
Speeding Up Fuzzy Clustering
with Neural Network Techniques

Christian Borgelt and Rudolf Kruse

Research Group Neural Networks and Fuzzy Systems
Dept. of Knowledge Processing and Language Engineering, School of Computer Science

Otto-von-Guericke-University of Magdeburg, Universitätsplatz 2, Germany
e-mail:{borgelt,kruse}@iws.cs.uni-magdeburg.de

Abstract—We explore how techniques that were developed
to improve the training process of artificial neural networks
can be used to speed up fuzzy clustering. The basic idea of
our approach is to regard the difference between two consec-
utive steps of the alternating optimization scheme of fuzzy
clustering as providing a gradient, which may be modified
in the same way as the gradient of neural network back-
propagation is modified in order to improve training. Our
experimental results show that some methods actually lead
to a considerable acceleration of the clustering process.

I. Introduction

The basic idea to train an artificial neural network, es-
pecially a multilayer perceptron, is to carry out a gradient
descent on the error surface [Haykin 1994], [Zell 1994], [An-
derson 1995]. That is, the error of the output of the neural
network (w.r.t. a given set of training examples) is seen as a
function of its parameters, i.e., connection weights and bias
values. Hence the partial derivatives of this function w.r.t.
the parameters can be computed, yielding the direction of
steepest ascent of the error function. Starting from a ran-
dom initialization of the parameters, they are changed in
the direction opposite to this gradient, since it is the goal
to minimize the error. At the new point in the parameter
space the gradient is recomputed and another step in the
direction of steepest descent is carried out. The process
stops if a (local) minimum of the error function is reached.

Fuzzy clustering usually also employs an iterative op-
timization scheme [Bezdek 1981], [Bezdek and Pal 1992],
[Bezdek et al. 1999], [Höppner et al. 1999]. Starting from a
random initialization of the cluster parameters (center co-
ordinates and size and shape parameters), the data points
are assigned—with a certain degree of membership—to the
different clusters based on their distances to these clusters.
Then the parameters of a cluster are recomputed from the
data points assigned to it, respecting, of course, the degree
of membership of the data points to this cluster. The idea
underlying this computation is to minimize the sum of the
squared distances of the data points to the cluster centers.
The process of assigning data points and recomputing the
cluster parameters is iterated until the clusters are stable.

Since both methods rely on a minimization of a function,
namely the error function of a neural network or the sum
of squared distances for fuzzy clustering, the idea suggests
itself to transfer improvements that have been developed
for one method to the other. Here we focus on a transfer of

the different improvements of the gradient descent train-
ing method for neural networks to fuzzy clustering. Our
rationale is that the difference between the parameter val-
ues of two consecutive steps of the alternating optimization
scheme of fuzzy clustering can be seen as a kind of (inverse)
gradient. In this way we can apply the same modifications
as in neural network training.

II. Neural Network Techniques

In this section we review some of the best-known meth-
ods for improving the gradient descent training process
of an artificial neural network, including a momentum
term, parameter-specific self-adapting learning rates, re-
silient backpropagation and quick backpropagation.

A. Standard Backpropagation

In order to have a reference point, we state first the
weight update rule for standard error backpropagation.
This rule reads for a parameter w:

w(t + 1) = w(t) + ∆w(t) where ∆w(t) = −η∇we(t).

That is, the new value of the parameter (in step t + 1)
is computed from the old value (in step t) by adding a
weight change, which is computed from the gradient ∇we(t)
of the error function e(t) w.r.t. this parameter w. η is a
learning rate that influences the size of the steps that are
carried out. The minus sign results from the fact that the
gradient points into the direction of the steepest ascent, but
we have to carry out a gradient descent. Depending on the
definition of the error, the gradient may also be preceded
by a factor of 1

2 in this formula, in order to cancel a factor
of 2 that results from differentiating a squared error.

Note that it can be difficult to choose an appropriate
learning rate, because a small learning rate can lead to
unnecessarily slow learning, whereas a large learning rate
can lead to oscillations and uncontrolled jumps.

B. Momentum Term

The momentum term method [Rumelhart et al. 1986b]
consists in adding a fraction of the weight change of the
previous step to a normal gradient descent step. The rule
for changing the weights thus becomes

∆w(t) = −η∇we(t) + β ∆w(t− 1),

where β is a parameter, which must be smaller than 1 in or-
der to make the method stable. In neural network training
β is usually chosen between 0.5 and 0.95.

