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Abstract—Federated Learning (FL) has been proposed as a
privacy preserving paradigm for collaboratively training AI
models: in an FL scenario data owners learn a shared model
by aggregating locally-computed partial models, with no need
to share their raw data with other parties. Although FL is
today extensively studied, a few works have discussed federated
approaches to generate explainable AI (XAI) models. In this
context, we propose an FL approach to learn Takagi-Sugeno-
Kang Fuzzy Rule-based Systems (TSK-FRBSs), which can be
considered as XAI models in regression problems. In particular,
a number of independent data owner nodes participate in the
learning process, where each of them generates its own local
TSK-FRBS by exploiting an ad-hoc defined procedure. Then,
these models are forwarded to a server that is responsible for
aggregating them and generating a global TSK-FRBS, which is
sent back to the nodes. An appropriate aggregation strategy is
proposed to preserve the explainability of the global TSK-FRBS.

A thorough experimental analysis highlights that the proposed
approach brings benefits, in terms of accuracy, to data owners
participating in the federation preserving the privacy of the data.
Indeed, the accuracy achieved by the global TSK-FRBS is higher
than the ones of the TSK-FRBSs learned by exploiting only local
training data.

Index Terms—TSK fuzzy system, federated learning, explain-
ability, regression

I. INTRODUCTION

The ever increasing pervasiveness of Artificial Intelligence
in the daily process of individuals, companies and institutions
stimulated awareness, among users and regulatory bodies, of
the importance of adherence to certain widely acknowledged
ethical principles. The European Commission, for example,
has promoted the creation of the “Ethic Guidelines for Trust-
worthy AI” [1], which describes the requirements an AI
system must meet to achieve trustworthiness. Specifically,
the privacy requirement is considered paramount for the data
owners, who are often reluctant to share their data to other
parties. Evidently, however, this can be an impediment to
create accurate and reliable AI models, as they are typically
data-hungry in their learning stage. Since data collection for
centralized training is therefore not viable as it violates the
privacy requirement, alternative paradigms for decentralized
learning have been recently proposed. In particular, Federated
Learning (FL) [2] has gained interest as it enables collaborative
training of an AI model through the aggregation of locally-
computed update, without disclosure of private data from
the involved participants. Thus, remodeling, adapting, and
analyzing traditional AI algorithms in a federated fashion

represents one of the most compelling challenges in the current
AI research landscape.

An equally important key aspect for users’ trust in AI
systems is the ability to understand how the model works, and
to know the reasons that led to a certain output: the branch
of Explainable AI (XAI) is concerned with these aspects
and is deemed crucial for the practical deployment of AI
systems on a large scale. In this context, the adoption of
inherently interpretable models can play a key role: rule-based
systems, for instance, are generally considered more inherently
interpretable than other commonly employed models, such as
random forests and deep neural networks, since the inference
process is very much akin to the one used in human reasoning.
Fuzzy Rule-Based Systems (FRBSs) feature even higher inter-
pretability thanks to the linguistic representation of numerical
variables and have proven to achieve competitive levels of
performance for classification and regression tasks [3].

In this paper, we propose a federated approach to learn XAI
models (Fed-XAI): different users (also referred to, in this
work, as clients or data owners) participate in collaborative
learning of an XAI model thus benefiting from the knowledge
coming from the other participants without, however, exposing
their own raw data. Specifically, we consider the federated
learning of an adapted version of the first-order Takagi-
Sugeno-Kang FRBS (TSK-FRBS) [4], which has proved to
be effective for modelling complex systems in regression and
control tasks and consists of a set of if-then rules in which the
consequent part is a linear combination of the input variables.

In a nutshell, our proposal can be summarized as follows:
each data owner learns a modified TSK-FRBS from local data:
we revisit the traditional approach for building TSK models to
pursue high level of interpretability. Then, data owners share
the model with one central server, which merges the received
models to produce a global TSK-FRBS. The TSK-FRBS is
finally sent back to the data owners that can use it for local
inference. Our work entails the following contributions:

• we propose a novel approach for building highly inter-
pretable TSK-FRBS;

• we define a novel aggregation strategy for federated
learning of TSK-FRBS, so that different participants
can collaborate to learn a global model without sharing
private data;

• we demonstrate the effectiveness of the proposed strategy
for Fed-XAI with a thorough experimental analysis.



The rest of the paper is organized as follows: Section II
describes some related works. Section III provides some pre-
liminaries on the problem statement for the federated setting
and on TSK-FRBSs. In Section IV we describe our modified
interpretable TSK-FRBS, whereas Section V describes the
proposed approach for federated learning of such a model.
Section VI describes the experimental setup and results. In
Section VII, we draw some conclusions.

