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Abstract—This work aims to evaluate explainable classification
methods for the detection of fish species from hydroacoustic data
acquired by echo sounders at a region near the coastline of
south and southeastern Brazil. Decision trees and fuzzy rule-
based methods were adopted. The fitted models were evaluated
by quality measures based on the performance of the classifiers
and also by an expert which analyzes the usefulness of the rules
on describing the schools. The models learned by the algorithms
performed well for the available data and were able to represent
the documented behavior of the species considered in the studied
region, according to the literature.

Index Terms—hydroacoustics, fish classification, explanability,
fuzzy rule-based classification systems

I. INTRODUCTION

The automatic identification of the prevailing species in a
fish school allows a non-invasive approach for the analysis
of marine life. The approach is also useful for increasing the
capture of fish from economically relevant species as well as
reducing the fishery of organisms that would be discarded,
therefore contributing to the preservation of several species [1].
Catches of the most important pelagic fish along the coast of
Brazil represent hundreds of thousands of tons per year.

Modern fishing boats equipped with echo sounders can
move freely around fishing grounds and digital echograms
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can be checked online from the boats or from the fleet
headquarters [1], [2]. An echo sounder is an instrument that
transmits and receives sound vertically through the water
column [2]. This equipment typically works attached to the
underside of a vessel, sending acoustic signals to detect fish,
mollusks, zooplankton, or other objects in the water column,
generating acoustic records that appear on echograms. Modern
hydroacoustic systems allow the detection, quantification, and
identification of fish species [3].

In the context of fisheries research, the classification and
identification of acoustic targets traditionally combine knowl-
edge about the distribution and behavior patterns of constituent
species, which includes the analysis of acoustic and catch data
[2]. Currently, the method most widely adopted to classify
acoustic records is the characterization of echotypes, where
certain patterns in acoustic records are visually identified by
a specialist who, based on information called descriptors,
determines a class for the echo-record. Thus, a key question
related to this topic is that the estimate’s precision is highly
related to the quality of the interpretation of the echo-records
by fishermen and researchers.

The application of those techniques has been limited by an
inability to objectively discriminate among taxonomic groups
of sound scatterers [4]. To date, although echo-sound software
programs are used onboard or remotely to process echograms,
most workers in commercial fishery adopt subjective identi-

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other work



fication methods based on visual interpretation of echograms
with taxonomic discrimination based on “rules of thumb”.

Computerized systems for fish school detection and sizing
came into major use with the onset of the computer technology
era in the mid-1970s [5], [6]. Classification algorithms were
already applied for species identification from hydroacoustic
data [7]. Recently the random forest classification algorithm
[8] was applied for the identification of Thunnus thynnus
(Atlantic bluefin tuna) from sonar images in the region of the
Bay of Biscay [9].

The aforementioned classification problem is characterized
by subjective features such as the shape or behavior of the
schools, which motivates the adoption of fuzzy classifiers. The
explainable artificial intelligence, from a broader perspective,
aims to build intelligent systems that are intelligible by users
[10]. This work proposes and evaluates explainable classifica-
tions models for the automatic detection of fish species from
hydroacoustic data acquired by echo sounders. The adoption
of explainable models allows experts to evaluate the resulting
rules and assess their applicability for practical purposes.

II. SPECIES IDENTIFICATION BY FISHERY ACOUSTICS

For part or all of their life, fish may spend their time as
associated with other fish in shoals. The terms shoal and school
are sometimes used interchangeably, but it is useful to retain
school for the situation in which the fish in a shoal show a
high degree of coordination in their spatial positions within the
shoal [11], which might indicate that the fishes in that shoal
are mostly from the same species.

The identification of the prevailing species in a school
allows improving the effectiveness of fishery by enhancing
the success rate of capturing fish from species of commer-
cial interest while preserving fish from other species [1].
In multispecies environments, especially where schools are
small, interspersed, and have a low or varying catchability,
net sampling is often unworkable even as a rough means
of taxonomic identification. Net samples in practice cannot
achieve spatial or temporal sampling which is comparable with
that of acoustic sampling [4].

Fig. 1. Echogram obtained from a split-beam echo sounder. Red ellipses
indicate the presence of fish schools. Reproduced under permission of the
Fisheries Technology and Hydroacoustics Laboratory (FURG, Brazil).

