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Design and Stability Analysis of Fuzzy Model-Based
Nonlinear Controller for Nonlinear Systems
Using Genetic Algorithm

H. K. Lam, Frank H. LeungMember, IEEEand Peter K. S. TanMember, IEEE

Abstract—This paper presents the stability analysis of fuzzy number of parameters that make global analytical solutions dif-
model-based nonlinear control systems, and the design of non-ficult to obtain. It has been widely applied in different areas,
linear gains and feedback gains of the nonlinear controller using such as fuzzy control [20], tuning of parameters of neural net-

genetic algorithm (GA) with arithmetic crossover and nonuni- L .
form mutation. A stability condition will be derived based on works [21], eBook applications [22], load forecasting [23], etc.

Lyapunov’s stability theory with a smaller number of Lyapunov In this paper, we focus on the system stability and present a
conditions. The solution of the stability conditions are also stability analysis of fuzzy model-based nonlinear control sys-

determined using GA. An application example of stabilizing a tems. A nonlinear controller is proposed to control a system
cart-pole typed inverted pendulum system will be given to show e asented by a TSK fuzzy plant model [3]. The proposed con-
the stabilizability of the nonlinear controller. . )

troller, which takes the same form as that in [16], has a structure
_ Index Terms—Fuzzy plant model, genetic algorithm (GA), non- - similar to that of the fuzzy controller reported in [6]. The main
linear controller, nonlinear systems, stability. difference is that the weights in the proposed nonlinear con-

troller are signed, but those of the controller in [6] must be pos-

l. INTRODUCTION itive (because they are the membership function values). Wang

. et al.derived a stability condition for TSK fuzzy model-based
UZZY control has been a hot research topic. Despite t% stems using Lyapunov stability theory [6]. A sufficient con-
lack of a concrete theoretical basis, many successful ap tion for the system stability is obtained by finding a common

cations on fuzzy control were reported in various areas Sl“'ChL‘fillilpunov function for all the fuzzy subcontrol systems. For a
sludge wastewater treatment [1], control of cement kiln [2], elegk fuzzy plant model withy rules, a fuzzy controller with

H_(:\r/]vever, Withoft an ifn'dei)th arlalby_?its, thz design m?y COM&ies (> subcontrollers) is used to close the feedback loop, and
with no guarantees of system stabiity and good system p p + 1)/2 Lyapunov conditions are required. In this paper, the

formance. Recent!y, stability analysis of fuzzy control syste mber of subcontrollers of the nonlinear controller need not
based on a Takagi-Sugeno-Kang (TSK) fuzzy plant model [

also provide a way of designing the nonlinear gains and the

conditions for this class of fuzzy control systems were derive edback gains of the nonlinear controller. The task of finding
. e common Lyapunov function can readily be formulated into
In[4]-[7], [16], and [19], the Lyapunov stability theory was em- yap y

ployed to analyze the system stability. Sliding mode theory W%nr LMI problem [9]. GA with arithmetic crossover and nonuni-
: m mutation [25] will be used to help find the solution of the
employed in [8] to help the analysis. In [13]-[15], the stabilit utation [25] wi u b .

g ) ) _ erived stability conditions, and also determine the feedback
conditions were derived in terms of some matrix measures of t

. . . i "'O%ins of the subcontrollers. In this paper, GA is not only em-
system matrices. A linear matrix inequality (LMI)-based desig loyed to solve the derived stability conditions in LMI form
of fuzzy controllers can be found in [10]-[12]. A switching cony X

troller 1171 and oth troll 161118 | d ut also used to obtain the controller gains that are included in
roller [17] and other controllers [16], [18] were also propose tl(ﬁe stability conditions of the proposed nonlinear controller. It

tackle nonlinear systems based on the TSK fuzzy plant mOd%‘generally a difficult task to formulate the problems of solving

Genetic algorithm (GA) is a powerful random search tecrﬂfoth the solution of the stability conditions and the gains into

nigue to handle optimization problems [1]-[6], [17]. This is esy single LMI problem. By employing GA, this difficulty is re-

pecially useful for complex optimization problems with a Iarg?noved. While other searching algorithms can be used, GA is
one good method to obtain the design solution.
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A. TSK Fuzzy Plant Model [ll. STABILITY ANALYSIS

