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Abstract — The proposed paper demonstrates that a hybrid
fuzzy neural network can serve as a classifier of low risk
investment projects. The training algorithm for the regular part
of the network is based on bidirectional incremental evolution
proving more efficient than direct evolution. The approach is
applied to empirical data on UK companies traded on the LSE.

1. INTRODUCTION

Standard investment appraisal techniques have been
continuously revised. The criteria have been altered because of
the effect of capital and labour market rationing [19] or
reoptimised due to investment irreversibility [9] and the impact
of a project on the investor’s total risk [23]. It has been realised
that the removal of any of the perfect market assumptions
destroys the foundation and reduces the effectiveness of the
methods. Alternatively, a fuzzy criterion does not attempt to
cope with a specific drawback of standard techniques but
permits into the calculations as much uncertainty as the market
could possibly suffer. The outcome is an effective method under
restricted information, uncertain data and market imperfections.
A fuzzy criterion and investment rating technique are first
introduced in [2], then considered in a broader framework of
accumulation and discount models in [7], and recently modified
with an alternative fuzzification of the project duration in [15].
While those studies are theoretical in nature, the empirical
results are a major emphasis in [13,22}, where stock projects are
evaluated and UK companies traded on the London Stock
Exchange are considered. Simultaneously, the analysis of the
empirical solutions to the fuzzy criterion facilitates there the
induction of three general conclusions. An investment risk
measure, an estimate of the project robustness towards market
uncertainty modelled with the fuzzified data, and an alternative
ranking technique based on the two measures.

When compared with previous studies, the proposed paper
demonstrates the following advantages. First, nine representative
projects are chosen from the database employed in [22], thus
consistently emphasising the empirical results. Second, the
projects are rated according to a modification of the risk measure
suggested there, extending further the developed method. Third,
a fuzzy valued criterion is formulated and a regular fuzzy neural
network (RFNN), trained with a genetic algorithm (GA),
approximates its solution. Hence, the benefits of various soft
techniques are blended to achieve a synergy in handling the
investment appraisal problem. In comparison, [2,7,15] only
study fuzzy criteria. Forth, the network is hybridised to
discriminate between low-risk and high-risk projects. The
threshold is agent dependent, communicating the acceptable
levels of risk. The variety of market agents work within diverse
risk ranges. In the extreme, the behaviour of an investment fund
differs from the behaviour of an individual investor.
Consequently, an agent dependent threshold will benefit the
decision-maker. Fifth, an efficient training algorithm is
suggested for the RFNN part of the network. GAs are a
promising tool in training RFNNs and recent studies
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successfully apply direct evolution (DE) to optimise the fuzzy
weights in small networks resembling particular types of
univariable fuzzy functions.[5] The RFNN here approximates
multivariable criterion and the size of the network depends on
the investment horizon. The complexity of the problem requires
a corresponding evolutionary strategy (ES) and the
implementation of bidirectional incremental evolution (BIE) is
suggested. Incremental strategy has been already applied to
evolve neural networks controlling a robot’s motion.[11] BIE
incorporates divide-and-conquer evolution and incremental
evolution. It gradually divides the complex task into simpler
subtasks, evolves them separately and consecutively merges
them incrementally to optimise the obtained solution. The
technique allows overcoming the stalling effect in direct
evolution and has already proved more efficient in evolving
logic functions.[14]

The proposed method is developed for the following reasons.
First, there have been suggested fuzzy techniques for investment
appraisal and based on them ranking procedures [2,22], but no
investment classifier is yet considered. Therefore, a decision
would only be taken after applying the fuzzy criterion to all
available projects, then rating them accordingly, and finally
choosing the acceptable opportunities. The introduction of a
classifying system will significantly simplify the process,
especially for a large number of continuously updated projects
and regularly taken investment decisions. Once trained, the
network will be an effortless instrument in the hands of the
decision-maker, whenever the information available is subject to
change. Second, standard neural networks have been already
successfully applied to classify takeover targets on the basis of
company accounting data and financial ratios [10]. Mergers and
takeovers are a specific type of investment activity.