Figure 1 represents a single echogram, where the areas
circulated in red represent schools. Any structure graphically

registered in an echogram is called an echo-record, therefore
many echo-records might be registered in the same echogram.
The classification of echo-records is performed through the
characterization of echotypes. An echotype is a morphologi-
cally consistent pattern of the echo-record, characterized by a
set of descriptors [12].

The determination of the correct class of an echo-record
is achieved by the analysis of several types of descriptors by
a specialist. Energetic descriptors are related to backscatter
data from the operating frequency of the echo sounder and/or
the color visible in the echogram, which is usually related
to the biomass of individuals. Morphological descriptors are
related to the shape and extent of the echo-record, and also
its clustering degree, which varies as a function of the den-
sity of individuals, among other factors. Spacial descriptors
include the location and depth of the echo-record. Figure 2
illustrates the characterization of spatial descriptors. Temporal
descriptors represent the date and time of detection of the
echo-record.

The classification of echo-records requires fishing trawls
for the correct identification of the predominant fish species.
Hauls trawl depth must be monitored to be related to echo-
records found in the same depth. Net sampling must occur
at the same time the echogram is obtained, which allows the
species identification and weighing of fishes onboard.

Fig. 2. Examples of echo-records associated to fish school and their
descriptors in an echogram. Adapted from [7].

Some descriptors might present high inconsistency or a
wide variability, notably the morphological and biological
ones. This results from variations on the conditions for sound
wave propagation due to changes in the water temperature
and/or vertical migration of fish, its prey, or other organisms
present in the water column [12]. Those features motivated
the adoption of fuzzy logic as a suitable alternative for the
classification of echo-records since this approach is recognized
as being more robust to imprecise, ambiguous data.



III. EXPLAINABLE CLASSIFICATION METHODS

Explainable Artificial Intelligence (XAI) is a research field
that aims to make AI systems results more understandable to
humans While the term is relatively new, the problem of ex-
plainability has existed since the mid-1970s when researchers
studied explanation for expert systems [10]. An explainable
intelligent system would be able to provide auditable and
provable ways to defend algorithmic decisions, which leads
to building trust. Additionally, a model that can be explained
and understood is one that can be more easily improved [10].

A. C4.5

Among the XAI methods available from the literature, the
inference of decision trees represents a simple rather effective
approach. C4.5 [13] is a recursive decision tree learning
algorithm that adopts the information gain ration to choose
the attribute which better explains the class at each stage.
The algorithm builds a decision tree following a top-down
approach.

A base case for the recursion occurs when all the objects
at a given node belong to the same class. Also, a parameter
regulates the minimum number of instances per leaf. The
method is widely adopted for object classification on several
domains [14]. C4.5 adopts a crispy approach for the split
over each attribute selected therefore the rules generates from
the algorithm represent abrupt transitions between classes.
Those sharp decision boundaries are questionable and often
unnatural [15].

B. FARC-HD

According to [16], classification methods based on fuzzy
rules better encompass the whole information available, even
though it comes from expert knowledge, empirical measures,
or mathematical models. A fuzzy association rule can be
considered to be a classification rule if the antecedent contains
fuzzy item sets and the consequent part contains only one class
label [17].

FARC-HD (Fuzzy Association Rule-based Classification
method for High-Dimensional problems) [17] is a computa-
tionally efficient fuzzy-based algorithm based on association
discovery. Figure 3 illustrates the general scheme of the
FARC-HD method.
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Fig. 3. Scheme of the FARC-HD method. Adapted from [17].

At the first stage, the fuzzy association rule extraction
generates an initial set of rules comprising all classes in the
dataset from an input set of predefined triangular membership
functions which could be uniformly distributed, for instance.
Candidate rule prescreening stage performs a selection from

the best rules generated previously. Finally, a genetic approach
is adopted for the tuning of the rules selected. The authors
adopted a fixed number of five lingustic variables for the
fuzzy representation of each attribute in the evaluation of
the method [17]. Figure 4 illustrates five triangular lingustic
variables and the respective membership functions for an
arbitrary attribute.

m
em

be
rs

hi
p

0 
   

   
   

   
  0

.5
   

   
   

   
 1

  VERY                                                VERY
  LOW        LOW  MEDIUM   HIGH    HIGHT

attribute

Fig. 4. Lingustic variables and their respective triangular membership
functions for an arbitrary attribute.