Let p be the number of fuzzy rules describing the nonlinear A closed-loop system can be obtained by combining (2) and
plant. Theith rule is of the following format: (5). Writing w;(x(¢t)) asw; andm;(x(t)) asm;, the fuzzy
model-based nonlinear control system then becomes

Rulei: IFf,(x(t)) is M and...and fg (x(t)) is M, (1) = XP: i:wiijin(t) ®)
THEN x(t) = A;x(t) + B;u(t) (1) i=1 j=1

where M} is a fuzzy term of rule corresponding to the func- where

tion f,(x(t)),a = 1,2,...,¥,i = 1,2,...,p, ¥ is a positive H;; = A; + B,G,. (9)
integer;A;R"*™ andB; € R"*™ are known constant system

and input matrices, respectively(t) € R"*! is the system To investigate the stability of the fuzzy model-based non-
state vector; anai(t) € R™*! is the input vector. The systemlinear control system of (8), we consider the following Lya-

dynamics is described by punov function in quadratic form:
V(x(t) = %x(t)TPx(t) (10)
p
x(t) =Y wi(x(t))(Aix(t) + Biu(t)) (2)  whereP € R"*" is a symmetric positive definite matrix. Then
=1
where (3) and (4), shown at the bottom of the page, are known V(x(t) = §<X(t> Px(t) +x(1)" Px(t))- (11)
nonlinear functions, anduyy, (za(t)),a = 1,2,...,n are From (8), (11), and the property that?_, w; = 25:1 mj =

known membership functions corresponding to the fuzzy ter

P c . —
M. (Thus, we assume that the TSK fuzzy plant model rg;”':l 2j=1 wim; = 1, we have

known.) V(x(t))
T
B. Nonlinear Controller 1 Zp:iw mHyx(t) | Px(t)
=5 i B X (1
A nonlinear controller consisting af subcontrollers is pro- 2 i=1j=1

posed to close the feedback loop. The control output of the non-
linear controller is defined as

+ X(t)TP XP: zc: wim]’Hin(t)

=1 j=1
u(t) = 3 my(x(1) Gx(1) (5) b ’
j=1 =— [Z Zwimj(Hij +H,, — Hp)x(t) | Px(1)
=1 j=1

whereG; € R™ " j = 1,2,...,c, are the feedback gain
vectors that are to be designed, and

£ x(OTPSS wm,(Hy + H,, — H,)x(0)

c i=1 j=1
> mi(x(t) =1 (6) . A
Ny _ T T T
i=1 ) = ox(t)" (H,P +PH,.) () + 5 Zl ]Zl wim;x(t)
HNi ==
J(x(1) = e 7
) = S e (x() Dy - 1,7 4 PO, - H)x()
1 R
is a nonlinear function ok(t), anduy; (x(t)), 7 = 1,2,...,¢c = ——x()TQx(t) - 3 D> wimx(t)”
are nonlinear gains to be designed. It should be noted that the i=1j=1
nonlinear controller does not require; (x(¢)) € [0 1] for all 5. X (Qij — Qm)x(t) (12)
p
> wix(t) =1, wi(x(t)) €[0 1] foralli (3)
=1

wi(x(®)) = pari (1)) X pags (@2(t)) X -+ % par; (2 () @
S0 (art (@1(0) X parg (@2(8)) % -+ X pagg (@ (1)) )
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whereH,, € R"*" is a stable symmetric matrix, which will As the second term at the right side of (19) is semi-positive
be discussed late®,,, € R™*™ is a symmetric positive definite definite, we have

matrix andQ,; € R™*"™ isa symmetric matrix. They are defined ) 1 -
as V(x(1) < = 5x(0) Qux(t) < 0. (20)
Q. = — (HLP + PH,,) (13) Hence, we can conclude that the fuzzy model-based non_lir_1ear
T ) control system is asymptotically stable. The problem remaining
Qij = - (H;P+PH;), i=12....p is how to determineQ,,,. Considering (18), ify_;_, Qix >

j=12,...,c. (14) ofori = 1,2,...,p, it can be shown that there exist«g,
such thaty; _; Qix — ¢Q., > 0fori =1,2,...,p using the

From (12) following theorem.
1 1 Theorem 1 (Spectral Shift) [24]Let A1, A2, ..., A, be the
V(x(t) = —=x()TQuux(t) — = Z myx(t)T eigenvalues of a matriA € R"*". The eigenvalues A — ¢I
2 2 i=1 ared; —e, Ay —¢,..., A\, — €, wheree is a scalar.