The additional term β ∆w(t − 1) is called momentum
term, because its effect corresponds to the momentum that
is gained by a ball rolling down a slope. The longer the ball
rolls in the same direction, the faster it gets. So it has a
tendency to keep on moving in the same direction (momen-
tum term), but it also follows, though slightly retarded, the
shape of the surface (gradient term).

By adding a momentum term training can be acceler-
ated, especially in areas of the parameter space, in which
the error function is (almost) flat, but descends in a uni-
form direction. It also reduces slightly the problem of how
to choose the value of the learning rate, although this is
not relevant for our current investigation.

C. Self-Adaptive Backpropagation

The idea of (super) self-adaptive backpropagation (Su-
perSAB) [Jakobs 1988], [Tollenaere 1990] is to introduce
an individual learning rate ηw for each parameter of the
neural network, i.e., for each connection weight and each
bias value. These learning rates are then adapted (before
they are used in the current update step) according to the
values of the current and the previous gradient. The exact
adaptation rule for the learning rates is

ηw(t) =


γ− · ηw(t−1), if ∇we(t) · ∇we(t−1) < 0,
γ+ · ηw(t−1), if ∇we(t) · ∇we(t−1) > 0

∧ ∇we(t−1) · ∇we(t−2) ≥ 0,
ηw(t−1), otherwise.

γ− is a shrink factor (γ− < 1), which is used to reduce
the learning rate if the current and the previous gradient
have opposite signs. In this case we have leaped over the
minimum, so smaller steps are necessary to approach it.
Typical values for γ− are between 0.5 and 0.7.

γ+ is a growth factor (γ+ > 1), which is used to increase
the learning rate if the current and the previous gradient
have the same sign. In this case two steps are carried out
in the same direction, so it is plausible to assume that we
have to run down a longer slope of the error function. Con-
sequently, the learning rate should be increased in order to
proceed faster. Typically, γ+ is chosen between 1.05 and
1.2, so that the learning rate grows slowly.

The second condition for the application of the growth
factor γ+ prevents that the learning rate is increased im-
mediately after it has been decreased in the previous step.
A common way of implementing this is to simply set the
previous gradient to zero in order to indicate that the learn-
ing rate was decreased. Although this also suppresses two
consecutive reductions of the learning rate, it has the ad-
vantage that it eliminates the need to store ∇we(t− 2).

In order to prevent the weight changes from becoming
too small or too large, it is common to limit the learning
rate to a reasonable range. It is also recommended to use
batch training, as online training tends to be unstable.

D. Resilient Backpropagation

The resilient backpropagation approach (Rprop) [Ried-
miller and Braun 1993] can be seen as a combination of the
ideas of Manhattan training (which is like standard back-
propagation, but only the sign of the gradient is used, so
that the learning rate determines the step width directly)
and self-adaptive backpropagation. For each parameter of
the neural network, i.e., for each connection weight and
each bias value, a step width ∆w is introduced, which is
adapted according to the values of the current and the pre-
vious gradient. The adaptation rule reads

∆w(t) =


γ− ·∆w(t−1), if ∇we(t) · ∇we(t−1) < 0,
γ+ ·∆w(t−1), if ∇we(t) · ∇we(t−1) > 0

∧ ∇we(t−1) · ∇we(t−2) ≥ 0,
∆w(t−1), otherwise.

In analogy to self-adaptive backpropagation, γ− is a shrink
factor (γ− < 1) and γ+ a growth factor (γ+ > 1), which
are used to decrease or increase the step width. The appli-
cation of these factors is justified in exactly the same way
as for self-adaptive backpropagation. The typical ranges of
values also coincide (γ− ∈ [0.5, 0.7] and γ+ ∈ [1.05, 1.2]).

Like in self-adaptive backpropagation the step width is
restricted to a reasonable range in order to avoid far jumps
as well as slow learning. It is also advisable to use batch
training as online training can be very unstable.

In several applications resilient backpropagation has
proven to be superior to a lot of other approaches (includ-
ing momentum term, self-adaptive backpropagation, and
quick backpropagation), especially w.r.t. training time [Zell
1994]. It is definitely one of the most highly recommend-
able methods for training multilayer perceptrons.

