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Abstract—The compositional representation of data and associ-
ated statistical approaches is a powerful framework for modelling
and reasoning about quantities which reflect proportions of a
whole. Recently, an increasing body of work has started exploring
the adoption of a compositional representation for modelling
interval-valued data reflecting uncertainty or vagueness, for
example interval-valued questionnaire responses. Results have
flagged the intriguing potential of this approach, such as the
elegant handling of traditional inference challenges, including
implicitly ensuring coherence in linear regression for interval
data, i.e. ensuring the estimated left bound of intervals is
smaller than the right one. Building on these insights, extending
the compositional representation via alpha-cut decomposition to
fuzzy sets is an intuitive next step. In this paper, we discuss
this compositional representation of fuzzy sets, building on
prior interval work. We proceed to explore the adoption of
compositional regression approaches to conduct linear regression
on fuzzy set valued data sets. We demonstrate the approach,
discuss results and in particular flag shortcomings and the
challenges for next steps.

I. INTRODUCTION

Compositional data convey the structural information
reflecting the quantitative parts of a whole, such that when
features of a dataset inherently influence each other, they
are expressed in proportions where all components are non-
negative and are summed up to a constant, e.g., 1, 24 hours
or 100% etc. [1], [2] For instance, data on time spent in daily
(24 hours) physical activity. This inherent dependency of such
compositional data is usually not taken into consideration
in standard multivariate statistical approaches [1], [2],
[3]1, [4], [5]. Compositional statistical approaches—such
as compositional linear regression— are powerful tools
for modelling and reasoning about data which captures
proportions of a whole [6], [7], [8], [9], [10], [11], [12].

Recently, an increasing body of work has started exploring
the adoption of a compositional representation for modelling
interval-valued data reflecting uncertainty or vagueness—for
example, interval-valued questionnaire responses [13], [14],
[14]. Due to the nature of the mutual dependency of inter-
val endpoint parameters, the compositional transformation is
proposed in [15]. The authors articulate how, why and when
a compositional representation of interval-valued data may
be appropriate, and further demonstrate compositional linear
regression applied to interval-valued data [15].

Direnc Pekaslan and Christian Wagner are with Intelligent Modelling
and Analysis (IMA) Group and Lab for Uncertainty in Data and Decision
Making (LUCID), School of Computer Science, University of Nottingham,
Nottingham, United Kingdom. (e-mail:direnc.pekaslanl @nottingham.ac.uk;
christian.wagner @nottingham.ac.uk)

The literature on interval-valued regression studies has so
far afforded improved model accuracy [16], [17], [18] and
increased resilience to parameter flipping or ‘loss of mathe-
matical coherence’ [19], [20], [21], [22], [23]. The latter is a
major challenge for interval-regression as models are required
to maintain the mathematical structure of intervals with a left
and a right endpoint, or a centre and (positive) range.

Compositional representation of interval-valued data and
compositional interval regression results have flagged intrigu-
ing potential, such as the elegant handling of such traditional
inference challenges, including implicitly ensuring coherence
[15]. Building on these insights, extending the compositional
representation to fuzzy sets (FSs) is an intuitive next step.

In this paper, we discuss an a-cut based compositional
representation of FSs, building on prior interval work [13],
[15]. We proceed to explore the adoption of compositional
regression approaches to conduct linear regression on the
compositional representations of FS valued data. We demon-
strate the approach, discuss results and in particular flag
shortcomings and the challenges for next steps.

The structure of this paper is as follows. Section II provides
background information on the a-cut interval-valued repre-
sentation of FSs, compositional data and compositional linear
regression. Section III presents the a-cut based compositional
representation of FSs and the overall methodology for ex-
ploring the associated FS regression. Section IV demonstrates
the initial experiments of the compositional linear model
on synthetically generated FSs interval data and the results
illustrations are given. Section V provides conclusions and a
reflection on future work.

II. BACKGROUND
A. FS and a-cut decomposition

A FS A is defined on a universe of discourse X and
characterised by MF p4(x) that takes values in the interval
[0,1]. A FS A in X can be represented as a set of ordered
pairs of a generic elements x, and their grade of MF is shown
as follows:

A={(z,pa(x)) |z e X} (D

If membership grades are constrained to be either 0 or 1,
then a crisp set is obtained. Otherwise, membership grades
ta(z) takes the value in the interval of [0, 1] for each element
e X.