Figure 1 describes the interrelations between standard and soft
computing techniques as well as between theoretical and
empirical studies. All these approaches are involved into the
process of formulating the investment classifier.

Fuzzy Logic Investment Appraisal and Rating, Financial
Zadeh, 1965 theoretical [1,2,7,15], Engineering
theoretical and empirical [13,22] ,.J
Neural NN Solving Fuzzy Equations [4] Standard
Networks NN Classifying Merger Targets [10 Techniques 7
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Figure 1: Technique interrelations in formulating the investment classifier
= standard and soft computing
» theoretical and empirical approaches

= bold line - developing the proposed method
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II. FUZZY VALUED CRITERION

The first stage of the proposed method involves formulating a
fuzzy valued criterion (FVC) for stock projects under time-
varying discount rate. Stock prices are too volatile to be rational
forecasts of future dividends discounted at a constant rate and
empirical tests have convinced many financial economists that
stock returns are time-varying rather than constant [8]. The
assumption of time-varying returns transforms the price-
dividend relation into nonlinear. Let us consider its loglinear
approximation

Vig+1 =5+pr,,+l +(1_'1)dyr,,+l ) (1)
where p, ., 7., and dy, ,, stand for the log share price, log

return and log dividend yield, correspondingly. Then, if equation
(1) is solved forward for the log stock price, the following
estimation is produced in period t=¢,,

1o+T
b, = XA 1-ANdy, +p,)+6-r]+ 2" p, .1 .

t=ty+]
I<0ep'—quotesmpence I<e"<2,0<e? <1, 03}
p,>0,0<r,<In(2),dy, <0,
where the parameters of linearisation, ¢ and A, are evaluated
with continuous functions of (dy 1reer @ ) ,
I T
_zdyt
A=s(l+e' = )= f(dy,..dy ),0<A<], ©)]
6=(1-A)In(1-2)—Aln(A)=f,(dy,,....dy; ),0< S <.
If the investment horizon is T, then a project is profitable at #,=0
when the estimated share price exceeds the market share price
Po>Ppy - @
Based on (4), the FVC is formulated following a procedure in
four steps. First, for each project, parameters & and A are
obtained from (3) and considered crisp. Second, market
uncertainty is introduced applying initially the calibration
technique from ([22] and producing triangular shaped
membership functions for the fuzzified log data, P, R, and
Dz . Then, positive triangular shaped fuzzy coefficients

Z,,E,,E,,IStST, are obtained from

1 1NE1’~ INﬁn’ INDf’;.
Arz— _— '=-— —,C, == _, (Sa)
N5 py Niary N dy,
1Lt<T , N-—number of projects |,
and the m1t1a1 cahbratlon is shghtly modified, assuming
P,=A4p, R, =Br, DY, Cdy, JASt<T,I<i<SN, (5b)
Third, the fuzzy log share price Pat ty=01s presented as
~ I ~ ~ ~ ~
B =Y a1~ A)Cody, + 4,p, )+ 6 - B ]+ X 4y pr =
t=1 - - -
_[Alpl 1-2 ]+ +[ATPT/1T-I]_ [B rl]_ _[B rrﬁ"r_l]'*‘ (6a)
[C.dy, (1= ).+ [Crayr 71 (1= M) [2,1' ‘5] Adg,+
-t ATgAT -B,gy - '"_BTgET +---+Crgcr +g, 0<Ad<l,
8ar =gAr(x)’gm :gBt(x)’gCt = Cl(x)’g = g(x)
where x=(p,,.c.. Pr 7ol @Yy dyy ), 1S ST, (6b)

p, >0,0<r, <In(2),dy, <0,
are continuous functions defined on the market data employed to
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evaluate a project. Thus, the fuzzy log share price from [22] is

transformed into a continuous multivariable fuzzy valued

(CMFV) function. The modification provides that the RFNN

introduced in the next section is capable of approximating P, to

any degree of accuracy.