II. RELATED WORKS

The literature related to TSK-FRBSs is extremely extensive,
starting from their introduction in the 1980s. Since we cannot
exhaustively cover all significant contributions, we just review
the works that have recently discussed the interpretability of
TSK-FRBSs and their adaptation to the FL setting.

A remarkable contribution for the design of FRBSs has
been recently presented in [5]: specifically, authors introduced
PyFUME, a Python library for the estimation of antecedent
and consequent parameters of an FRBS. Concerning their
transparency, these models are labeled by the authors as
“(light) grey box” models: on one side, in fact, linguistic
fuzzy rules are easily comprehensible to human beings; on
the other side, however, the procedure adopted for the esti-
mation of the antecedent parameters substantially undermines
the interpretability of the whole system. Such a procedure,
described in [6], exploits clustering for partitioning data
in the input-output product space and estimates antecedent
parameters by fitting the convex envelop of the projected
membership values for each discovered cluster. Compared to
the traditional clustering-based approach [7], the procedure
implemented in PyFUME pursues more specific membership
functions (through the removal of outlying cluster membership
values), but it still exhibits the following problem: inevitably,
the estimated membership functions will not meet the criteria,
generally deemed crucial for interpretability of FRBSs [8], of
coverage, completeness, distinguishability and complementar-
ity, as they are automatically derived from data.

Since early works in FL literature [9], [10], most solutions
revolve around the original proposal of Federated Averaging
(FedAvg), as a protocol for executing Stochastic Gradient
Descent (SGD) in a federated manner. Specifically, in [9]
the authors showed that deep neural network models can
be collaboratively trained for tackling image classification
and language modeling tasks. However, the adoption of FL
for training inherently interpretable models has not yet been
adequately studied. To the best of our knowledge the only
work in this direction has been recently published by Zhu et
al. [11], who proposed an approach for federated learning of
TSK-FRBSs for horizontally partitioned data. The approach
involves two steps: the first step consists in collaborative
structure identification based on federated FCM clustering
[12], [13]; once the fuzzy sets are determined, the second
step consists in collaborative estimating the local consequents
of each rule, each associated with a cluster. Both steps are
inspired by the FedAvg approach: for both FCM centroids
and rule consequents parameters, the gradients of related

and appropriate cost functions are evaluated by each client
based on its local data; then, gradients are transmitted to
the central server, which is in charge of aggregating the
gradients to update the model parameters accordingly and of
sharing the results with the clients. The approach has proved
to be effective in modelling some real-world datasets, but
the resulting model cannot be considered highly interpretable
since the estimation of antecedents parameters is data driven
and the inference process combines the implications of all the
activated rules, as in the classical TSK-FRBS. Furthermore, it
requires careful setting of several hyperparameters, including
the learning rate and the maximum number of iterations, which
can have a strong impact on model convergence.

Notably, our proposed approach differs from [11] and from
the classical FL paradigm in two aspects: first, it entails a
one-shot communication scheme and not an iterative, gradient-
based, algorithm. Second, merging rule-based models requires
defining appropriate procedures, necessarily different from the
weighted average of models or gradients tensors carried out
within FedAvg and its variants.

III. BACKGROUND

In this section, we first describe the problem setting and
introduce the notation for the FL scenario. Then, we provide
some preliminaries about TSK-FRBSs.

A. Federated Learning problem statement

Let {Cm}Mm=1 be M parties, i.e. data owners, who wish
to train an AI model by consolidating their respective data
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process the parties collaboratively learn a model under the
orchestration of a central server and without exposing their
private data to others. In this work, we focus on the scenario of
horizontally partitioned data: the M private datasets may have
different sizes but their instances are represented in the same
F -dimensional attribute space. We assume that the domain of
definition of the attributes are known a-priori, and they are
also known to the server.

B. The TSK-FRBS models

This section describes the basics of TSK-FRBSs: for the
sake of clarity and to avoid burdening the notation we omit
the index m = {1 . . .M}, although in this work the models
are built based on local datasets {Cm}Mm=1.

