approximations of a fuzzy rough
set using data descriptors. By implementing these types
of algorithms together in one same software library, we
hope to facilitate the exploration of these connections. We
have included nine data descriptors, as well as one feature
preprocessor (SAE [4]) that was specifically designed to
increase the performance of data descriptors.

2) The core component of fuzzy rough set algorithms has
been expanded by including a first regression algorithm
(FRNN [5]), and expanding the options for FROVOCO
classification.

3) We have added a convenient way to incorporate feature
preprocessing (including feature scaling) with the differ-
ent algorithms.

4) We have redesigned the fuzzy-rough-learn from the
ground up, to make it even easier for users to control
the behaviour of the included algorithms and supplement
their own alternatives.

In Section II, we briefly go over the definitions of fuzzy
rough sets and one-class classification. Next, we describe some
of the formal properties of fuzzy-rough-learn in Section III
and outline our design principles in Section IV. Then in
Section V we list the core algorithms of fuzzy-rough-learn,
and in Section VI, the utility functions. Finally, in Section VII,
we briefly outline the future direction of work on fuzzy-rough-
learn.

II. THEORETICAL BACKGROUND

In this section, we give brief definitions of soft maxima and
minima, fuzzy rough sets, and data descriptors. At present, we
assume that all datasets are numerical, and can thus be seen
as a multisubset of Rm, for some integer m.

Definition 1. Let X be a finite collection of values in R of
size n, and let w be a weight vector of length k ≤ n, with
values in [0, 1] that sum to 1. Then the soft maximum and
minimum of X induced by w are defined as follows:

https://scikit-learn.org/stable/faq.html

softmaxX :=
∑
i≤k

wi · x+i ; (1)

softminX :=
∑
i≤k

wi · x−i , (2)

where x+i and x−i are, respectively, the ith largest and ith
smallest values of X.

The soft maximum becomes an ordered weighted averaging
(OWA) operator [6] if we pad the weight vector w with zeros
to length n, while the soft minimum corresponds to the OWA
operator equipped with the dual of this padded weight vector.

Definition 2. Let X ⊂ Rm be a dataset, let R be a fuzzy
tolerance relation on Rm, and let T be a choice of t-norm,
I a choice of fuzzy implication and w1 and w2 choices of
weight vectors for the soft maximum and minimum. Then for
any fuzzy set C in X , the upper approximation C and lower
approximation C of C are the fuzzy sets in Rm defined as
follows:

C(y) = softmax
x∈X

T (R(y, x), C(x))

C(y) = softmin
x∈X

I(R(y, x), C(x))
(3)

We say that upper and lower approximations are strict
if w1 and w2 have length 1 and induce the normal
maximum and minimum. Note that when C is crisp,
C(y) simplifies to softmaxx∈C R(y, x), and C(y) to
softminx∈X\C NI(R(y, x)), where NI is the fuzzy negation
induced by I , defined by NI(x) := I(x, 0).

Definition 3. A data descriptor is a machine learning algo-
rithm that takes a dataset C ⊂ Rm for some integer m, and
returns a fuzzy set in Rm, its model trained on C.

The model generated by a data descriptor is a generalisation
of C to Rm, and can be used to predict membership of C
for new instances in Rm (one-class classification). The link
between fuzzy rough set theory and one-class classification is
that the upper and lower approximation constructions can be
seen respectively as a data descriptor applied to C, and the
negation of a data descriptor applied to X \ C.

III. FORMAL SPECIFICATIONS

fuzzy-rough-learn is hosted on the two principal repositories
for Python libraries, pipy and conda-forge, and thus can easily
be installed with either pip or conda. Its documentation is
located at https://fuzzy-rough-learn.readthedocs.io. The source
code is accessible on GitHub at https://github.com/oulenz/
fuzzy-rough-learn, which also offers users the opportunity to
report issues or contribute improvements or additional mate-
rial. fuzzy-rough-learn is distributed under the MIT license
[7], making it freely usable for any purpose.

fuzzy-rough-learn 0.2 requires Python 3.7 or later. Its de-
pendencies are NumPy 1.17, SciPy 1.1 and scikit-learn 0.22.
In addition, use of the EIF data descriptor requires the eif

TABLE I
INTERNAL SUBDIVISION OF FUZZY-ROUGH-LEARN.