Forth, applying the extension principle, the triangular shaped

membership function of the solution is described with
U(yp|By)=supl{a|y,e 2, ()},
Qp(a)={ag,(x)+ wterger(x)+g(x)/
[a,€ A(@)....cr € Cr(a),x=(p,....dyr )},

and for the specific formulation of 1~’0, the arcut Q, (@) is

(60)

equivalent to the interval arithmetic solution

(@)=|p@)EE)] .
Pyla)=4,(a),, (x)+...+ 4,(

Pa_ﬁ%zi)gw( )+C a8cr xl m‘:‘r

AI(x)+ -+ 4, AT

Bl ()4 Cylale, )+ +Colaler (o) )
4{a}0.B,(ap0.C(ap0.8,4(x}0. 85 (x}0,

2o (x)<0,g(x)>0,x=(p,,...dy; ), I<t<T. (6d)
Solution (6d) identifies the set of estimated log share price
values corresponding to all future log share prices, dividend
yields and discount rates possible at some level of uncertainty, u.
This set is situated at the same level u. Therefore, there is a
critical level of uncertainty, #s:4., €embodied into the market
data we use to evaluate a project and this level delimits the
project’s investment risk. The risk measure, Qg , below

,u(Pa/P )=sup{a|y,=p,}, )
—u critical € 1 ]

is suggested for the following reasons. The lower the critical
level of uncertainty at which there is a chance for the project
being unprofitable, the higher the investment risk. Furthermore,
Oritica 1S the membership level of the fuzzy log share price,
below and at which the solution includes values smaller or equal
to the initial log market price, and above which the project is
profitable. Thus, the criterion is finally described as

crmcal = hagen! > (8)
where the threshold % is agent dependent and indicates the
acceptable risk values.

III. FUZZY NEURAL NETWORK
The second stage of the method consists of building a regular

fuzzy neural network, to approximate the CMFV function P,
and subsequently including two more layers to discriminate
between risky projects. The approximating capabilities of
RFNNs have been intensively studied in the last few years. Let
Fy(R) is the set of all fuzzy numbers on the real number set R. It
is demonstrated in [5,6] that RFNNs are not able to represent to
any degree of accuracy continuous fuzzy functions
F:FyR)—FyR). On the other hand, [16] proves that they are
universal approximator for continuous fuzzy valued functions
described with F:R—FyR). It is also suggested there that similar
results apply to multivariable functions F:R* —F4R).

Based on the theorems proved in [16], we make the following
conclusions.

)+ g(x

crmcal

critical —

998



Remark 1: Let f:U,x..xU, R is a multivariable
continuous crisp function on the compact sets U, c R, I<ik. If
Ae FfR) is a fuzzy number and F : U, x...xU, — FyR) is a
multivariable fuzzy valued function, where

Flx,,...x,)= (ZfXx,,...,xk)= Zf(x,,...,xk),xi €U, I<i<k (9)

then F(x,,...,x, ) is continuous on U, X...xU, .
Remark 2: Let

~ mo. koo ~
S{RFNN/RFNN(x, ..... x,,)=iV,.*(ZEij*a(2Wj,*x,+9j]]
i=l =]

J=1

gmeN, V,,E, W0, € FyR) } (102)

describes the class of four layer feedforward RFNNs with
sigmoid transfer functions and shift terms in the first hidden

layer, and identity transfer functions with no shift terms in the
second hidden layer. Restricting E‘,.j,W 1-0; € FfR) to be

e;,w,,0; € R, the subset 3, of J is obtained.

~ m k
SO{RFNN/RFNN(x,,...,xk)= iV,, *[Ze,j *U(ij,*x,+0j )}
=1

i=l j=1

gmeN, V,e FiR), e,,w,,6,€R } (10b)

Then 3 and 3, are universal approximators for the CMFV
function F :U, x...xU, = FiR) from (9).

Remark 3: Let F,,..,F, are CMFV functions as the one in
(9), then F and G, from (10) are universal approximators for

F=Y (tF).

(1)

Remark 4: IN’,, from (6a) is a CMFV function of type (11).
Consequently, there exists a four layer feedforward RFNNe 3,
approximating P, to any degree of accuracy.