C. FURIA

FURIA [15] extends the rule learning algorithm RIP-
PER [18] on allowing the adoption of fuzzy and non-ordered
rules. Essentially, a fuzzy rule is obtained through replacing
intervals by fuzzy intervals, namely fuzzy sets with trapezoidal
membership function. The fuzzy antecedents successively
learned by FURIA are open fuzzy half intervals.

At the building stage, an initial ruleset is obtained. Rules are
grown by the inclusion of antecedents. Each rule can raise one
or more “optimizations”, which are variations from it. During
the optimization phase, in each iteration, rules are fuzzified
greedily. The fuzzification is evaluated for every antecedent
Ai in terms of its purity ρi, which is defined as:

ρi =
pi

pi + ni
(1)

where pi =
∑

x∈Di
+
µAi

(x) and ni =
∑

x∈Di
−
µAi

(x). Each
µAi

(x) is the degree to which the antecendent Ai covers each
x, where x is an instance. Di

+ and Di
+ are the subsets of

positive and negative instances respectively, with respect to
antecendent Ai. The fuzzification is then performed for the
antecedent with the greatest purity. The process is repeated
until all antecedents have been fuzzified [15].

The model is built following a k-fold approach, where
one fold is used for pruning. The user must inform the
number of optimizations for each rule and the number folds,
among other parameters. The algorithm has been successfully
applied to classification problems from several fields including
medicine [19], urban traffic prediction [20], and climate [15].

IV. METHODOLOGY

Fish hydroachoustic data for this study1 were collected
using a Simrad EK500 scientific split-beam echo sounder2

operating at 38kHz. Data were obtained from two cruises

1Data provided by the Fisheries Technology and Hydroacoustics Laboratory
at the Federal University of Rio Grande, Brazil (http://www.io.furg.br/)

2Simrad Fisheries; Lynnwood, USA



which occurred between 2009 and 2010 [1] at a region near
coastline of south and southeastern Brazil, between the Santa
Marta cape (28◦ 36’ S) and São Tomé cape (22◦ 02’ S) (Figure
5).

The cruises were carried out along pre-established grids
during day and night, at a speed of 10 knots. The coverage
of the cruises, calculated as the ratio of the number of miles
prospected to the total area, was more than 20%. Mid-water
trawl net sampling was performed whenever schools were
detected. The net, designed to catch small pelagic fish, had
wings and square with a mesh of 400 mm between knots,
gradually decreasing to 50 mm in the tunnel and 20 mm in
the bag, plus an internal 12 mm mesh bag. The net was kept
open by the use of two doors with 4 m2 each. The hauls were
performed at speeds between 3 and 4 knots for a period that
depended on the size of the schools [21].

Fig. 5. Catch positions of the cruises in the study area. Isobaths refer to
local depth. Reproduced under permission of the Fisheries Technology and
Hydroacoustics Laboratory (FURG, Brazil).

Attribute Average s.d. Median Max. Min.
SL (◦) 24.8708 1.2979 24.6123 28.1939 22.5632
WL (◦) 46.3506 1.6991 46.7773 48.3383 41.6664
LD (m) 42.8569 17.6523 34.0000 86.2000 19.4000
SD (m) 25.0027 13.5780 21.8000 58.0000 3.8000
ID (m) 28.1625 13.2570 24.3500 62.4000 6.3000
SH (m) 3.1713 2.5047 2.3000 15.9000 0.5000
SW (m) 10.9206 11.9705 7.6000 129.2000 0.9000

TABLE I
AVERAGE, STANDARD DEVIATION (S.D.), MEDIAN, MAXIMUM AND

MINIMUM VALUES FOR EACH ATTRIBUTE OF THE DATASET.

Hydroacoustic data were digitally stored as raw acoustic
data, which can be viewed in the form of echogram images
using the MOVIES+ version 3.4b (IFREMER) software. The
crew prepared data sheets of quantity (number and biomass)
and percentage of the total biomass of the species present
in each fishing haul with an echogram record and, from these
data, the predominant species of fish in the haul was identified.