Name Description

neighbours Nearest neighbour algorithms
networks Neural networks
statistics Statistical functions
support_vectors Support vector machines
trees Decision trees
uncategorised Other functions

library, and the SAE feature preprocessor requires TensorFlow
and Keras.

IV. DESIGN PRINCIPLES

The two primary design principles of fuzzy-rough-learn are
consistency and modularity. To achieve this, we have chosen
a uniform structure based on NumPy arrays and functions. As
in scikit-learn, datasets are n by m two-dimensional arrays,
where n is the number of records, and m the number of
features. Machine learning models are functions that take a
(test) dataset and return one or more values for each record.
This means that machine learning algorithms are second-order
functions, which take a (training) dataset and return a model.
An algorithm is supervised if, in addition to a dataset, it also
takes an array of labels.

fuzzy-rough-learn uses classes, but in a restricted way.
At present, the classes only possess two user-facing meth-
ods: the initialisation method __init__, and the call method
__call__. Initialisation allows users to set hyperparameter
values. Thanks to __call__, an object of this class, once
initialised, behaves just like a function.2 Therefore, we call this
a parametrisable function. To make it clear for users whether
a function is a parametrisable function that must be initialised,
we use CamelCase if this is the case, and snake_case if not (in
line with the Python convention for class and function names).

Conceptually, the functions in fuzzy-rough-learn can be
subdivided into core algorithms and utility functions (Fig. 1,
sections V and VI). The source code is organised into do-
mains of machine learning (Table I). However, end users
are presented with a flat hierarchy, which only groups
functions according to their functionality (the groups in
Fig. 1). Thus, e.g. the FRNN classifier can be imported with
from frlearn.classifiers import FRNN.

The advantage of the design pattern outlined in the previous
paragraphs is that it offers users a large amount of flexibility.
They can control the principal design choices of each algo-
rithm by setting one or more hyperparameter values. If a user
requires greater flexibility, they can substitute their own class
by inheriting from one of the abstract base classes. And finally,
thanks to the concept of duck typing in Python, they can also
substitute any simple function that accepts the relevant input
and produces the required output.

2To use the technical term, it is a ‘callable’. Classes themselves are also
callables, and many so-called functions in the Python standard library are in
fact classes.

https://fuzzy-rough-learn.readthedocs.io
https://github.com/oulenz/fuzzy-rough-learn
https://github.com/oulenz/fuzzy-rough-learn

Core algorithms

Classifiers Data Descriptors Feature Preprocessors Instance Preprocessors Regressors
FRNN* ALP FRFS* FRPS* FRNN

FRONEC* CD LinearNormaliser

FROVOCO* EIF‡ IQRNormaliser

IF† MaxAbsNormaliser

LNND RangeNormaliser

LOF Standardiser

MD SAE

NND VectorSizeNormaliser

SVM†

Utility functions

Array functions Dispersion measures Location measures Neighbour search methods Parametrisations
div_or interquartile_range maximum BallTree† log_multiple

first maximum_absolute_value mean KDTree† multiple

greatest standard_deviation median

last total_range midhinge

least midrange

remove_diagonal minimum

soft_head

soft_max

soft_min

soft_tail

T-norms Transformations Vector size measures Weights Other (postprocessing)
goguen_t_norm contract MinkowskiSize ConstantWeights discretise

heyting_t_norm shifted_reciprocal ExponentialWeights probabilities_from_scores

lukasiewicz_t_norm truncated_complement LinearWeights select_class

QuantifierWeights

ReciprocallyLinearWeights

Fig. 1. Schematic overview of the contents of fuzzy-rough-learn. *Documented in [1]. †Wrapper for implementation in scikit-learn. ‡Wrapper for
implementation in eif library.

Among the algorithms, feature preprocessors play a special
role, since they are not generally used on their own, but in
combination with one of the other algorithms. For users, this
can be impractical, since it is not enough to apply each feature
preprocessor on the training data to construct the respective
models, but each model then has to be applied to transform
the training data, as well as any and all test data, in the
correct order. Therefore, we automate this process and allow
users to supply any number of feature preprocessors as a
hyperparameter when initialising any algorithm. We also use
this functionality to equip some algorithms with default feature
preprocessors, which may be overridden by the user if so
desired.