E. Quick Backpropagation

The idea underlying quick backpropagation (Quickprop)
[Fahlman 1988] is to locally approximate the error function
by a parabola (see Figure 1) and to change the weight in
such a way that we end up at the apex of this parabola,
i.e., the weight is simply set to the value at which the apex
lies. If the error function is “good-natured”, i.e., can be
approximated well by a parabola, this enables us to get
fairly close to the true minimum in one or very few steps.

The rule for changing the weights can easily be derived
from the derivative of the approximation parabola (see Fig-
ure 2). Obviously, it is (consider the shaded triangles, both
of which describe the ascent of the derivative)

∇we(t− 1)−∇we(t)
w(t− 1)− w(t)

=
∇we(t)

w(t)− w(t + 1)
.

Solving for ∆w(t) = w(t + 1) − w(t) and exploiting that
∆w(t− 1) = w(t)− w(t− 1) we get

∆w(t) =
∇we(t)

∇we(t− 1)−∇we(t)
·∆w(t− 1).

However, it has to be taken into account that the above for-
mula does not distinguish between a parabola that opens

e

w

m w(t+1) w(t) w(t−1)

e(t)

e(t−1)

apex

Fig. 1. Quick backpropagation uses a parabola to locally approximate
the error function. m is the true minimum.

w

∇we

w(t+1) w(t) w(t−1)

∇we(t)

∇we(t−1)

0

Fig. 2. The formula for the weight change can easily be derived from
the derivative of the approximation parabola.

upwards and one that opens downwards, so that a maxi-
mum of the error function may be approached. Although
this can be avoided by checking whether

∇we(t− 1)−∇we(t)
∆w(t− 1)

< 0

holds (parabola opens upwards), this check is often miss-
ing in implementations. Furthermore a growth factor is
introduced, which limits the weight change relative to the
previous step. That is, it is made sure that

|∆w(t)| ≤ γ · |∆w(t− 1)|

holds, where γ is a parameter, which is commonly chosen
between 1.75 and 2.25.

In addition, neural network implementations of this
method often add a normal gradient descent step if the
two gradients ∇we(t) and ∇we(t − 1) have the same sign,
i.e., if the minimum does not lie between the current and
the previous weight value. In addition it is advisable to
limit the weight change in order to avoid far jumps.

If the assumptions underlying the quick backpropagation
method, namely that the error function can be approxi-
mated locally by a parabola that opens upwards and that
the parameters can be changed fairly independent of each
other, and if batch training is used, it is one of the fastest
learning methods for multilayer perceptrons. Otherwise it
tends to be unstable and is susceptible to oscillations.

III. Fuzzy Clustering

Fuzzy clustering is an objective function based method to
divide a dataset into a set of groups or clusters. In contrast
to standard (crisp) clustering, fuzzy clustering offers the
possibility to assign a data point to more than one cluster,

so that overlapping clusters can be handled conveniently.
Each cluster is represented by a prototype, which consists
of a cluster center and maybe some additional information
about the size and shape of the cluster. The degree of
membership, to which a data point belongs to a cluster,
is computed from the distances of the data point to the
clusters center w.r.t. the size and shape information.

Formally, given a dataset X of n data points ~xj ∈ IRp

that is to be divided into c clusters, the clustering result is
obtained by minimizing the objective function

J(X,U,B) =
c∑

i=1

n∑
j=1

um
ij d2(βi, ~xj)

subject to

∀i ∈ {1, . . . , c} :
n∑

j=1

uij > 0 and

∀j ∈ {1, . . . , n} :
c∑

i=1

uij = 1.

Here uij ∈ [0, 1] is the membership degree of the data
point ~xj to the i-th cluster, βi is the prototype of the i-th
cluster, and d(βi, ~xj) is the distance between data point ~xj

and prototype βi. B denotes the set of all c cluster proto-
types β1, . . . , βc. The c × n matrix U = [uij] is called the
fuzzy partition matrix and the parameter m is called the
fuzzifier. This parameter determines the “fuzziness” of the
clustering result. With higher values for m the boundaries
between the clusters become softer, with lower values they
get harder. Usually m = 2 is chosen. The two constraints
ensure that no cluster is empty and that the sum of the
membership degrees for each datum equals 1, so that each
data point has the same weight.