P Proof: Let Q; = > ;_;Qiu > 0,i = 1,2,...,p.

X (Z w; Qij — Qm> x(t) (15) By using the spectral shift property of Theorem 1, it can be
i=1 seen thaty ;_, Qir — el = >3 (Qit — (¢/0)I) > 0
if min,; Amin(Qi) > ¢ > 0, where min; Amin(Qi) de-

and we set notes the smallest eigenvalues amo@y,I is the iden-
x()T (X0, wiQij — Q) x(t) tity matrix. By comparing® ;_; Qix — ¢Q,, > 0 of
m; = e : c )
IS DT (T, wiQik — Qo) x(1)] (18) with >~ _, Qi — eI > 0 term by term, we have

forj=1,2,...,c. (16) ¢Qm = ¢l = Qn = (e/c)I > 0. Consequently, we can
o conclude that ify;_, Qi > 0, there must exist a posi-
By comparing (16) to (7), (16) gives the designiof,j = tive definite matrixQ,, such thaty~;_, Qix — cQ,, > 0.
1,2,...,¢, such thatuy,(x(t)) = x(t)T (X, w;Q;; — In the stability analysis, we need a stable matiik,,
Q..)x(t), and (16) satisfies the condition of (). Considerin{® guarantee the system stability. The existence H,
the denominator at the right-hand side (RHS) of (16), we hawill be as follows. By multiplyingP~! to both sides of
(13), we have-P~'Q,,P~! = P 'HL + H,,P!. As
< = I, —((cP~'PY)/¢) = P'HT + H,,P!
5 [X@T( )x@] Qu = (/)1 ~((P~'P~1) /o - =
k=1

NE

—((P™'P71)/c) = (-P7)(—HJ,) + (—H,,)(-P71). Let
Q = ((eP~'P~1)/c) which is a symmetric positive definite

c . = 5T 1 . . ) .
()T = Qs ol az mafm_x, andP_ = P* = —P~" which is a symmetric negative
v [x( ) (1; Qi = Q ) x( )] (7 definite matrix andt,,, = Hﬁ = —H,,,, we have a Lyapunov
B equation-Q = P"H,, + H,,P. OnceP is known, a stable

Wi QLk - Qm
1

i

M-

1

2

Il

We chooseQ;, andQ,,, such that matrix H,,, can be solved. QED
. From the above, we obtal@,, = (¢/c)I > 0 and prove the
Z Qir —cQ,, >0 fori=1,2,....p. (18) existence oH,,,. The stable matriH,, in (13) is not necessary
Pt to be known as the nonlinear controller of (16) depend€gn
but notH,,,.

As w;(x(t)) € [0 1] for all 7, and at least one of the; # 0 A sufficient condition for the stability of the fuzzy model-

(a property of the TSK fuzzy plant model), (18) implies thapased nonlinear control system can be summarized by the fol-
(17) will always be greater than or equal to zero. It is equal tewing lemma.

zero only whenx(z) = 0. Under this condition, the output of | emma 1: A fuzzy model-based nonlinear control system of
the nonlinear controller of (5) should be zero and we choog®) is guaranteed to be stable if we choose the nonlinear gains of
m; = (1/c) for satisfying the condition of (6). From (15) andthe nonlinear controller of (5) as (see the equation at the bottom

(16) of the page)min; Amin(}";_; Qix) > € > 0, and there is a
) 1 common solution oP for the followingp linear matrix inequal-
Vi(x(t) = —Ex(t)Tme(t) ities:
c D 2 c
_ Zijl [x(t)" (Eey wiQij — Q) x(1)] . (19) > Q>0 foralli=1,2,...,p
23 e X (g wi Qi — Q) x(1)] k=1

s (x(1)) = x(8)* <Z w; Qij — ZI) x(t), whenx(t) #0

s (x(8)) = % whenx(t) = 0

forj=1,2,....c
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where

Qi; =— (HP+PH;;) fori=12,....p
1=12,...,c
H;; = A; + B;G;.

Lemma 1 states the way of choosing the nonlinear gains
the nonlinear controller. The number of subcontrollers is nc
necessarily the same as that of the TSK fuzzy plant model. Th
gives a flexibility of designing the nonlinear controller. With
a smaller number of subcontrollers, the nonlinear controller i
simpler in structure and lower in cost. The number of linea
matrix inequalities ig), instead ofp(p + 1)/2, as stated in [6].