The principal role of a-cuts and strong a-cuts in FS theory
is their capability to represent FSs via a-cut decomposition
[24]. The general idea of alpha cut («)-cut decomposition is



to decompose FSs into a collection of crisp sets (intervals)
related together via the « levels [25], [24]. For all membership
degrees « level is defined in [0,1] and given a FS A, an ()
cut is defined as follows:

“[A] = {Vx € X| p(z) > a}, )

and the strong a-cuts (*T[A])are defined as:

“TA] = {Vz € X[ p(x) > o}, 3)

To illustrate the application of a-cut, the following FS set
A is given with the o = 0.5 in Fig. 1.
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Fig. 1: a = 0.5 decomposition which leads to interval [5, 8].

The given 0.5-cut level (°°[A]) on the FS A provides the
closed interval [5,8]. The collection of all (a)-cuts provides
the (a)-cut representation of that fuzzy set. Note that for
normal, convex FSs, for each a € (0, 1], the a-cut is a closed
interval.

B. Interval-Valued Data

A closed interval @ is formed by two endpoints as lower a~
and upper a™, with the condition of a~ < a™.
In this paper, the intervals are formed from the defined

a-cuts on FSs (“[A]), and vice-versa, on a finite domain

X =[X",X7"], i.e. *[A] C X. The lower endpoint if each

such interval is denoted as “[A]~, while the upper endpoint
is denoted as “[A]*.
At times, we refer to a set of n intervals over an a-cut

*[A] = (“[A4],*[A2], ..., *[A,]). The cardinality or size each

interval |*[A]| of an interval “[A] is given by |*[A]| = “[A]*—
“[A]".

C. Compositional Data

A data set is called compositional if the quantities reflect
proportions of a whole which is a fixed total sum &, e.g.,
percentages of workers in different sectors, portions of the
chemical elements in a mineral, concentrations of nutrients in a
beverage, portions of working time spent on different tasks etc.
[5]. More formally, a (row) vector, n = (11,72, ...,p) is a D-
part composition where all the components are strictly positive
real numbers and reflect relative information. A sample space
of this compositional structure is called a simplex S, which
is expressed as follows:

D
SD = {77 = (771»772, ,77D)|771 > 072 = 1»27~-~7D;Z7h = H]}
=1

“4)
As a common practice, the three-part (D = 3) composi-

tional data can be illustrated on a ternary diagram to show the
components’ compositional structure and inherent dependency.
In a ternary diagram, triangle vertices represent the three
elements of the composition. While high proportions are close
to a vertex, low proportions are further, and equal proportions
lie on the triangle’s centre. For instance, the composition
n = (0.5,0.3,0.2) is shown on the illustrative ternary diagram
in Fig. 2.
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Fig. 2: Ternary diagram of the composition (0.5, 0.3,0.2).

D. Log-ratio Transformation

To enable standard unconstrained multivariate statistic op-
erations, compositional data is commonly mapped from the
simplex (SP) to the real space (R”). For this purpose, in
the 1980s, the log-ratio transformation was proposed [1],
[2] which provides a one-to-one mapping on to real values
(between —oo and +o0) where any compositions can be
reformulated in terms of log-ratios, and vice versa.

In the literature, several algorithms for log-transformation
of compositional data have been proposed (e.g., the centered
log-ratio, the additive log-ratio or the isometric log-ratio [2],
[26]). As one of the most common transformations, the centred
log-ratio (clr) is used in this paper, in order to transform com-
positions (e.g., n = (11,72, ...,np) € SP) into coordinates as
SP — RP. The clr transformation is employed as follows:

cr(n) =0 = ( log(—L-), ..., log(—2-
) =" = (Tog(. . ou(2)). 9

where ¢g(n) is the geometric mean of the composition vector
n:

D 1/D
g(m) = (Hn) (6)

The inverse operations clr ! is done as follows:

clr

clr (") = n = C (eap(n"). exp(ng"), ... cxp(ny"))

(7

As explained in the next subsection, these transformed log-

ratio data can be used in traditional regression models to
investigate relationships between variables.



E. Compositional Linear Regression Models

In exploring relationships, compositional data can play the
role of both independent and dependent variables through
constructing an appropriate regression model on the log-ratio
scale.

Most methods for classical linear regression have a close
analogue in the form of compositional linear regression mod-
els [5]. In this paper, compositions (both dependent and inde-
pendent variables [26]) are used as an alternative to interval
regression models where both sets of variables are interval-
valued [17], [20], [21], [22], [23].