1. if LD ≤ 64.2 and SL ≤ 22.96 then
class = Engraulis anchoita

2. if LD ≤ 64.2 and SL > 22.96 then
class = Dactylopterus volitans

3. if LD ≤ 64.2 and SL > 24.61 then
class = Engraulis anchoita

4. if 34.8 < LD ≤ 64.2 and 23.34 < SL ≤ 24.62 and SD ≤ 16.2 then
class = Dactylopterus volitans

5. if LD ≤ 34.8 and 23.34 < SL ≤ 24.62 then
class = manjuba

6. if 34.8 < LD ≤ 64.2 and 23.34 < SL ≤ 24.62 and SD > 16.2 then
class = others

7. if LD > 64.2 and LD ≤ 70.5 then
class = Trichiurus lepturus

8. if LD > 70.5 and SW ≤ 6.5 then
class = Trachurus lathami

9. if LD > 70.5 and SW > 6.5 then
class = Dactylopterus volitans

Fig. 6. The set of rules generated from C4.5.

1. if SL is RoughlyToNorth and LD is AvgToShallow and SD is RoughlyShallow then
class = Dactylopterus volitans (CF = 0.9363)

2. if SL is MuchToNorth and SD is RoughlyShallow then
class = Dactylopterus volitans (CF = 0.4459)

3. if WL is RoughlyToEast and SW is AvgToNarrow then
class = Dactylopterus volitans (CF = 1.0)

4. if WL is RoughlyToEast and SH is AvgToHigh then
class = Dactylopterus volitans (CF = 0.8822)

5. if LD is AvgToShallow and SD is VeryShallow then
class = Dactylopterus volitans (CF = 0.8561)

6. if WL is MuchToEast then
class = Engraulis anchoita (CF = 0.8348)

7. if SL is RoughlyToSouth then
class = Engraulis anchoita (CF = 0.9011)

8. if WL is MuchToWest and SD is RoughlyShallow then
class = Engraulis anchoita (CF = 0.9995)

9. if WL is RoughlyToEast and LD is RoughlyDeep then
class = Trachurus lathami (CF = 0.8616)

10. if SL is MuchToNorth and WL is MuchToWest then
class = manjuba (CF= 0.8722)

11. if WL is RoughlyToWest and LD is RoughlyShallow and SD is RoughlyShallow then
class = manjuba (CF: 0.7430)

12. if SL is RoughlyToNorth and WL is RoughlyToWest and LD is VeryDeep then
class = others (CF =0.9466)

13. if SL is MuchToNorth and LD is AvgToShallow and SD is AvgToShallow then
class = others (CF = 0.9637)

14. if WL is RoughlyToWest and SD is VeryDeep then
class = others (CF = 0.9852)

15. if SD is VeryDeep then
class = Trichiurus lepturus (CF = 0.9449)

16. if SL is MuchToSouth and LD is VeryDeep then
class = Trichiurus lepturus (CF = 1.0)

Fig. 7. The set of rules generated from FARC-HD.

Through the analysis of morphological, spatial, and temporal
descriptors, the echo-records detected were characterized into
echotypes, according to common characteristics and consistent
standards, according to the works carried out by [21] and also
by [1].

Each entry in the fishery dataset represents the description
of a fishing haul and its respective fish schools, containing the
following data: South Latitude (SL) and West Longitude (WL)
in decimal degrees of the coordinates of the school; Location
Depth (LD) in meters which refers to the depth of the local
where each school was detected; Superior and Inferior depth
in meters (SD and ID respectively), which refer to the upper
and lower depth of the school; School Height and Width in
meters (SH and SW respectively). Those fields are metadata
obtained from the echogram. Additionally, a class represents
the prevailing species as recognized by the crew after the
school is hauled.



Attribute
Class SL WL LD SD ID SH SW
Dactylopterus volitans 23.53d 44.46d 47.09b 10.43c 17.34c 6.91a 29.02a

Engraulis anchoita 25.27b 46.71b 39.17c 24.59b 27.53b 2.96b,c 9.03b

Trachurus lathami 23.80d 44.51d 77.87a 14.77c 17.82c 3.05a,b,c 4.35c

Trichiurus lepturus 27.03a 47.99a 65.90a 51.44a 55.08a 3.67a,b 15.55a

manjuba 24.33c 46.46c 28.33d 20.80b 23.15b 2.36c 8.61b

others 24.07c,d 45.56d 44.12b,c 27.76b 30.32b 2.55c 8.93b

p-value (K-W) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
TABLE II

AVERAGE VALUES OF EACH ATTRIBUTE FOR EACH CLASS AND P-VALUES FROM KRUSKAL-WALLIS [22] (K-W) TESTS. DIFFERENT LOWERCASE
LETTERS (WITHIN A COLUMN) REPRESENT SIGNIFICANT DIFFERENCES BETWEEN THE AVERAGES, ACCORDING TO THE METHOD OF MULTIPLE

COMPARISONS [23] AT SIGNIFICANCE LEVEL α=0.05.