Let X = {X1, X2, . . . , XF } be a set of input variable and
Y the output variable. A generic record of the dataset is in the
form x = [x1, x2, . . . , xF ]

T and has an associated target value
y. Let Uf , f = 1, 2, . . . , F , be the universe of discourse of
variable Xf and Pf =

{
Af,1, Af,2, . . . , Af,Tf

}
be a fuzzy

partition over Uf with Tf fuzzy sets, each labeled with a
linguistic term. Finally, let K be the number of rules in the
rule base. The generic kth rule is in the form:

Rk : IF X1 is A1,jk,1
AND . . . AND XF is AF,jk,F

THEN yk = γk,0 +

F∑
i=1

γk,i · xi

(1)



where jk,n ∈ [1, Tf ] identifies the index of the fuzzy set
of partition Pf . In first order TSK-FRBS the consequent
function of the generic rule Rk is a linear combination of
the elements of x, parameterized by the vector of coefficients
γk = {γk,0, γk,1, . . . γk,F }.

The most popular approach to learn TSK-FRBS consists
of two stages: structure identification and model parameter
identification. In the former stage, the number of rules and the
conditional part of the rules are determined; this is typically
done either with grid-partitioning of the input space or exploit-
ing fuzzy clustering methods [14]. In the latter stage, with
fixed antecedents, parameters of the local linear models are
learned by pseudo-inversion or by applying the recursive least
square method. Alternative approaches have been proposed for
optimizing TSK-FRBSs, including genetic algorithms [15] or
mini batch gradient descent [16], [17].

When an input pattern xi is fed to a TSK-FRBS, the strength
of activation of each rule is computed as follows:

wk(x) =

F∏
f=1

µf,jk,f
(xf ) for k = 1, . . . ,K (2)

where µf,jk,f
(xf ) is the membership degree of xf to the

fuzzy set Af,jk,f
. In the traditional TSK-FRBSs, the inference

process generates an output as the weighted average of the K
outputs obtained from as many rules. Formally:

ŷ(x) =

K∑
k=1

(
wk(x)∑K
h=1 wh(x)

)
· yk(x) (3)

IV. ENFORCING INTERPRETABILITY IN TSK-FRBSS

The proposed approach for generating a first-order TSK-
FRBS consists of rules antecedent generation and consequent
parameters estimation. As detailed in Section V, the procedure
is executed locally by all clients participating in the FL
process. Although in this work we refer to the federated
scenario, the procedure described in this section is general.

A. Rule antecedent generation

The rule antecedent generation step is inspired by the
Wang & Mendel approach [18] and encompasses three steps:
(i) fuzzy partitioning of the input space, (ii) numerosity reduc-
tion through fuzzy clustering of training data, and (iii) gener-
ation of antecedents based on centroids.

First, a strong triangular uniform fuzzy partitioning is de-
fined on each normalized input attribute f using Tf fuzzy sets.
In the rest of the paper we will consider the same granularity
for all inputs, and specifically Tf = T = 3: this firstly induces
less complex models and moreover guarantees a high level of
semantic interpretability thanks to the adoption of just three
linguistic terms for labelling the fuzzy sets: Low, Medium and
High. From the point of view of inherent interpretability, there
is another fundamental difference with the standard approaches
adopted for structure identification: the use of strong uniform
fuzzy partitions ensures high interpretability since they satisfy
the properties of coverage, completeness, distinguishability

and complementarity; on the other hand, when fuzzy sets
are generated through clustering, the modeling of the data
distribution can be more accurate, but the above properties
are not necessarily satisfied.

The antecedents are generated similarly to the Wang &
Mendel’s approach: however, instead of determining the mem-
bership degree of all training samples, we first execute the
Fuzzy C-means clustering algorithm [19] on the training
samples and then we just consider the cluster centers for
assessing their membership degree to the fuzzy sets defined
over the input attributes. A toy example, featuring a unique
input attribute Z and an output variable Y , is reported in Fig.
1: the FCM algorithm is executed on the Z × Y input-output
product space; cluster centers, represented as red dots, are
projected onto the input space and their membership degree
to the predetermined fuzzy sets is assessed.

Fig. 1. Rules antecedent generation on an 1-dimensional toy dataset. (top)
Training set summarization obtained by the execution of the FCM algorithm
- red dots indicate cluster centers. (bottom) Cluster centers projection onto
the input attribute partitioned in three fuzzy sets.

For a given input component, a condition is added by
considering the fuzzy set with the maximum membership
degree; for multi-dimensional input, this procedure is repeated
for each input component and the conditions are joined with
the AND operator to generate the antecedent part of a rule.