In general, in univariate (non-compositional) linear regres-
sion models, the dependence of one variable Y on another
variable X is modelled as follows:

Y=a+bX +e¢, 3

where Y and X are dependent and independent variables, re-
spectively. The a is the intercept, b is the regression coefficient
and e an error term with -generally- 0 mean and variance 2.

The aforementioned regression model is built as follows.
First, the dependent and independent variables are expressed
as compositions. The data samples contain n observations of a
D part compositions, resulting in a nx D matrix. In this paper,
the dependent variables are denoted as Y, and independent
variables are denoted as X. Both dependent and independent
variables are transformed into coordinates X" Y ¢ RP
by using the chosen log-ratio transforms (clr in our case) and
the following statistical model is constructed:

Tclr —a-+ Xcer te (9)

The regression parameters can be estimated in the standard
way by the least squares method [27].

More details on the log-ratio transformations and compo-
sitional linear regression operations can be found in [2], [5],
[15], [26].

After having a brief overview of a-cut representation of
FSs, compositional data and operations, we now proceed to
the motivation and methodology of this paper.

III. MOTIVATION AND METHODOLOGY

In recent years, regression models for data sets where
both dependent and independent variables are interval-valued
have attracted increasing interest, with a view to improving
regression model accuracy and mathematical in-coherency, i.e.
ensuring the estimated left endpoint of intervals is smaller
than the right endpoints. While the latter poses one of the
key challenges for interval regression models, recent studies
have started exploring the adoption of a compositional repre-
sentation to address it and unlock further potential advantages
such as ensuring estimations remain within a given variable’s
domain [13], [15].

In this paper, building on these insights, we extend the
compositional representation to FSs by using alpha-cut de-
composition. Further, we explore the use of the obtained
compositional representations of the FSs to facilitate linear
regression of FS-valued data.The steps of this approach are as
follows.

A. FSs to Compositional Data

In [15], closed intervals are transformed into their 3-part
compositional representations adopting cardinality of each
individual intervals on a fixed domain. The authors [15],
further applied the (interval) compositional representations on
linear regression, articulating how, why and when the approach
may be appropriate in terms of maintaining mathematical co-
herency and avoiding estimations outside of the fixed domain.

Adopting the approach in [15], in this paper, we extend the
transformation of compositional data via a-cut decomposition
in FSs. As mentioned in Section II-A, the a-cut decomposition
theorem is used to obtain closed intervals (“[A]) from FSs
where a € [0,1]. Thus, first, intervals are obtained via the
a-cut decomposition theorem and these obtained intervals
are transformed in compositional representation (e.g., *n)
following the approach in [15], where the corresponding o
level is denoted as the left superscript.

As an illustrative example, in Fig. 3a, on a finite domain X,
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(b) Transformation from the interval-
valued data, on a fixed scale, to a com-
positional representation.
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(c) Ternary diagram of the composition
(0.5,0.3,0.2) here, resulting from the
transformation of the interval 5,8 to a
compositional representation.

Fig. 3: Compositional representation of FSs.



the FS A is decomposed by the e = 0.5 to obtain the interval
U5[4] = [5,8]. Later, this obtained interval (Fig. 3b on the
domain X) is represented as a 3-part composition which is
denoted by %57 on a 3-dimensional simplex (Fig. 3c), i.e.
0-517 € $3 as follows:

3
(0.5,,717 0.5,)727 0.5713)|0.5Th_ > O,Z — 1, 27 37 Z 0'57]1' — /{,
— a0
where Kk = X7, i.e. the parts sum to the maximum of the
domain and the parts themselves are defined as follows:

=] X7 | =[[0,5]] = (5.0)
oy = | P[], [A]T] =[5, 8]] = (3.0)
“ng = | LA, XT ] =|[8,10] = (2.0).

0.5,’7

Y

where @ = 0.5 that decomposes "°[A] from the FS A.
The left and right endpoint of this interval are denoted as
0-5[A]~ and %°[A]*, respectively. Note the cardinality of each
component can not be equal or less than 0. This restricts this
transformation to intervals °-°[A], where *-5[A]~ > X~ and
05[4]F < X+,

The procedures in [15] is extended to «-cut decomposi-
tion, providing intervals of FSs which in turn transform into
compositional data as exemplified above. As the next step
of this paper methodology, the transformed compositional
representations are processed through to the compositional
linear.

B. Compositional Linear (Interval) Regression

As detailed in Section II-E, the transformed compositional
data are used to generate coefficients of compositional linear
regression models.