Unfortunately, the objective function J cannot be min-
imized directly. Therefore an iterative algorithm is used,
which alternatingly optimizes the cluster prototypes and
the membership degrees. The update formulae are derived
by differentiating the objective function (extended by La-
grange multipliers to incorporate the constraints) w.r.t. the
parameter to optimize and setting this derivative equal to
zero. For the membership degrees we thus obtain the up-
date rule

uij =
1

c∑
k=1

(
d2(~xj , βi)
d2(~xj , βk)

) 1
m−1

.

This formula is independent of what kind of cluster proto-
type and what distance function is used. However, w.r.t.
the update formulae for the cluster parameters we have to
distinguish between algorithms that use different kinds of
prototypes and, consequently, different distance functions.

The most common fuzzy clustering algorithm is the fuzzy
c-means algorithm [Bezdek 1981]. It uses only cluster cen-
ters as prototypes, i.e., βi = (~ci). Consequently, the dis-
tance function is

d2
fcm(~xj , βi) = (~xj − ~ci)T (~xj − ~ci),

which leads to the update rule

~ci =

∑n
j=1 um

ij~xj∑n
j=1 um

ij

for the cluster centers. The fuzzy c-means algorithm
searches for spherical clusters of equal size.

A more flexible variant is the Gustafson-Kessel algorithm
[Gustafson and Kessel 1979]. It can find (hyper-)ellipsoidal
clusters by extending the prototype with a fuzzy covariance
matrix. That is, βi = (~ci,Ci), where Ci is the fuzzy co-
variance matrix, which is normalized to determinant 1 to
unify the cluster size. The distance function is

d2
gk(~xj , βi) = (~xj − ~ci)T C−1

i (~xj − ~ci).

This leads to the same update rule for the cluster centers
as for the fuzzy c-means algorithm (see above). The co-
variance matrices are updated according to

Ci = |Σi|−
1
p Σi,

where

Σi =
n∑

j=1

um
ij (~xj − ~ci)(~xj − ~ci)T .

There is also a restricted version of the Gustafson-Kessel
algorithm, in which only the variances of the individual
dimensions are taken into account [Klawonn and Kruse
1995]. That is, this variant uses only the diagonal ele-
ments of the matrix Σi and all other matrix elements are
set to zero. Since this means that the clusters are axes-
parallel (hyper-)ellipsoids we refer to this variant as the
axes-parallel Gustafson-Kessel algorithm.

In order to be able to apply the modifications reviewed
above for neural networks, we simply identify the (negated)
gradient −∇we(t) w.r.t. a parameter w with the difference
between two consecutive values of a cluster parameter (cen-
ter coordinate or matrix element) that are computed with
the standard update methods as we described them above.
In this way all modifications of gradient descent we dis-
cussed in the preceding section can be applied.

Note that standard backpropagation also yields a modifi-
cation, because we may introduce a learning rate, which in-
fluences the step width, into the clustering process as well.
Of course, in fuzzy clustering this learning rate should be
no less than 1, because a factor of 1 simply gives us the
standard update step. That is, we only use this factor to
expand the step width (η ≥ 1), never to reduce it.

IV. Experimental Results

We tested the methods described above on four well-
known datasets from the UCI machine learning repository
[Blake and Merz 1998]: abalone (physical measurements of
abalone clams), breast (Wisconsin breast cancer, tissue and
cell measurements), iris (petal and sepal length and width
of iris flowers), and wine (chemical analysis of Italian wines
from different regions). In order to avoid scaling effects,
the data was normalized, so that in each dimension the
expected value was 0 and the standard deviation 1.

TABLE I

Best parameter values for the different datasets.

FCM a.p. GK GK
dataset exp. mom. exp. mom. exp. mom.
abalone 3 1.50 0.30 1.40 0.20 1.90 0.65
abalone 6 1.60 0.50 1.40 0.25 1.90 0.70
breast 2 1.20 0.05 1.30 0.10 1.80 0.55
iris 3 1.40 0.15 1.20 0.05 1.80 0.50
wine 3 1.40 0.10 1.50 0.15 1.80 0.60
wine 6 1.60 0.75 1.80 0.60 1.90 0.55

Since the listed datasets are originally classified (al-
though we did not use the class information), we know
the number of clusters to find (abalone: 3, breast: 2, iris:
3, wine: 3), so we ran the clustering using these numbers.
In addition, we ran the algorithm with 6 clusters for the
abalone and the wine dataset.

The clustering process was terminated when a normal
update step changed no center coordinate by more than
10−6. That is, regardless of the modification employed, we
used the normal update step to define the termination crite-
rion in order to make the results comparable. Note that for
the Gustafson-Kessel algorithm (normal and axes-parallel
version) we did not consider the change of the matrix ele-
ments for the termination criterion.