V. CORE ALGORITHMS

In this section we discuss the main algorithms included in
fuzzy-rough-learn. As a general rule and where applicable,
users can set the dissimilarity measure, the number of nearest

neighbours, the weights used for aggregation, and the nearest
neighbour search algorithm.

In addition to the newly implemented algorithms described
below, we have made the FROVOCO algorithm [8] more
flexible by adding hyperparameters which control the imbal-
ance ratio that determines which classification subtasks are
considered imbalanced, as well as the weights that are used
for balanced and imbalanced subtasks.

A. Data descriptors

Fig. 2 illustrates the models obtained from applying the data
descriptors in fuzzy-rough-learn on the same toy dataset. ALP,
LNND, LOF, NND and SVM have default hyperparameter
values that were found to be optimal in [9].

1) ALP: Average Localised Proximity [9]. Localises the
nearest neighbour distance of a test instance y against the local
nearest neighbour distances in the target data.

The local ith nearest neighbour distance Di(y) relative to y
is the weighted average of the ith nearest neighbour distances

ALP CD IF

EIF LNND LOF

MD NND SVM

Fig. 2. Contour lines of data descriptor models in fuzzy-rough-learn, constructed on a randomly generated toy dataset.

di of the l nearest neighbours NNj(y) of y, with linearly
decreasing weights wl:

Di(y) :=
∑
j≤l

wl
j · di(NNj(y)). (4)

We use this to obtain the ith localised proximity of y:

lpi(y) =
Di(y)

Di(y) + di(y)
, (5)

(6)

and define the average localised proximity of y as the soft
maximum of its k localised proximities, induced by k linear
decreasing weights:

softmax
i≤k

lpi(y). (7)

2) CD: Centre Distance, a very simple data descriptor
based on the distance to the origin (vector size). This can
be given meaning by choosing a suitable preprocessor which
centres the data on the origin. The default preprocessor centres
the mean/centroid, and divides each attribute by its standard
deviation.

3) EIF: Extended Isolation Forest [10]. Generalised variant
of IF, that allows tree splits along hyperplanes that are not nec-
essarily parallel to the axes. Wrapper for the implementation
in the eif package.3

4) IF: Isolation Forest [11]. Constructs trees with random
splits on the target data, and uses the path length through these
trees as a measure for the similarity of an instance to the target
data. Wrapper for the implementation in scikit-learn.

5) LNND: Localised Nearest Neighbour Distance [12],
[13]. Based on the ratio between the distance of a test instance
to its kth nearest neighbour x, and the distance between x and
its own kth nearest neighbour.

6) LOF: Local Outlier Factor [14]. Based on the concept
of the ith reachability distance rdi(x) of a point x, which is
the maximum of the distance between x and its ith nearest
neighbour in the target data, and the kth nearest neighbour
distance of the latter. Then the inverse of the mean reachability
distances of x is its local reachability density lrd(x):

lrd(x) :=
1

1
k

∑
i≤k rdi(x)

. (8)

Finally, the local outlier factor of a test instance y is
obtained by dividing the mean local reachability density of
its nearest neighbours NNj(y) by its own local reachability
density:

1
k

∑
j≤k lrd(NNj(y))

lrd(y)
. (9)

3https://github.com/sahandha/eif

TABLE II
CONVENIENCE FUNCTIONS FOR LINEAR NORMALISERS IN

FUZZY-ROUGH-LEARN.

Centre Dispersion

IQRNormaliser midhinge interquartile_range
MaxAbsNormaliser maximum_absolute_value
RangeNormaliser midrange total_range
Standardiser mean standard_deviation

7) MD: Mahalanobis Distance [15]. Generalisation of the
number of standard deviations that a point may be removed
from the mean in one dimension, to multinomial distributions.
For a test instance y, this is defined as

√
(y − µ)TS−1(y − µ), (10)

where µ is the mean of the target data, and S its covariance
matrix. Square Mahalanobis distance follows a χ2-distribution
with m degrees of freedom, and we obtain a p-value in [0, 1]
by applying the relevant cumulative distribution function and
subtracting the result from 1, which expresses the probability
of drawing y if the target data were drawn from a Gaussian
distribution.