Consider two sets of FSs (dependent and independent) are
transformed to their compositional representation as outlined
in Section III-A. The thus obtained compositional data are
transformed by using the log-ratio transforms. As mentioned

in section II-D, various log-ratio transform techniques exist
in the literature and in this paper, the clr transformation is
performed, as it focuses on geometric mean proportion of three
compositions (5).

The approach can be divided into seven main steps and
is illustrated in the flow chart in Fig. 4. Let two FSs A
and B, instances of independent and dependent variables
respectively, for the compositional linear regression. First, a-
cut decomposition intervals (*[A] and “[B] where « € [0, 1])
are obtained (Step 1 in Fig. 4). These intervals are transformed
to their compositional representation, denoted by “H and
«Z ¢ SP, following the procedures in Section III-A (Step
2 in Fig. 4).

Next, the clr log-ratio transforms are applied on the ob-
tained compositions representations (* H'" and *Z!" ¢ R),
as Step 3 in Fig. 4. These log-ratio values are processed
in the regression model to calculate coefficients (Step 4 in
4), as detailed in Section II-E. Lastly, the estimations of the
regression models are inverted back to compositional data
(Step 5 in Fig. 4) which in turn is transformed back to intervals
(Step 6 in Fig. 4) and ‘re-assembled’ in conjunction with their
a-level to FSs (Step 7 in Fig. 4). Note that in this initial
exploration of the compositional representation of FSs for
linear regression, we adopt a naive approach, where a-cuts are
obtained and processed independently for each a-cut level.

IV. EXPERIMENTS AND ILLUSTRATIONS

In Section III, we discussed the compositional representa-
tion of FSs and adopting the compositional regression on those
calculated representations. In order to explore the behaviour
of the model, two experiments are carried out. In the first
experiment, the coefficients are calculated and the model
is tested by using the same FSs which are used in the
training phase. In the second experiment, the obtained same
coefficients are tested by a different FS which is not involved
in the coefficient generation phase.

A. Experiment 1

To illustrate the approach, we generate two sets of five
synthetic FSs as independent and dependent variables denoted

a=1 |
a=0.5 \
a=0
Step 1 Step 2 Step 3
Intervals to Transform to the
FSs to intervals via |__—" > - real space using
-cut decomposition] ————— comp05|t|onal the clr log-ratio Step 4
e representation P
transform
Linear Regression
Step 7 Step 6 Step 5
Transform Inversion of the ¢lr
Re-assemble FSs |, _— compositions back lod-ratio transform
from a-cuts o 3 into intervals, g :
— : to the simplex
L i.e. a-cuts

Fig. 4: The demonstration of the proposed approach.
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Fig. 5: The first four experimental steps of the proposed approach.
A and B, shown in Fig. 5. We explore adopting linear efficients are obtained using the linear regression approach

regression on the compositional representation of the a-cut
decompositions of the FSs to conduct regression effectively,
mitigating some of the challenges of maintaining domain and
parameter coherence.

As can be seen in Fig. 5, each dependent and independent
variable FSs’ support is gradually increased to explore and to
clearly communicate the behaviour of the regression models
in respect to different properties of the FSs. In other words,
beyond considering model performance, we are conducting
an analysis on the resulting regression models for systematic
variations of the FSs.

The specific experimental steps are as follows, and each is
visually illustrated in Fig. 5:

Step 1: To enable visualisation within the paper, we conduct
a-cut decomposition, using only three levels (at o« = 0+, =
0.5 and @ = 1), thus obtaining three set of intervals for
each instance of the independent and dependent variables
(“[A],*[B]).

Step 2: The intervals from Step 1 are transformed to the
compositional representation (denoted by *H and *Z € S3).
Compositional linear regression is performed by using the
‘Compositional’ library in R language [28].

Step 3: The clr log-ratio transform is applied on the
obtained compositional representations and the *H<" and
@ Ze°r ¢ R are calculated.

Step 4: Following the procedure in Section II-E, the co-

applied to the transformed valued generated in Step 3. Note
that for each a-cut level, a different linear regression model
(denoted by “LM) is optimised and, thus, a different set of
coefficients is calculated. As an example, the °-> LM is given
in (12).

05¢elr — _0.1641 + 0.4420 % OS¢t
0-5¢6lr — (0.3282 + —0.8840 * *5p§!" (12)

0-5¢¢lm = —0.1641 + 0.4420 % %5pstr

Note that 75" and n§" are excluded/dropped to avoid having

mutually dependent components in the regression stage in (12).