Figure 2 introduces the network structure classifying investment
projects according to criterion (8). The dashed box outlines the
RFNN part. Its input layer is fed with log stock prices, log
returns and log dividend yields, while the output layer produces

Prenw (Plr""PT'rzw--:rr'd)ﬁ»-wd)"r:)=
9 fm T 12a
= V{Ze,.ja(Z(wj,p,+uj¢re+zjedy,)+01. D (12a)
i=1 j=1 =]
q,meN , IZEFO(R), e, z,€R..
The extension principle and the interval arithmetic evaluation of
such RFNN are equivalent and the a~cuts are computed from

Lo J— (a)= [P RENN (@)P, RENN (a )] ,

PRFNN(a)=imin(l/i(a)* (ie,jaj),V,»‘a')* (zm:e,;aj )
i=] =1 =t
P (@)= imax(!fi(a)* (Y e,o; )V (@)*(Y.e0,)).
J=1 J=1

=1

6, Wl je,

(12b)

T
g; =0'(2(wjep,+uﬂr, +zj!dyl)+0j)>0,
=
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In the additional part of the network, the transfer function ¢ is
described in (7), while y is a hard limit transfer function with
threshold 4 ., from (8).

agent

Figure 2: Neural network structure classifying low risk projects
Dashed box - outlines the RFNN part:
Crisp inputs - market data, p,r,dy,
Weights — real numbers ¢, w,,u ,,z , triangular fuzzy numbers ,
1st hidden layer-sigmoid transfer functions o with shifts ¢,
2nd hidden layer - identity transfer functions i with no shift terms
Triangular shaped fuzzy output — Paern approximating P,
Attached hybrid part:
@- transfer fanction described in (7)
- hard limit transfer function with threshold A,ge from (8)
output=I—low risk investments, ousput=0—high risk investments

IV. BIDIRECTIONAL INCREMENTAL EVOLUTION
At the next stage of the developed technique, the RFNN part
of the fuzzy network in Figure 2 is trained to approximate the
P, function, using a genetic algorithm and following a
bidirectional incremental evolutionary strategy. The GA is
specified with its initialisation, selection and recombination
operators. The initialisation step includes chromosome encoding
and generating the first population. Let a triangular fuzzy weight
be presented by three real numbers corresponding to its support

and vertex. Then, the RFNN is coded into the chromosome %,

Z= l’ZZ""’li*m*T+m+q*m+3“q)=
= W11 Wigsees W oot s Zy (13a)
a (4 a c
O VR R I R SR )
o _f{.a b c) s _( a b c)
v, —(v, v /vy )V, =g /vy /v ), (13b)

Vi <Vp <Vf Ve <Y <VEL
The initial population X = Lq((” Z(Z) x(x)] of s
individuals from (13a) is generated simultaneously as a
(3mT+m+gm+3g)xs matrix whose elements are realisations
of a random variable with standard normal distribution
N0, 1). A block representation of X,

b

X= [X éjl,)n,,,mwm)q X 52 X 3(2”)] , helps to concurrently sort
its elements according to restrictions (13b). Next, a breeding
subpopulation X5 is selected, which consists of s, best fitted
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chromosomes, where s;<s. The selection is based on the

objective function
Pay @} [Fi@) P )

o= m“t(max(max |I—’;,(
Z x x(s @ =0,0.10.2,0.30.4,0.50.6,0.7,0.80.9,1, (1)

minimising the error of the RFNN. Finally, the recombination
process builds the new generation Xygy. A multipoint crossover
operator is applied on Xgyp to produce a temporary full-size
population X7gyp. The number 77 of crossover points is randomly
chosen every generation. A triplet representing a fuzzy number is
considered as a single gene and the position of crossover points is
restricted to the following set.
index, € 1 =(1,2,3,4,56,...3mT +m+qm3mT + m+qm+1,
3mT +m+qgm+43mT+m+gm+7,...
3mT +m+qm+3q— 53mT+m+qm+3q 2)
I<i<q. (15a)
Two randomly chosen chromosomes from Xy are combined to
obtain two oﬂspring Only one of them is included in X; m[m:
V4 (ﬁ;.)up = [Z.(wa 7 28 sz/a indes]~ | Z sun index! - Z sua index2- IZ SUB index2 *