In the example of Fig. 1, three antecedents (i.e., three rules)
are obtained:

Antecedent1 : IF x is Low

Antecedent2 : IF x is Medium

Antecedent3 : IF x is High

(4)

Let Cfcm be the number of clusters used in the FCM
procedure, F the number of input attributes and T the number
of fuzzy sets per attribute. The upper bound for the number
of rules K generated by the above procedure is:

K ≤ min(TF , Cfcm) = Kmax (5)

The clustering therefore helps to summarize the training set
and to limit the overall number of rules, especially when the
dimensionality of the dataset is high. The choice of parameter



Cfcm entails a trade-off between complexity and modelling
power. Indeed, low values of Cfcm reduce the complexity,
resulting in a higher global interpretability and lower commu-
nication and computational costs, but may increase the error.

B. Consequent parameter estimation

The first-order consequents corresponding to the K an-
tecedents are determined in the consequent parameter esti-
mation step. We adopt the local least-square approach as in
[5]: for each kth antecedent, consequent parameters γk =
{γk,0, γk,1, . . . γk,F } are estimated with a weighted least-
squared method. Specifically, each training sample is weighted
by its strength of activation of the rule (Eq. 2).

C. Inference process and rule weight

Given an input pattern, the inference process of the tradi-
tional TSK-FRBS consists in the evaluation of the weighted
average of the outputs inferred from the rules, as presented in
Eq. 3. This undermines the interpretability of the model: in
fact, the coefficients used in the linear model for calculating
the output will be different for any different input pattern. With
the aim of enhancing interpretability, we adopt the maximum
matching inference rule strategy: the output of the system
is determined by using the rule with the highest strength
of activation. Since the antecedent of this rule is expressed
linguistically, a user can easily understand which combination
of input values has determined the output.

Furthermore, we associate a weight with each rule. When
more than one rule is activated with the same largest strength,
we select the rule with the highest weight. Further, in case no
rule is activated by the input pattern, the rule with the highest
weight is used to produce an output (default strategy). The
rule weight RWk associated with each rule Rk is determined
by the following procedure.

Let AEk(x, y) = |y−yk(x)| be the absolute error evaluated
based on the value yk(x) predicted for the generic input
training sample (x, y) considering rule Rk. Let AEmin and
AEmax be the minimum and the maximum values over the
errors obtained considering all the activated rules for all the
samples in the training set. For each sample and for each rule,
we evaluate the quality of prediction µ(AEk (x, y)) according
to the following function:

µ(AEk (x, y)) = 1− AEk (x, y)−AEmin

AEmax −AEmin
(6)

. Intuitively, the lower the error, the higher the quality of
prediction.

Let TS be the training set and N its cardinality. We compute
the fuzzy confidence and the fuzzy support of a rule Rk as
follows:

Confk =

∑
(x,y)∈TS wk (x) · µ(AEk (x, y))∑

(x,y)∈TS wk (x)
(7)

Suppk =

∑
(x,y)∈TS wk (x) · µ(AEk (x, y))

N
(8)

Fuzzy confidence can be regarded as the average quality of
prediction associated with the training samples, each weighted
by the strength of activation of the rule. Fuzzy support differs
from fuzzy confidence only in the denominator and it gets
higher values when a larger number of instances activate the
rule and result in high prediction quality.

Finally, we define the rule weight RWk as the harmonic
mean of fuzzy confidence and support. Formally,

RWk = 2× Suppk × Confk
Suppk + Confk

(9)

Notably, the rule weight will not only be used for driving
the default strategy, but also for the rule aggregation step in
the proposed approach for federated learning of TSK-FRBS.
A thorough description of such an approach is provided in the
following section.

V. PROPOSED APPROACH FOR FEDERATED LEARNING OF
A GLOBAL TSK-FRBS

A schematic view of the proposed approach is shown in
Fig. 2. The overall approach encompasses the following steps.

• Communication step A: configuration of the learning
process;

• Step 1: local learning of TSK-FRBSs;
• Communication step B: transmission of local models to

the central server;
• Step 2: federated learning of the global TSK-FRBS:

aggregation of the models;
• Communication step C: transmission of the aggregated

model to the clients;

Fig. 2. Overview of the proposed approach. Squared markers (A, B, C)
denote communication steps. Circle markers denote local learning (1) and
model aggregation (2) steps.

At the beginning (A) the central server configures the
learning process, by sending a set of hyperparameters to each
data owner. Such set includes (i) the domain of definition of the
attributes for data normalization, (ii) the number of fuzzy sets
Tf (f = 1, . . . , F ) for fuzzy partitioning of input attributes,
and (iii) the number of clusters Cfcm for the FCM algorithm..