75" and 7§ could be excluded and later recreated at the
estlmated unconstrained real space stage—as for clr, all three
components add up to zero. Excluding 75" and n§" would
be computationally more efficient as it avoids the estimation
of its model parameters, but it makes the pipeline more
cumbersome as the recreation requires adjustment depending
on the transform used.

With the compositional regression model in place, we can
now estimate an output for a given FSs A. In order to so, first,
we follow the same four steps in Fig. 5 to obtain the * H°".

Step 5: We use the models (* L) in conjunction with the
@ He" to estimate the ® Z<I™ for each a-cut level decomposi-
tion. Later, the inverse operation (7) is applied on the estima-



Fig. 6: The compositional linear regression %> LM estimation
results (black crosses 9-5 Z) on ground truth (blue circle °-5 Z),
correspond to Step 5 in Fig. 4

tions clr_l(aé?“") and the compositional representation oz
is obtained.

To provide visual insight of the quality of the regression
model, the estimated compositions (°-5Z) from the °-5 LM are
illustrated as black crosses in the ternary diagram in Fig.6, with
the blue circles representing the ground truth compositions
0.5 Z.

Step 6: Each estimated composition is_transformed into
intervals or more specifically a-cut *[B], where a =

(04,0.5,1). The estimated °->[B] intervals are illustrated as
black dashed-lines in Fig. 7 where the blue lines represent the
ground truth 0-3[B].

Step 7: As the final step, all the a-cut levels (¢ =
(0+4,0.5,1)) estimations are combined, resulting in the FSs
B, as shown in Fig. 6.

In the testing phase of the generated coefficients, the same
FSs (A) are used as input to the built linear regression
models and the estimations results (black-dashed intervals) are
visualised on the given input FSs in Fig. 8. As the initial
results indicate that all the estimations are in-line with the
fixed domain and follow the mathematical coherency (the left
endpoints are smaller than the right endpoints) where the
models meet intuitive expectations.

B. Experiment 2

In experiment 1, the generated FS pairs (A — B) are used
to optimise coefficients and the same FSs A are tested on the
generated coefficients to explore the estimation behaviour of
the model.

In experiment 2, we conduct the analysis with a different FS
to further explore the behaviour of the models (e.g., 5 LM
is given in (12)). First, we generate the Gaussian shape FS
I (shown on the left-hand side of the Fig. 9) which is not
involved in the coefficient generation process. Following the
same 7 steps in Fig. 4, the I transform into the clr log-ratio
and the same linear regression model coefficients are used
to generate the estimation. Later, the back transformation is
carried out, and estimations are re-assemble to visualise the

10

0.5+
4]

Fig. 7: Back transformation of 051, M estimat/i(ln results into

interval-valued data (black dashed lines 0-°[B]) over the

ground truth intervals (blue lines °-°[B]), correspond to Step
6 in Fig. 4.

result (f ), which is shown as black dashed lines on the right-
hand side of Fig. 9.

Overall, based on the experiment, it can be observed that
the estimations go beyond the given FS (I). We highlight the
expected potential of the approach: having the estimations in-
line with the fixed domain [0, 10] and avoiding the risk of
parameter flipping where both of the key issues are addressed
in the given results.

V. CONCLUSIONS

Recent studies have started exploring adopting a composi-
tional representation for data reflecting uncertainty or vague-
ness, for example, interval-valued questionnaire responses.
The further effort has been made in articulating how regression
for these compositional representations can be conducted and
how this can provide advantages in mitigating some of the
challenges faced by traditional approaches. This paper pro-
poses the a-cut based compositional representation of FSs and
conducts an initial empirical exploration of linear regression
using the resulting FS representations.

In the experiments, initial explorations carry out to examine
the behaviour of the proposed approach which shows promis-
ing results in principle. However, we highlight that substantial
questions and challenges remain. For example, further experi-
ments and a formal exploration of whether the compositional
representation and associated regression addresses key con-
cerns such as mathematical coherence are needed. Moreover,
the simple approach of generating independent regression
models for each a-cut, as outlined here, is expected to risk
challenges, such as resulting in a-cuts at a higher « level not
being a subset of lower a-cuts.

Thus, intuitively, in future work, we will further explore
the expected potential of this approach in addressing two key
challenges of the risk of parameter flipping and the unexpected
generation of estimations outside the dependent variable’s
domain. Furthermore, we will examine dependency across
multiple linear regressions associated with different « levels.
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