~- X SUB,index3-1 X SUB,index3+* Xst SUB,indexn-1 st SUB, indexn** Zst SUB,3mT+m+qm+3q 1
1< j<s,1<€<s5,,1<k<s,,index;e [,1<i<7. (15b)
Crossover points index; are randomly chosen every generation
for each xﬁgm,. The mutation operator concludes the
recombination step, transforming the temporary population into
the new generation of RFNN representations. It involves a
constant rate 7, where 0<7<(0.2. Thus the number of mutated
genes is constant, but their position is randomly chosen every
generation, index;el, 1g<t*(3mT+m+gm+q). Mutated genes
are generated as realisations of a random variable with standard
normal distribution N(0,1). All the mutated triplet genes are
concurrently sorted according to restrictions (13b).

The GA described above is applied within a bidirectional
incremental evolutionary strategy. BIE is suggested on the
following grounds. A complex task is difficult to evolve, as it is
not possible to directly discover a general solution.[7] The
stalling effect in direct evolution may be defeated by
implementing incremental strategies, where neural networks
learn complex behaviour while starting with simple functioning
and gradually increasing the complexity of the task.[11,12] The
problem is that the relevant subset of simple tasks as well as
their sequence is not uniformly defined, and so is an incremental
strategy. Consequently, it is appropriate to identify the efficient
subset of tasks and their efficient sequence.[14] BIE applied here
deals with the question of efficiency by first identifying the
subtasks and their sequence, then evolving them separately, and
finally merging the tasks gradually while following the efficient
sequence. When the investment paradigm is considered, the
domain of subtasks is described as follows. If T'is the investment
horizon, N; is the number of periods in which projects are
available, At, =[t,,,t, +T],... Aty =|t,y 15y +T], and Nyis
the number of companies, then there are N=N,*N, single-
company single-period projects constituting the first level of
subtasks with lowest complexity. The next levels consist of
subsets of projects involving increasing number of single
projects. They may concern the same company over several
periods or the same type of companies over one or a number of
periods, or may include different types of companies. According
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to its investment risk, a single project can be profitable and not
risky, when Ofyca=0, risky, for 0<@ij<I, or too risky and
unprofitable, Qi.s=1. Consequently, there exist five types of
companies. Those with investment risk 0 over all the periods are
quite rare, having in mind that the market is modelled as highly
uncertain. The other types include companies with continuously
improving levels of risk, and companies with unstable risk levels
0<0isou<] without a particular direction. Finally, those with
constantly worsening investment risk, and the ones with
Crisicy=1 over all periods. Providing the training set includes
companies of all types and single projects covering the three
important modes of Qisea, then the evolved RFNN will
sufficiently predict the 1~’0 of new investment opportunities.

The evolutionary strategy is described as follows
1: Define the training set of projects nc N and obtain their £, from (6d).
2: Choose the probmg step of generations Ngen and the patameters
Qz(:E)cu L(ka)cz' 1(;5)03' DECJ’ stcs' Obecenp, Qve, Omcenp. Here k=1.2,....
corresponding level of decomposition and partitions are to be identified.
3: Initialise k=1, n") = , and generate a random initial population 1P’ of size's.
4: Evolve the RFNN for N generations, using the complete training set n®. During
evolution, evaluate ;)me from (12b) and apply objective function Q in (14).
5: Keep the result of the evolution - the breeding subpopulation ’X @) where s; is
the number of breeding chromosomes, 5,<s. '
6: If the average value of Q over the breeding subpopulation rX ® in the complete

L. . 1
training set is more then Q(DkE'CI s ‘s_zm&x(Q(Z: )) > Qggcl » then go to step 3.
=t "
7: Ifthere do not exist single projects satisfying the condition

IEQ(Z <QDECI’

§, =1

then generate an initial population /P(X™) ) by recombination of X* .Goto4.
 y 5

(16a)

8: Group the sing]c projects  satisfying (l6a) into n® subsets of projects,

(16b)

! zmﬁx(gu ))<Q,m :

8y =t 4
9: Partition the training set 7 into n®) = {nﬁ) ..... ... ,nfﬁ,n(")} where Jj is the
number of subsets satisfying (16b) and is specific for the level of decomposition k.
The subset of single projects not satisfying condition (16b) is n® = n®) / ¥ . In the
extreme, it canbe n%) = {&} or ¥ = n® .