Once received the hyperparameters, each client can train a
model based on its local data (Step 1): local learning of the



first-order TSK-FRBSs is performed as described in Section
IV. Notably, in order to make the downstream procedure of
rules aggregation workable and effective, it is essential that
all clients rely on the same partitioning of the input space.
If this were not the case, a rule expressed in the form of
Eq. 1 generated on a given client cannot be safely used
on another client since the fuzzy sets might not coincide.
Therefore, leveraging the information received from the server,
every client normalizes input and output attributes in the range
[0, 1] and builds the local model starting from the same fuzzy
partitioning of the input space. Then, each client transmits the
local model to the server (B), which is in charge of generating
the global model by aggregating the received local models.
The aggregation step (Step 2) is described in detail in Section
V-A. Finally the aggregated model, named as Fed-FRBS in
Fig. 2, is transmitted to each client (C), where it is employed
in place of the local model for the regression task.

A. Federated TSK-FRBS: aggregation of the local models

Let M be the number of clients that participate in the
FL process. When the clients have sent the local models
(communication step B), the central server will have the
information schematized in Table I, i.e. the juxtaposition of
the rules collected from the M clients.

TABLE I
RULES COLLECTED BY THE CENTRAL SERVER FROM M PARTICIPANTS IN
THE FL PROCESS. THE HORIZONTAL ARROW (⇐) IS USED TO INDICATE

CONFLICTING RULES.

Antecedent Consequent Rule Weight

Client 1



ant1 ,1 cons1 ,1 rw1 ,1

· · · · · · · · ·
ant1 ,i cons1 ,i rw1 ,i ⇐
· · · · · · · · ·

ant1 ,K1 cons1 ,K1 rw1 ,K1

· · · · · ·

Client m



antm,1 consm,1 rwm,1

· · · · · · · · ·
antm,j consm,j rwm,j ⇐
· · · · · · · · ·

antm,Km consm,Km rwm,Km

· · · · · ·

Client M



antM ,1 consM ,1 rwM ,1

· · · · · · · · ·
antM ,k consM ,k rwM ,k

· · · · · · · · ·
antM ,KM

consM ,KM
rwM ,KM

Since this global rule base aggregates knowledge from
different sources, it is likely that some conflicting rules,
i.e. rules, originated from different clients, with the same
antecedent but different consequents, occur. These conflicts
have to be solved. As an example, suppose that the i-th rule
of Client 1 and the j-th rule of Client m are conflicting rules,
that is, ant1 ,i ≡ antm,j but the consequents are different; the
two rules are marked with the symbol ‘⇐’ in Table I.

We propose the following strategy for handling conflicts
among rules. Let CR be the set of conflicting rules for a

specific antecedent. Let Γ⃗l and rwl be the consequent vector
of coefficients and the rule weight of the lth rule in CR,
respectively. A single rule is obtained from CR as follows:

• the new antecedent is the same of the rules in CR;
• the coefficients of the new consequent (Γ⃗) are estimated

as the weighted average of the coefficients of the con-
sequents in CR, each weighted by the respective rule
weight;

• the rule weight (r̂w) associated with the rule is computed
as the average of the rule weights in CR.

Formally:

Γ⃗ =

∑|CR|
l=1 Γ⃗l · rwl∑|CR|

l=1 rwl

(10)

r̂w =
1

|CR|
·
|CR|∑
l=1

rwl (11)

Once all conflicts have been handled, the resulting rule base
represents the federated model, that can be sent back to the
clients for local inference (communication step C).

VI. EXPERIMENTAL ANALYSIS

In this section, we first describe our experimental setup,
including details regarding the datasets exploited, the simula-
tion of the federated setting and the configuration parameters.
Then, we report the results of the FL experiments. Finally, we
also compare our proposed approach with the state-of-the-art
proposal for building TSK FRBSs [5] discussed in Section II
and implemented in PyFUME.

A. Experimental Setup

We employ four well-known regression datasets available
within the KEEL-dataset repository [20], namely Weather
Izmir, Treasury, Mortgage and California. A summary of the
datasets is reported in Table II.

TABLE II
DATASETS DESCRIPTION

Dataset Abbreviation Dimensionality (F) Samples (N)
Weather Izmir WI 9 1461

Treasury TR 15 1049
Mortgage MO 15 1049
California CA 8 20460

To simulate the distributed scenario, we randomly split each
dataset in five parts (each with the same amount of instances),
assuming the involvement of as many participants. Our main
objective is to assess the performance of our proposed ap-
proach for federated learning of TSK-FRBSs; to this aim, we
consider three scenarios:

• Federated model: we adopt the approach described in
Section V: at the end of the aggregation process, each
client tests the final global model locally.