V. SOLVING THE STABILITY CONDITIONS AND OBTAINING Fig. 1. Cart-pole typed inverted pendulum system.
THE FEEDBACK GAINS

In this section, the problems of solving the stability conditiongonuniform mutation [25]. A® and G, are the variables of
derived in the previous section and obtaining the feedback gathe fitness function of (22), they are used to form the genes
of the proposed nonlinear controller will be tackled using GAf the chromosomes. Finding the solution to this minimization
with arithmetic crossover and nonuniform mutation [25]. Fromroblem, however, does not imply that the conditions of (21) are
Lemma 1, the closed-loop control system formed by (2) anthmediately satisfied. Hence, different,: = 1,2, ...,p may
(5) is stable if there exists a transformation malxandG,, need to be used to weight the terms of (22) in order to change

j=1,2,...,p, satisfying the following condition: the significance of different terms on the RHS of (22). For in-
. stance, if one of the terms in (22) is very negative, the conditions
4 T 4 o of (21) may not be satisfied because the fitness value has been
B Zl[(A” +BiG;) P + P(Ai + BiGj)] > 0 dominated by the effect of that term. A small valuewgfcorre-
= fori—1.2 b (1) sponding to that term can be used to attenuate the effect of that
T term in the fitness function. The functionef of (22) is to make
Using GA, we can find the stability conditions of (21) satisfied easier.
The procedure for finding the nonlinear controller can be
Py Py - Py summarized as follows.
p— Por Py oo Popn Step 1) Obtain the mathematical model of the nonlinear
: : : plant to be controlled.
P, P, - P, Step 2) Obtain the TSK fuzzy plant model for the system
and stated in Step 1 by means of a fuzzy modeling
method (e.g., the method proposed in [3] and [7]).
Ggl'l Gjiz o Gjl'n Step 3) 'Determine the number of subcontrollers of the non-
o e e linear controller. Take the elementsPBf G ; andn;
G, = 2 2 o as the genes to form the chromosome. Define the

: boundaries of each gene. Determine the number of
GI iterations for searching and the parameters (proba-
bilities of crossover and mutation, and the shaping

such that the conditions of (21) are satisfied. In order to make value [25] for the nonuniform mutation) for the GA

P to be symmetric, we leP;; = Pj;,i = 1,2,...n;j = process. Solv@®, G, andn;, j = 1,2 cii —
. : H . . . ’ 7 z3 Pt B )
1,2,...,n. The fitness function is defined as follows: 1,2, ..., p with the fitness function defined in (22)
» . using GA.
fitness — Zni)\max Z[(Ai +B,G,)T Step 4) Design the nonlinear gains of the nonlinear con-
P = troller based on Lemma 1.
x P +P(A; +B;G))] (22) V. APPLICATION EXAMPLE

An application example on stabilizing a cart-pole typed in-
wheren; > 0,7 = 1,2,...,p, is a variable to be adjusted andverted pendulum system [6] is given in this section. A nonlinear
Amax( - ) denotes the maximum eigenvalue of the argument. Thentroller will be used to control the plant. Simulation results
problems of findingP andG; are now formulated into a min- will be given. We shall see that the number of LMIs involved is
imization problem. The aim is to minimize the fitness functiop. The nonlinear controllers will be designed based on the pro-
of (22) with P andG using GA with arithmetic crossover andcedure given in Section IV.
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Fig. 2. Membership functions for the fuzzy plant model.

Step 1: Fig. 1 shows the diagram of the inverted pendulum
system. Its dynamic equation is given by

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003

e(t) S [émin émax] [_5 ]

. gsin(0(t))—amlf(t)? sin(26(t))/2 — a cos(A(t))u(t) g — amlzy(t)? cos(z1(t)) (sin(z1(t))

6(t)= fi(x(t)) =
41/3 — aml cos?(6(t)) 41/3 — aml cos?(x1(t)) z1(¢)
(23) and
Whﬂere angular displacement of the fa(x(t)) = — a.cos(1(t)
pendulum: S 4l/3_—amlcosz(x1(t))

g =9.8m/S acceleration due to gravity; A=A, = 0 1}

m = 2 kg mass of the pendulum; [ ftwin O

a=1/(m+ M), M =8kg mass of the cart; and

2l=1m length of the pendulum;

u force applied to the cart. A= A, — [0 1
The objective of this application example is to design a fuzzy 3T AT | flmax O
controller to close the feedback loop of (23) such that 0 at )
steady state. Bi=By=1," ]