10:Generate different initial populations /P, (X% ), .., IPy, (X¥) and

IP, (X® ) by recombination of the same breeding subpopulation X .
s 5 St

11:Evolve a separate RENN in Ny, generations for each training subset of n®) . Keep
the evolution results — the breeding subpopulations X (,’;) . X (,?‘ and X ‘;) .

12:1f —mez’x oz, )< QDECJ , then generate an initial population P, (X('])

S, =t "u
Else, go to step 13.
13:Evolve an RFNN, using the training set #;;

the first half of the breeding subpopulation

@ until the average value of Q over

X W s les than Qpecenp,

sl2
2 Emﬁx O(¥.)) < Opseeno - Keep the result of the evolution — half of the

S, =1 "y

breeding subpopulation !{7 wm,.
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141 #¥) consists of a single project and 0%, <— 3" 0(x,)< QL) , then
§, =

generate a new initial population IP,, ( X)) . Else, go to step 15.

15:Evolve an RFNN for N,., generations, using the training set n}? . Keep the result

of the evolution— the breeding subpopulation :}’(,‘J) .Gotostep 11.

13 .

161 Q¥ < _\__2”‘(.’)"(9(1: D<o, and n® consists of a subset of
1=l M

projects, then generate an initial population P, ( ,)7{ S’;) ) - Consider the subset n};)

as a complete training set n**) = n{*) and increase k=k-+1. Go to step 4.

17.1f ng)c " <sizmg’x(Q(;(, N<Q¥., and ny; consists of a subset of projects,
IR

then generate a new initial population [P,, (X)) . Consider the subset n{") asa

o
complete training set and increase decomposition level k=k+1. Go to step 4.
181f LZMIH:(Q(L )< QLY. , then generate an initial population 1P, (X)),
8 =™ N K

else generate a new initial population IP, (x® ). Consider n¥ as a complete
training set and increment k=k+1. Go to step 4.
19:If ng") consists of a single project, then evolve an RFNN until

5/2
iﬁ mg’x(Q(z, )< Qscen and keep the result x % »- Else consider n asa
Sy =l ™ s,
complete training set, increment k=k+1 and go to step 4.
20:Set k at the highest level of partition k=K=max(k). Consider the training set
P {nﬁf),...,nﬁfz o } and genemte an  initill  population

« ®) ®)
TP ( X o X, 5) oo X, S ) -
. 52
21:Evolve an RFNN, using the training set #®, until iﬁmg,x(g(z‘ )< e -
Syl ™

*)
Keep theresult X e -
22:Decrease k=k-1, which is equivalent to increasing the incremental level. Consider
the training st n®) = {nS’,‘)nﬁf& ) = n("')} and generate an initial

population P g ( X b e x ® oo x &) ) Ifk>1, go to step 20.
s 5, 5, ),

23:Evolve an RFNN, using the training set n(') , until Q passes Qnicenp,
0 < Qnerp - (17a)

Keep the best chromosome ..., . It represents the completely evolved RFNN.
The BIE strategy above implements a dynamic objective
function. The fitness function fp, on the other hand, will be the
same over all steps, for an easy comparison with the direct

evolution results.
p 4 0,0>0.1515

2~ Y0.1515-Q)*1000/1.5,0 <0.1515

Direct evolution uses objective (17a) and fitness function (17b).

V. EMPIRICAL RESULTS

The empirical data cover nine six-month projects over the
period June 1998 to December 1999 and involve three UK
companies: Goodwin, Dixons Group and Marks&Spencer.
When the data fuzzification procedure from section I is applied,
the resultant log cashflow streams incorporate modelled market
uncertainty. Figure 3 illustrates different types of uncertainty that
characterise the corresponding companies and affect the
estimated fuzzy share price. The three firms are chosen from a
database of 35 companies to represent three major types of