• Local model: each client locally learns and tests its
TSK-FRBS. This scenario does not entail any form of
collaborative learning.



• Centralized model: each participant shares its training
data with the central server which can build a TSK-FRBS
using the overall training set, obtained by the union of
the local training sets. The model is shared with the
participants that test it locally. This scenario represents
the ideal case where all data can be used for training, but
of course violates the privacy requirement.

The quality of prediction of the FRBSs is evaluated through
the Mean Squared Error (MSE):

MSE =
1

Ntest

Ntest∑
i=1

(yi − ŷi)
2 (12)

where Ntest is the number of samples considered for the
evaluation, yi and ŷi are the ground truth value and the
predicted value associated with the i-th instance of the test set,
respectively. Results are evaluated in terms of average values
over five-fold cross-validation: for a fair comparison, at each
iteration of the cross-validation, the same local split is used
for the three scenarios.

As per the hyperparameter configuration, we set the values
consistently across the three scenarios as follows:

• Tf = 3, ∀f ∈ {1, . . . , F}, to ensure high semantic
interpretability, as detailed in Section IV-A;

• Cfcm = 30, as the number of clusters set for the FCM
algorithm, in order to summarize the training set and to
limit the overall number of rules.

We have verified that the resulting FRBSs are not particularly
sensitive to the choice of Cfcm. However, the automatic
tuning of such a parameter represents an interesting future
development of this work.

B. Federated Learning Experiments

Table III reports the results obtained with the proposed
federated TSK-FRBSs. Results are compared with those ob-
tained in the local and centralized scenarios. As 5-fold cross-
validation is adopted, for each client and dataset, we report the
average MSE on the test and training sets. The dataset parti-
tioning over the clients is maintained also in the centralized
setting, just for the purpose of performance assessment.

Table III suggests that federated scenario always outper-
forms, on average, the local one. This outcome is relevant
since it demonstrates how, in the considered setting, every
client can benefit from joining the FL process: the model built
in a collaborative manner without sharing private raw data
features a higher generalization capability than the locally built
ones. On the other hand, intuitively, the centralized scenario,
which employs the union of the five local training sets,
achieves comparable or better performance than the federated
one. While it is clear that the increased availability of training
data is crucial for building more accurate models, it should
be considered that gathering scattered data into a single server
for centralized processing is not always feasible due to privacy
concern or communication constraints. It is worth underlining
that the gaps between the centralized and the federated sce-
narios are more evident for Treasury and Mortgage datasets:

TABLE III
EXPERIMENTAL RESULTS: FOR EACH DATASET AND SCENARIO (LOCAL,

FEDERATED, CENTRALIZED), THE AVERAGE MSE OVER
CROSS-VALIDATION IS REPORTED FOR EACH CLIENT, ALONG WITH THE

OVERALL AVERAGE VALUES.

Local Federated Centralized
Client

ID
Train Test Train Test Train Test

Weather Izmir
1 1.33 2.02 1.44 1.57 1.40 1.54
2 1.09 1.62 1.25 1.41 1.22 1.34
3 0.96 1.40 1.25 1.32 1.22 1.29
4 1.07 7.10 1.23 1.30 1.20 1.28
5 1.19 1.64 1.41 1.51 1.38 1.46

Avg. 1.13 2.76 1.32 1.42 1.28 1.38
Treasury (×10−3)

1 7.11 377.40 82.20 112.72 21.97 46.13
2 19.28 192.70 53.64 79.41 37.69 51.35
3 7.72 337.25 429.38 174.18 26.86 41.97
4 9.31 110.47 72.86 378.61 20.51 41.69
5 10.37 133.83 57.04 40.85 13.24 20.37

Avg. 10.76 230.33 139.02 157.15 24.06 40.30
Mortgage (×10−3)

1 2.29 78.08 9.70 15.96 5.20 7.55
2 1.44 15.08 9.14 7.35 3.47 5.22
3 1.22 38.18 14.61 9.52 3.31 5.22
4 1.54 53.84 9.38 35.90 4.24 8.83
5 1.09 43.36 14.78 5.14 3.74 4.98

Avg. 1.52 45.71 11.52 14.77 3.99 6.36
California (×109)

1 4.73 4.87 4.75 4.86 4.77 4.78
2 4.62 4.73 4.57 4.58 4.60 4.62
3 4.71 4.89 4.71 4.74 4.72 4.75
4 4.77 5.10 5.23 5.34 5.18 5.24
5 4.70 4.82 4.63 4.64 4.65 4.68