Most of the methods we explore here take parameters
that influence their behavior. Our experiments showed
that the exact values of these parameters are important
only for the step width expansion and the momentum term,
for which the best value seems to depend on the dataset.
Therefore we ran the clustering algorithm for different val-
ues of the expansion factor and the momentum factor. In
the following we report only the best results we obtained.
The values we employed are listed in Table I. For the self-
adaptive learning rate as well as the resilient approach we
used a growth factor of 1.2 and a shrink factor of 0.5.

In order to remove the influence of the random initializa-
tion of the clusters, we ran each method 20 times for each
dataset and averaged the number of iterations needed. The
standard deviation of the individual results from these av-
erages is fairly small, though. Note that the modifications
only affect the recomputation of the cluster centers and not
the distance computations for the data points, the latter of
which accounts for the greater part of the computational
costs of fuzzy clustering. Therefore the increase in compu-
tation time for one iteration is negligible and consequently
it is justified to compare the different approaches by sim-
ply comparing the number of iterations needed to reach a
given accuracy of the cluster parameters.

Table II shows the results for the fuzzy c-means algo-
rithm. Each column shows the result for a method, each
line the results for a dataset. The most striking observation
to be made about this table is that the analogs of resilient
backpropagation and quick backpropagation almost always
increase the number of iterations needed. Step width ex-
pansion, momentum term, and self-adaptive learning rate,

TABLE II

Results for the fuzzy c-means algorithm.

dataset std. exp. mom. adp. res. qck.
abalone 3 46.2 31.9 27.5 28.8 56.9 56.0
abalone 6 114.8 72.8 53.1 64.6 87.6 153.2
breast 2 13.2 9.9 11.4 10.6 46.8 13.8
iris 3 26.3 17.8 18.1 16.1 48.1 27.9
wine 3 27.4 20.7 20.6 17.6 52.0 28.9
wine 6 490.2 299.4 112.8 259.4 306.9 428.2

TABLE III

Results for the axes-parallel Gustafson-Kessel algorithm.

dataset std. exp. mom. adp. res. qck.
abalone 3 51.2 38.0 39.3 30.8 75.7 59.0
abalone 6 140.6 110.0 127.6 82.4 143.2 158.1
breast 2 32.6 23.7 26.2 21.4 67.2 31.8
iris 3 26.6 21.9 27.3 18.9 74.1 29.9
wine 3 32.6 22.7 24.1 20.4 60.3 34.1
wine 6 406.0 226.8 173.4 215.8 288.3 370.2

TABLE IV

Results for the normal Gustafson-Kessel algorithm.

dataset std. exp. mom. adp. res. qck.
abalone 3 201.5 107.6 74.0 126.4 fail fail
abalone 6 370.1 196.6 98.9 222.8 fail fail
breast 2 163.1 84.2 54.5 74.8 144.5 122.2
iris 3 112.2 59.0 47.6 57.9 fail 238.6
wine 3 173.2 94.5 75.2 94.5 171.8 179.0
wine 6 320.2 175.4 143.2 170.8 320.1 301.4

however, yields very good results, sometimes even cutting
down the number of iterations to less than half of what
the standard algorithm needs. Judging from the numbers
in this table, the momentum term approach and the self-
adapting learning rate appear to perform best. However, it
should be kept in mind that the best value of the momen-
tum factor is not known in advance and that these results
were obtained using the optimal value. Hence the adaptive
learning rate, which does not need such tuning, has a clear
edge over the momentum term approach.

Table III shows the results for the axes-parallel
Gustafson-Kessel algorithm and Table IV the results for
the normal Gustafson-Kessel algorithm. Here the pic-
ture is basically the same. The analogs of resilient and
quick backpropagation are almost complete failures (the
entry “fail” means that no stable clustering result could
be reached even with 10000 iterations). Step width ex-
pansion, momentum term, and self-adaptive learning rate,
however, yield very good results. Especially for the nor-
mal Gustafson-Kessel algorithm, the momentum term ap-
proach seems to be the clear winner, but again it has to
be kept in mind that the optimal value of the momentum
factor is not known in advance. Therefore we recommend
the self-adaptive learning rate, which consistently leads to
considerable improvements in the number of iterations.