(17b)
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Figure3a: GOODWIN - fuzzy log-cashtlow stream
July 1998 — December 1999
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Figure3b: DIXONS GROUP - fuzzy log-cashflow stream
July 1998 — December 1999
company behaviour under increased market uncertainty. A firm -
Goodwin - with continuously improving levels of investment
risk, reaching ;=0 in the final period. A company - Dixons
Group - with oscillating risk levels 0<0,is.4<I over the periods.
Finally, a company - Marks&Spencer - with Qi=1 over all
periods. Thus, it is provided that companies of various types
enter the training set. It is also guaranteed that the set includes
single projects covering the three important risk ranges:
Orisoat=0, the open interval 0<0igey<l, and Qizeqy=1. The risk
values of all projects are presented in Table 1 and an exemplary
log present value is depicted in Figure 4. The overall data are
divided into three parts: a training set, a test set and a prediction
project. The training set covers projects 1 to 6 from the first two
rows in Table 1. Then, two of the projects in the third row are

used as a test set for ﬁRFNN. Finally, the evolved RFNN is
TABLE 1: INVESTMENT RISK RESULTS

company GOODWIN DIXONS GROUP MARKS&SPENCER
period Qiitont Obisicut Qitical
July-Dec’98 trainl: 7 train3: 1 trainS: 1
Jan-June’99 train2: 0.683 traind: 0 train6: 1
July-Dec’99 testl: 0 0.858  test2: 1

predict:
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Figure 4: INVESTMENT RISK 0<Clcrmnce=0.858<1
project DIXONS GROUP July — Dec 1999
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applied to predict the investment risk of the project from Fig. 4.
The investment horizon is relatively short, T7T=6.
Experimenting with several network structures and considering
the trade-off between RFNN simplicity and evolution
convergence, the values m=5 and g=3 are selected. Next, the set
of parameters required by the empirical realisation of the

algorithm are chosen: s=100, s,=30, t=0.1, QDEC, =0.1525,

oW ,=00s525, QY. =00125, 0 . =0.0775,
@) =0.0225, @) =0.0675, ), =0.064,
0 =0.0425, Oprcnp=0.0025, Omc=0.002,

Omcenp=0.0015. The partition results include:

Levell: n") = n}l) %),ngl)} n%) ={project 1}, ”Ez) ={project 5}

(1) = {prOJeth project 3, project 4, project 6}
Level2: n(z) -{ ") ,nff’} n,i) = {pro;ect6}

2) —{prOJeth pro;ectj’ pro;ect4}

Level3: n 3)= n, ,ngj)} ny ={pr0]ect3,pro;ect4},

ng’ )= {project 2} (13)
The performance of bi-directional incremental evolution and
direct evolution is compared in Figure 5. Maximum fitness per
generation is presented for each strategy. DE first progresses
slightly and then stalls. Its plot, the lighter-colour line, is an
average of 5 simulations. On the other hand, BIE proceeds
through several task transitions and eventually evolves a fully
functional RFNN after 148243 generations. Its graph, the black
lines, is a result of one simulation.
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Figure 5: Performance of BIE and DE —maximum fitness per generation
= black linse — bidirectional incremental evolution: advances through
several decomposition and incremental tasks and solves the general
problem in /48243 generations
= lighter line — direct evolution: makes an initial progress and then stalls

Direct evolution reaches 46.33% maximum fitness after 500 000
generations. Thus, the empirical results prove bidirectional
incremental evolution quite more efficient.

Table 2 presents the error of the evolved RFNN over the test
set. The error is relatively small and can be improved using a
larger training set. The prediction for the investment risk
measure of project Dixons Group, July’99 - December’99, is
Oirisict=0.88 and can be compared with the true value in Fig.4.

0-7803-7280-8/02/$10.00 ©2002 IEEE

TABLE 2: TEST RESULTS

company GOODWIN MARKS&SPENCER
period RFENNerror, Q RFNN error, Q
July-Dec’99 0.0091 0.0024

VI. FUTURE RESEARCH

Further two stages in the proposed method should solve the
following problems. First, at the moment the attached hybrid
part of the fuzzy network only describes involved calculations.
A corresponding training algorithm is required. Second, if the
robustness measure from [22] is introduced, then a slightly
modified network structure can be trained as a classifier of both
low-risk and highly-robust projects.
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