Avg. 4.71 4.88 4.78 4.83 4.78 4.81

such datasets are characterized by a relatively high number
(15) of features and a low number (1049, reduced to around
200 for each client) of instances. Indeed, we can argue that
such a small number of instances used to estimate TSK param-
eters does not allow for accurate modeling of these datasets;
although model aggregation improves performance compared
to the local setting, it still delivers a worse generalization
capability compared to the centralized case. The low data
regime of the two datasets is also the underlying reason for the
severe overtraining that affects the local approach: the average
MSE measured on the training set is low (also compared to the
federated and centralized scenarios) but the local models lack
of generalization capability on the test sets. Conversely, with
a larger dataset (i.e., California, 20460 instances) the relative
differences of performance between the three approaches be-
come smaller and also the overtraining phenomenon is less
prominent. Notably the performance obtained on the four
datasets are comparable to those reported in the literature [21].

We performed the pairwise Wilcoxon signed-rank test
[22] to assess possible statistical differences in performances



among the three scenarios: for each dataset, the federated
approach is selected as the control one and is compared with
the local and the centralized ones. Each distribution consists
of 25 values of MSE measured on the test sets, derived from
the iterations of the cross-validation over the involved clients.
Table IV reports the results of the test: R+ and R− denote,
respectively, the sum of ranks for the evaluations in which the
federated model outperformed the other one, and the sum of
ranks for the opposite outcome.

TABLE IV
RESULTS OF THE WILCOXON SIGNED-RANK TEST ON THE MSE VALUES

OBTAINED ON THE TEST SETS.

DS R+ R− p-value Hypothesis (α = 0.05)
Federated vs Local

WI 314 11 0.0000 Rejected (>)
TR 230 95 0.0710 Not Rejected (=)
MO 309 16 0.0000 Rejected (>)
CA 237 88 0.0451 Rejected (>)

Federated vs Centralized
WI 91 234 0.0551 Not Rejected (=)
TR 5 320 0.0000 Rejected (<)
MO 24 301 0.0000 Rejected (<)
CA 231 94 0.0667 Not Rejected (=)

The statistical hypothesis of equivalence can be rejected
whenever the p-value is lower than the level of significance α.
Results suggest that, with α = 0.05, the federated approach
statistically outperforms the local model in three out of the
four datasets. On the other hand it is outperformed by the
centralized approach in the small datasets (TR and MO), but it
achieves competitive performance on WI and CA. Notably, the
equivalence hypothesis would always be rejected by relaxing
the level of significance, e.g., with α = 0.1.

Finally, it is worth underlining that a necessary but not suf-
ficient condition for the global interpretability of an FRBS is
the limited size of its rule base, i.e., a reduced complexity [23].
Thus, we measured the complexity of the three approaches as
the average number of rules of the FRBSs. Table 5 reports the
results. We can observe that, in the federated and centralized
scenarios, the average number of rules is computed over
five values (obtained by using the cross-validation procedure),
whereas for the local scenario we averaged over the 25 values
corresponding to as many local models.

TABLE V
MODEL COMPLEXITY: AVERAGE NUMBER OF RULES OF THE TSK-FRBSS.

Dataset Local Centralized Federated
Weather Izmir (WI) 13.96 13.40 27.80

Treasury (TR) 21.36 21.20 42.40
Mortgage (MO) 21.60 21.00 46.00
California (Ca) 8.80 8.60 10.20

First of all, results confirm that the number of rules gen-
erated for a TSK-FRBSs, either learned locally or centrally,
is always lower than the upper bound Kmax (see Eq. 5) and
also lower than Cfcm, i.e. the number of clusters used in the

FCM procedure, arbitrarily set to 30. Furthermore, the average
number of rules of the local and the centralized scenarios are
very similar. The federated model is generally more complex
than the local and centralized counterparts, due to the rules
aggregation procedure, but its complexity is still limited and
in the same order of magnitude.

The interpretability of our TSK-FRBSs can be explained
as follows: the antecedent of a generic rule Rk identifies a
specific region of the attribute space; within this region, the
predicted output is evaluated as a linear combination of the
input variables, which is expressed in the consequent part of
the rule. The coefficient vector γk = {γk,0, γk,1, . . . γk,F }
describes the effect of each attribute on the output value. In the
following, a rule generated on the california dataset is shown
as an illustrative example:
Rk: IF longitude (x1) is Low AND latitude (x2) is Medium
and housingMedianAge (x3) is Medium AND totalRooms (x4)
is Low AND totalBedrooms (x5) Low AND population (x6) is
Low AND households (x7) is Low AND medianIncome (x8) is
Medium THEN medianHouseValue = 0.83−1.08 ·x1−0.95 ·
x2+0.08·x3+0.41·x4+2.18·x5−5.29·x6+0.27·x7+1.28·x8

Indeed, we can get that the house value is strongly influ-
enced by number of bedrooms (increases with x5) and by the
population (decreases with x6).