Step 2: The nonlinear plant can be represented by a fuzzy , S
model with four fuzzy rules. Théh rule is given by

Rulei: IF f1(x(t)) is Mi AND fy(x(t)) is M3 B, — B, — [0 ]

THENX(t) = A;x(t) + Bju(t) fori=1,2,3,4 2T ] o
(24) flmm =9 and flnnx 18

so that the system dynamics is described by

fo.. = —0.1765 and fo = —0.0052

par; (J1(x(2))) X pa; (f2(x(1)))

zwl (Asx(t) + Biu(t) (25) S (g (B O0)  marg (o (x(0)))
—[i(x() + fro.
where pags (Fr(x(1))) = o~ forg=1,2
x(t) = [z1(t) zo(t)]T =[0(t) 6(t))T pars ([r(x(8))) = L= pary (fr(x(2))) foré = 3,4
H(t) S [ﬂmin emax] = [_ 242; 242_,:} 3V (f2(X(t))) = _f;:iit)_) —};lfi’““x fork =1,3
and and
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Fig. 3. Responses of; (¢) of the inverted pendulum system.

size is 10 and the initial values #f, G;, andn; are randomly
fiage (F2(x(8))) = 1 = paps (fa(x(t)) for¢=2,4 generated. After applying the GA process, we obtain

p— 0.9877 0.0678
are the membership functions, as shown in Fig. 2. (Details about =

the derivation of the TSK fuzzy plant model for the inverted g4
pendulum system can be found in [5].)
Step 3: When a nonlinear controller having four subcon-

0.0678 0.0666

trollers is designed for the plant of (25), we have G1 = [4176.4868 4438.2388]
A G, = [4200.1314 3710.2710]
= mi(x(t)Gx(1). (26) G3 = [4223.6645 3631.4680]
j and
In order to guarantee the closed-loop system stability and obtain
the feedback gains of the nonlinear controller of (26), from (22), G4 = [4308.6079  4053.5941].

we have to solve th® andG;,5 = 1,2,3,4;¢ = 1,2,3,4,

using GA with the following fitness function: Step 4: According to Lemma 1, the nonlinear gains are de-

signed as (28), shown at the bottom of the page.

4 4 As min; Amin(>_5—; Qix) = 1.3982 > £ > 0, we choose
fitness = Z T Amax [(A; + B;G;j) e = 0.1. Figs. 3 and 4 show the responses of the system states
i=1 J=1 under the initial conditions of

o (20 1" oy [r 1"
x P+P(A; +B,G))]|. (27) x()_[45 ] ’ X()_hs }

s 1" 2r  1*
. ) x(0) = |- 0 , and x(0)= |- ol .
The minimum and maximum values of each elemPnare 45 45

chosen to be-1 and 1, respectively. The minimum and maxFrom this example, it can be seen that the number of LMIs is
imum values of each element €,—G, are chosen to be 0 fixed to be four (the number of rules of the TSK fuzzy plant

and 4500, respectively. The minimum and maximum valuesodel), which will not be affected by the number of subcon-

of n; are chosen to be 0 and 10, respectively. The populatitollers of the nonlinear controller.

o (X(1) (ZwLQU——> x(t), whenx(t)#0
forj =1,2,3,4 (28)

uni (x(8)) = =, whenx(t) =0
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Fig. 4. Responses af;(t) of the inverted pendulum system.

VI. CONCLUSION [9]

The stability analysis and design of TSK fuzzy model-based
nonlinear control systems have been discussed. A stability cri10]
terion has been derived. This criterion involvedinear ma-
trix inequalities irrespective of the number of the subcontrollers,
wherep is the number of rules of the TSK fuzzy plant model. [11]
The number of subcontrollers of the nonlinear controller need
not be the same as that of the TSK fuzzy plant model. A designz)
on the nonlinear gains of the nonlinear controller has been pre-
sented. GA has been used to find the solution to the stability con-
ditions and determine the feedback gains of the subcontrollerg.s)
An application example has been used to illustrate the stabiliz-
ability of the proposed nonlinear controllers and the design pro-

cedure.
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