8) NND: Nearest Neighbour Distance [16]. Based on the
distance between a test instance y and its kth nearest neighbour
in the target data. Our implementation is more general, allow-
ing for the aggregation of the k nearest neighbour distances
with a weight vector. Internally, this is used to calculate upper
and lower approximation memberships in FRNN classification.

9) SVM: Support Vector Machine [17], [18]. Fits a hyper-
plane between the target data and the origin, and generates
predictions on the basis of the distance to this hyperplane.
Wrapper for the implementation in scikit-learn.

B. Feature preprocessors

1) LinearNormaliser: Unsupervised. Rescales the data by
centring it on the specified measure of central tendency and/or
dividing by the specified measure of dispersion. We provide
a number of convenience functions (Table II), but the more
general class allows users to define their own variants.

2) SAE: Shrink Autoencoder [4]. Unsupervised, designed
to make target data easier to separate from other data by data
descriptors. Learns a b

√
mc + 1-dimensional latent represen-

tation of the target data, which is induced to shrink around
the origin by the cost function, which balances reconstruction
error against the Euclidean norm of the latent representation.

This is a reimplementation using the Keras and TensorFlow
framework, based on the code provided by the original au-
thors.4

The SAE neural network consists of six dense layers. The
first three layers encode the data by linearly decreasing the
number of features from m to b

√
mc+1, while the last three

layers use the same (tied) weights to decode the data again.

4https://github.com/vanloicao/SAEDVAE

https://github.com/sahandha/eif
https://github.com/vanloicao/SAEDVAE

We use the hyperbolic tangent activation function and Glorot
uniform weight initialisation [19].

The target data is split into a training set (80%) and a
validation set (20%). Batch size is equal to 5% of the training
set, with a maximum of 100. Validation accuracy is calculated
every 5 epochs. The network is trained for 1000 epochs, or
until the early stopping criterion is satisfied, which is the case
when validation accuracy has not substantially increased for a
number of epochs corresponding to 400 batches. The network
is trained with the ADADELTA optimiser [20] with an initial
learning rate of 0.01.

3) VectorSizeNormaliser: Unsupervised. Projects all vec-
tors onto the unit sphere. Typically used in natural language
processing (NLP) for frequency counts, when only relative
frequencies are deemed important. What is commonly called
the cosine dissimilarity can then be obtained by measuring the
squared Euclidean distance.

C. Regressors

1) FRNN: Fuzzy Rough Nearest Neighbour regression [5].
Let X be the training set and d : X −→ R the target attribute.
For a test instance y, the fuzzy tolerance class Rd(·,NNi(y))
of its ith nearest neighbour NNi(y) is the fuzzy set defined
as:

Rd(·,NNi(y))(x) :=
|d(NNi(y))− d(x)|

dmax − dmin
, (11)

for any x in X . We use this to define a weight wi, equal to
the mean membership degrees of y in the (strict) upper and
lower approximations of Rd(·,NNi(y)):

wi := (Rd(·,NNi(y))(y) +Rd(·,NNi(y))(y))/2. (12)

The upper approximation membership is equal to at least the
similarity between y and NNi(y), but can be higher if there
is a closer neighbour with a sufficiently similar target value.
The lower approximation membership is equal to at least the
distance to the closest neighbour NN1(y), but can be higher
if the target value of NN1(y) is sufficiently similar to that
of NNi(y). In sum, greater weight is given to the values of
closer neighbours, and to values of neighbours that reinforce
each other by having similar target values.

Finally, these weights are used to predict a target value for
y as the weighted sum of the target values of its k neighbours
(default 20):

d(y) :=
∑
i≤k

wi · d(NNi(y))/
∑
i≤k

wi. (13)

While the calculation of the upper approximation member-
ship values can be restricted to the k nearest neighbours of y,
the calculation of the lower approximation membership values
in principle requires considering all instances in the training
data. Therefore, FRNN regression does not at present scale
well to large datasets.

VI. UTILITIES

In this section, we discuss all the other functions included
in fuzzy-rough-learn. These can be used as input for various
hyperparameters of the algorithms discussed in the previous
section.