The programs, the datasets, and a shellscript that have
been used to carry out these experiments are available at

http://fuzzy.cs.uni-magdeburg.de/˜borgelt/software.html

V. Conclusions

In this paper we explored how ideas from artificial neu-
ral network training can be used to speed up fuzzy clus-
tering. Our experimental results show that there is indeed
some potential for accelerating the clustering process, espe-
cially if a self-adaptive learning rate or a momentum term
are used. With these approaches the number of iterations
needed until convergence can sometimes be reduced to less
than half the number of the standard approach. We rec-
ommend the self-adaptive learning rate, but the step width
expansion and the momentum term approach also deserve
strong interest, especially, because they are so simple to im-
plement. Their drawback is, however, that the best value
for their parameter depends heavily on the dataset.

References

[Anderson 1995] J.A. Anderson. An Introduction to Neural Net-
works. MIT Press, Cambridge, MA, USA 1995

[Bezdek 1981] J.C. Bezdek. Pattern Recognition with Fuzzy Objec-
tive Function Algorithms. Plenum Press, New York, NY, USA
1981

[Bezdek et al. 1999] J.C. Bezdek, J. Keller, R. Krishnapuram, and
N.R. Pal. Fuzzy Models and Algorithms for Pattern Recognition
and Image Processing. Kluwer, Dordrecht, Netherlands 1999

[Bezdek and Pal 1992] J.C. Bezdek and S.K. Pal, eds. Fuzzy Models
for Pattern Recognition — Methods that Search for Structures
in Data. IEEE Press, Piscataway, NJ, USA 1992

[Blake and Merz 1998] C.L. Blake and C.J. Merz. UCI Repository of
Machine Learning Databases. Department of Information and
Computer Science, University of California, Irvine, CA, USA
1998. http://www.ics.uci.edu/~mlearn/MLRepository.html.

[Fahlman 1988] S.E. Fahlman. An Empirical Study of Learning
Speed in Backpropagation Networks. In: [Touretzky et al. 1988].

[Gustafson and Kessel 1979] E.E. Gustafson and W.C. Kessel. Fuzzy
Clustering with a Fuzzy Covariance Matrix. (IEEE CDC, San
Diego, CA), pp. 761-766, IEEE Press, Piscataway, NJ, USA 1979

[Haykin 1994] S. Haykin. Neural Networks — A Comprehensive
Foundation. Prentice-Hall, Upper Saddle River, NJ, USA 1994

[Höppner et al. 1999] F. Höppner, F. Klawonn, R. Kruse, and
T. Runkler. Fuzzy Cluster Analysis. J. Wiley & Sons, Chich-
ester, United Kingdom 1999

[Jakobs 1988] R.A. Jakobs. Increased Rates of Convergence Through
Learning Rate Adaption. Neural Networks 1:295–307. Pergamon
Press, Oxford, United Kingdom 1988

[Klawonn and Kruse 1995] F. Klawonn and R. Kruse. Automatic
Generation of Fuzzy Controllers by Fuzzy Clustering. Proc.
IEEE Int. Conf. on Systems, Man, and Cybernetics (Vancou-
ver, Canada), 2040–2045. IEEE Press, Piscataway, NJ, USA
1995

[Riedmiller and Braun 1993] M. Riedmiller and H. Braun. A Direct
Adaptive Method for Faster Backpropagation Learning: The
RPROP Algorithm. Int. Conf. on Neural Networks (ICNN-93,
San Francisco, CA), 586–591. IEEE Press, Piscataway, NJ, USA
1993

[Rumelhart et al. 1986b] D.E. Rumelhart, G.E. Hinton, and
R.J. Williams. Learning Representations by Back-Propagating
Errors. Nature 323:533–536. Nature Publishing Group,
Basingstoke, United Kingdom 1986

[Tollenaere 1990] T. Tollenaere. SuperSAB: Fast Adaptive Back-
propagation with Good Scaling Properties. Neural Networks
3:561–573. Pergamon Press, Oxford, United Kingdom 1990

[Touretzky et al. 1988] D. Touretzky, G. Hinton, and T. Sejnowski,
eds. Proc. Connectionist Models Summer School (Carnegie Mel-
lon University, Pittsburgh, PA). Morgan Kaufman, San Mateo,
CA, USA 1988

[Zell 1994] A. Zell. Simulation Neuronaler Netze. Addison-Wesley,
Bonn, Germany 1994