C. Comparison with a state-of-the-art approach

With the objective to enforce interpretability, we proposed
a purposely designed approach to learn TSK-FRBSs. In this
section, we show that this approach allows achieving perfor-
mance similar to state-of-the-art approaches, regardless of the
federated setting. We adopt the recently delivered PyFUME
implementation of TSK-FRBS [5], [6] as comparison. We
recall the two main differences among our approach and the
PyFUME version:

• our approach considers a predefined strong uniform fuzzy
partition over the input attributes, whereas PyFUME
estimates the parameters of the fuzzy sets by executing a
clustering algorithm and then fitting the convex envelop
of the projected membership values for each cluster;

• our approach adopts an inference strategy based on the
maximum matching, whereas PyFUME implements the
classical averaging of all the activated rules (Eq. 3).

We compared our approach (TSK-SC, i.e. single consequent
since we adopt a maximum matching inference rule) and
PyFUME under the centralized setting. For PyFUME, we
set the number of clusters so as to achieve a complexity
comparable to the one of our system (number of rules of
the centralized approach in Table V). We also evaluate the
impact of the inference strategy adopted in our approach,
by replacing the single consequent policy with the classical
averaging (TSK-AC, i.e. averaging consequents). Table VI
summarizes the results.

Results suggest that, at equal system complexity, the per-
formance of our approach is comparable to, or even better
than, the one obtained by PyFUME. Furthermore, the inference
process based on averaging only slightly outperforms the



TABLE VI
COMPARISON OF OUR APPROACH (SC = SINGLE CONSEQUENTS, AC =

AVERAGING CONSEQUENTS) AND STATE OF THE ART APPROACH
(PYFUME) FOR BUILDING TSK FRBSS.

TSK-SC TSK-AC PyFUME [5], [6]
Dataset Train Test Train Test Train Test

WI 1.28 1.38 1.28 1.37 1.48 1.52
TR 24.06 40.30 24.42 39.18 32.07 62.93
MO 3.99 6.36 4.29 6.14 4.49 8.22
CA 4.78 4.81 4.82 4.85 4.62 4.64

one based on single consequent, although it entails a lower
semantic interpretability.

VII. CONCLUSION

In this paper, a solution for Federated Learning (FL) of
XAI models has been proposed. Specifically, we introduced a
novel approach for aggregating first-order TSK-FRBSs learned
locally in clients participating in the federation. The local
models are sent to a central server which is in charge of ag-
gregating them by resolving possible conflicts between rules.
The TSK-FRBS we adopt is a variant purposely modified
in order to achieve high level of interpretability: unlike the
classical data driven approaches, our proposal relies on a
uniform fuzzy partitioning of the input space; furthermore,
a maximum matching inference rule is used for improving the
interpretability. In our experimental analysis, we compared the
proposed federated approach with the local learning (which
entails no collaboration) and centralized learning (which en-
tails centralization of raw data). Results, evaluated in terms
of MSE on four regression datasets, show that the federated
approach generally outperforms the local one. On the other
hand, it is generally outperformed by the centralized approach,
which, however, is unfeasible in privacy-sensitive applications.
We also validated our variant of TSK-FRBS by comparing it
with a recently proposed state-of-the-art classical TSK-FRBS
learning. We observed that the interpretability gain ensured by
our implementation does not decrease the accuracy.

Finally, as future work, we aim to address the main chal-
lenge of our approach, that is, devising an automated proce-
dure for tuning the hyperparameters of our system, namely, the
number Cfcm of clusters and the granularity Tf of the fuzzy
partitions. We argue that this can be addressed by introducing
a preliminary communication round in the FL process.
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[21] R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, and F. Marcelloni, “A
multiobjective evolutionary approach to concurrently learn rule and data
bases of linguistic fuzzy-rule-based systems,” IEEE T FUZZY SYST,
vol. 17, no. 5, pp. 1106–1122, 2009.

[22] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in statistics. Springer, 1992, pp. 196–202.

[23] J. M. Alonso, P. Ducange, R. Pecori, and R. Vilas, “Building explana-
tions for fuzzy decision trees with the expliclas software,” in 2020 IEEE
Int’l Conf. on Fuzzy Systems (FUZZ-IEEE). IEEE, 2020, pp. 1–8.