A. Array functions

A collection of diverse utility functions for working with
NumPy arrays. first, last, least and greatest return,
respectively, the k first, last, least and greatest elements along
the specified axis of an array. These functions are used
internally by the functions soft_head, soft_tail, soft_min,
soft_max, which additionally take a weight function (Subsec-
tion VI-I), and use this to aggregate the k values along the
specified axis. soft_max and soft_min are implementations
of the soft maximum and minimum from Section II.
remove_diagonal takes an n by n square matrix, and

removes the diagonal to obtain an n by n − 1 matrix. This
can be used to remove comparisons of an instance with
itself. div_or is simple division of an array, but wherever
the division results in NaN (e.g. from 0/0), a fallback value
(default 1) is substituted.

B. Dispersion measures

Functions that take a dataset, and return a one-dimensional
array, indicating the dispersion of the dataset in each di-
mension. total_range is the difference between the largest
and smallest values. interquartile_range ignores extreme
values, and returns the difference between the third and
first quartile. maximum_absolute_value is the maximum of
the absolute values of the maximum and the minimum.
standard_deviation is the Euclidean distance between the
dataset and its mean.

C. Location measures

Functions that take a dataset, and return a one-dimensional
array, indicating the relevant location of the dataset in each
dimension. minimum, maximum, mean and median are thin
wrappers for the corresponding NumPy functions, with the
only specific difference that NaN values are ignored. midrange
is the mean of the minimum and the maximum, while
midhinge is the mean of the first and third quartiles.

D. Neighbour search methods

Algorithms that construct a model which returns, for some
0 < k ≤ n, the k nearest neighbours of each query
instance and their distances. The two algorithms BallTree
[21] and KDTree [22] are wrappers for the corresponding
implementations in scikit-learn. By subclassing the abstract
base class, users can substitute their own nearest neighbour
search algorithms, such as Hierarchical Navigable Small World
(HNSW) [23], [24], which scales well to large datasets, but
delivers only approximately accurate results.

E. Parametrisations

Utility functions that can be used to express a dependency of
a value on another value. The concrete use case in this library
is to let the number of nearest neighbours k depend on the
number of available instances n. multiple multiplies n with
the provided coefficient (typically a fraction). log_multiple
multiplies log n with the provided coefficient.

F. T-norms

Triangular norms, commutative, associative, non-decreasing
binary operators on [0, 1] with identity 1, expressed here
as aggregation functions that take an array and reduce it
along the indicated axis. The goguen_t_norm is the product.
The heyting_t_norm, also known as the Gödel norm, is the
minimum. Finally, the lukasiewicz_t_norm is equal to the
sum of values, minus their count reduced by one.

G. Transformations

Functions to transform distance values in [0,∞] or signed
distance values in [−∞,∞] into similarity values in [0, 1].
shifted_reciprocal transforms distance values with x 7−→
1

1+x , while truncated_complement uses x 7−→ max(0, 1 −
x). contract transforms signed distance values with x 7−→

x
2∗(|x|+c) + 0.5.

H. Vector size measures

Functions from real vector spaces to [0,∞] like norms. Can
also be used as dissimilarity measures through application to
y − x.

At present contains a single parametrisable function,
MinkowskiSize, which encompasses a family of functions.
For p ∈ (0,∞), it assigns to an m-dimensional vector v
the size (

∑
|vi|p)

1
p . The special case p = 1 corresponds to

the Boscovich norm, also known as city block, Manhattan,
rectilinear or taxicab norm. The special case p = 2 corresponds
to the Euclidean norm, also known as Pythagorean norm.

If the additional boolean parameter unrooted is set to true,
exponentiation by 1

p is omitted. This lets us obtain the squared
Euclidean norm and generalisations thereof.

The special cases p = 0 and p = ∞ are defined through
their limits. For p = 0, the rooted variant evaluates to ∞
if v has more than one non-zero coefficient, to 0 if all its
coefficients are zero, and to the only non-zero coefficient
otherwise, while the unrooted variant is equal to the number
of non-zero coefficients of v. The latter is commonly known
as the Hamming size.

For p = ∞, the rooted variant is the maximum of all
coefficients. This is the Chebyshev norm, also known as
chessboard or maximum norm. The unrooted variant evaluates
to ∞ if v has at least one coefficient larger than 1, and to the
number of coefficients equal to 1 otherwise.

Finally, if the boolean parameter
scale_by_dimensionality is set to true, the result is
scaled linearly to ensure that all vectors in [0, 1]m have size
in [0, 1].

TABLE III
WEIGHT FUNCTIONS IN FUZZY-ROUGH-LEARN. q IS A NON-DECREASING,

REGULAR QUANTIFIER [0, 1] −→ [0, 1].

ConstantWeights 1
k
, 1
k
, . . . , 1

k

ExponentialWeights 2k−1

2k−1
, 2k−2

2k−1
, . . . , 20

2k−1

LinearWeights k
k(k+1)/2

, k−1
k(k+1)/2

, . . . , 1
k(k+1)/2

QuantifierWeights [6]
q(1

k
)

q(0
k
)
,
q(2

k
)

q(1
k
)
, . . . ,

q(k
k
)

q(k−1
k

)

ReciprocallyLinearWeights 1
1·
∑

i≤k
1
i

, 1
2·
∑

i≤k
1
i

, . . . , 1
k·

∑
i≤k

1
i

I. Weights

Parametrisable functions that take a positive integer k
and return a weight vector, listed in Table III. Linear and
reciprocally linear weights are also known as additive and
inverse additive in the literature. These weights can be used as
input for the soft head, maximum, minimum and tail functions
(Subsection VI-A).

J. Other: postprocessing functions

In addition to the utilities listed above, we also provide some
functions to help with postprocessing classifier predictions.
select_class takes a two-dimensional array of records

and class predictions, and returns a one-dimensional array that
contains for each record the class with the highest score. In
addition, an abstention threshold can be set, such that records
with no class score above this threshold are labelled separately.
discretise takes an array of label scores and discretises

these to either 0 or 1 depending on a threshold value. This
can be used both for the scores produced by data descriptors
and for multilabel classifiers.
probabilities_from_scores rescales class scores such

that they sum to 1 for each record.

VII. FUTURE WORK

Like many software libraries, fuzzy-rough-learn is a per-
manent work-in-progress. Since it is still in its early stages
of development, its shape has not crystallised into a definite
form, and there are a number of unresolved issues. We are still
looking for a way to better handle components, like the SAE
preprocessor, that rely on optional dependencies. In addition,
we are looking for a way to show how algorithms from
other libraries, like approximative nearest neighbour search
algorithms, can be used together with the algorithms in fuzzy-
rough-learn, without turning those libraries into dependencies.

Another long-term goal is the inclusion of low-level algo-
rithms, for which we currently use scikit-learn as a backend.
Apart from making fuzzy-rough-learn more self-contained,
this would also make it easier to expand our algorithms with
new functionality.

In the near term, we hope to make pre- and post-processing
more convenient to the user. In particular, we want to make
it easy to use datasets with categorical and missing values, to
perform hyperparameter optimisation, and to interpret classi-
fier scores heuristically on the basis of training data.

ACKNOWLEDGEMENT

The research reported in this paper was conducted with the
financial support of the Odysseus programme of the Research
Foundation – Flanders (FWO).

REFERENCES

[1] O. U. Lenz, D. Peralta, and C. Cornelis, “fuzzy-rough-learn 0.1: a Python
library for machine learning with fuzzy rough sets,” in IJCRS 2020:
Proceedings of the International Joint Conference on Rough Sets, ser.
Lecture Notes in Artificial Intelligence, vol. 12179. Springer, 2020,
pp. 491–499.

[2] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duch-
esnay, “Scikit-learn: Machine learning in Python,” J Mach Learn Res,
vol. 12, no. 85, pp. 2825–2830, 2011.

[3] D. M. J. Tax, “One-class classification: Concept learning in the absence
of counter-examples.” Ph.D. dissertation, Technische Universiteit Delft,
2001.

[4] V. L. Cao, M. Nicolau, and J. McDermott, “Learning neural represen-
tations for network anomaly detection,” IEEE Trans Cybern, vol. 49,
no. 8, pp. 3074–3087, 2019.

[5] R. Jensen and C. Cornelis, “Fuzzy-rough nearest neighbour classification
and prediction,” Theor Comput Sci, vol. 412, no. 42, pp. 5871–5884,
2011.

[6] R. R. Yager, “On ordered weighted averaging aggregation operators in
multicriteria decisionmaking,” IEEE Trans Syst Man Cybern, vol. 18,
no. 1, pp. 183–190, 1988.

[7] J. H. Saltzer, “The origin of the “MIT license”,” IEEE Ann Hist Comput,
vol. 42, no. 4, pp. 94–98, 2020.

[8] S. Vluymans, A. Fernández, Y. Saeys, C. Cornelis, and F. Herrera,
“Dynamic affinity-based classification of multi-class imbalanced data
with one-versus-one decomposition: a fuzzy rough set approach,” Knowl
Inf Syst, vol. 56, no. 1, pp. 55–84, 2018.

[9] O. U. Lenz, D. Peralta, and C. Cornelis, “Average Localised Proximity:
A new data descriptor with good default one-class classification perfor-
mance,” Pattern Recognit, vol. 118, p. 107991, 2021.

[10] S. Hariri, M. Carrasco Kind, and R. J. Brunner, “Extended Isolation
Forest,” IEEE Trans Knowl Data Eng, vol. 33, no. 4, pp. 1479–1489,
2021.

[11] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” in ICDM
2008: Proceedings of the Eighth IEEE International Conference on Data
Mining. IEEE, 2008, pp. 413–422.

[12] D. de Ridder, D. M. J. Tax, and R. P. W. Duin, “An experimental com-
parison of one-class classification methods,” in ASCI‘98: Proceedings
of the Fourth Annual Conference of the Advanced School for Computing
and Imaging. ASCI, 1998, pp. 213–218.

[13] D. M. J. Tax and R. P. W. Duin, “Outlier detection using classifier
instability,” in SSPR/SPR 1998: Joint IAPR International Workshops
on Statistical Techniques in Pattern Recognition and Structural and
Syntactic Pattern Recognition, ser. Lecture Notes in Computer Science,
vol. 1451. Springer, 1998, pp. 593–601.

[14] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: identifying
density-based local outliers,” in SIGMOD 2000: Proceedings of the ACM
International Conference on Management of Data, vol. 29, no. 2. ACM,
2000, pp. 93–104.

[15] P. C. Mahalanobis, “On the generalized distance in statistics,” Proc Natl
Inst Sci India, vol. 2, no. 1, pp. 49–55, 1936.

[16] E. M. Knorr and R. T. Ng, “A unified notion of outliers: Properties
and computation.” in KDD-97: Proceedings of the Third International
Conference on Knowledge Discovery and Data Mining. AAAI, 1997,
pp. 219–222.

[17] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Microsoft Research, Redmond, Washington, Tech. Rep. MSR-TR-99-87,
1999.

[18] ——, “Estimating the support of a high-dimensional distribution,”
Neural Comput, vol. 13, no. 7, pp. 1443–1471, 2001.

[19] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in AISTATS 2010: Proceedings of
the thirteenth international conference on artificial intelligence and
statistics, ser. Proceedings of Machine Learning Research, vol. 9. JMLR
Workshop and Conference Proceedings, 2010, pp. 249–256.

[20] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” 2012.
[Online]. Available: http://arxiv.org/abs/1212.5701

[21] S. M. Omohundro, “Five balltree construction algorithms,” International
Computer Science Institute, Berkeley, California, Tech. Rep. TR-89-063,
1989.

[22] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[23] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs,” IEEE Trans Pattern Anal Mach Intell, vol. 42, no. 4, pp. 824–
836, 2020.

[24] O. U. Lenz, D. Peralta, and C. Cornelis, “Scalable approximate FRNN-
OWA classification,” IEEE Trans Fuzzy Syst, vol. 28, no. 5, pp. 929–938,
2020.

http://arxiv.org/abs/1212.5701

	Introduction
	Theoretical background
	Formal specifications
	Design principles
	Core algorithms
	Data descriptors
	ALP
	CD
	EIF
	IF
	LNND
	LOF
	MD
	NND
	SVM

	Feature preprocessors
	LinearNormaliser
	SAE
	VectorSizeNormaliser

	Regressors
	FRNN

	Utilities
	Array functions
	Dispersion measures
	Location measures
	Neighbour search methods
	Parametrisations
	T-norms
	Transformations
	Vector size measures
	Weights
	Other: postprocessing functions

	Future work
	References