1. if SL is ABOVE 22.6 and LD is BETWEEN 34.4 52.3 and SD is BELOW 15.3 then
class = Dactylopterus volitans (CF = 0.93)

2. if SL is BETWEEN 22.9 23.5 then
class = Dactylopterus volitans (CF = 0.9)

3. if SL is BETWEEN 22.6 22.9 then
class = Dactylopterus volitans (CF = 0.69)

4. if WL is ABOVE 46.8 and LD is BELOW 64.8 then
class = Engraulis anchoita (CF = 0.99)

5. if SL is BETWEEN 22.7 23.3 then
class = Engraulis anchoita (CF = 0.95)

6. if SL is BELOW 22.7 then
class = Engraulis anchoita (CF = 0.87)

7. if LD is BETWEEN 70.5 84 and SL is ABOVE 23.5 then
class = Trachurus lathami (CF = 0.93)

8. if SL is BELOW 25.1 and LD is BELOW 47.2 and WL is ABOVE 46.4 then
class = manjuba (CF = 0.98)

9. if LD is BELOW 22 then
class = manjuba (CF = 0.93)

10. if SD is BELOW 24.7 and WL is BELOW 46.4 then
class = others (CF = 0.94)

11. if WL is BELOW 46.4 and SL is BETWEEN 24.2 24.6 then
class = others (CF = 0.8)

12. if SL is BETWEEN 24.2 24.6 then
class = others (CF = 0.86)

13. if ID is ABOVE 27.3 and SL is ABOVE 26.9 then
class = Trichiurus lepturus (CF = 0.96)

14. if SL is ABOVE 27.7 then
class = Trichiurus lepturus (CF = 0.7)

Fig. 8. The set of rules generated from FURIA.

Algorithm
Class C4.5 FARC-HD FURIA
Dactylopterus volitans 0.710 0.875 0.921
Engraulis anchoita 0.982 0.979 0.988
Trachurus lathami 0.820 0.981 1.000
Trichiurus lepturus 0.977 0.988 0.977
manjuba 0.962 0.971 0.980
others 0.708 0.907 0.916

TABLE III
F-MEASURES BY CLASS FOR ALL ALGORITHMS CONSIDERED.

Results from fishing hauls revealed schools composed ma-
jorly by pelagic fish from four species: Engraulis anchoita
(Argentine anchovy), Dactylopterus volitans (flying gurnard),
Trachurus lathami (rough scad) and Trichiurus lepturus (large-
head hairtail). The class manjuba refers to fish from the family
Engraulidae, other than E. anchoita which were aggregated
under this name. The class “others” refers to schools without
a predominant species, where the species with the higher
frequency represents under 50% of the total of individuals.
Also, schools of other species were categorized under this
class.

Table I describes the attributes that represent the descriptors

in the dataset. Average values of each attribute for each
class are shown in Table II. P-values resulting from Kruskal-
Wallis [22] tests for the difference on the means for each
attribute are also shown. Significative differences between
classes were detected for all attributes considered. Table II
illustrates the pertinency of each class to each group at
a significance level α=0.05, after the method of multiple
comparisons [23] which reveals that classes are well-separated.
The class Trichiurus lepturus presented higher LD and also
higher SL and WL (i.e., sampling points which are away from
the coast). Both Trichiurus lepturus and Dactylopterus volitans
classes presented higher SW and SH. A total of 408 schools
were identified in classes, with the following distribution: 165
instances of Engraulis anchoita, 33 of Dactylopterus volitans,
26 of Trachurus lathami, 43 of Trichiurus lepturus, 102 of the
class “manjuba” and 39 instances of the class “others”.

The evaluation of the results from the three algorithms
C4.5, FARC-HD and FURIA is performed after 5-fold cross-
validation technique is applied [24]. The average accuracies
and F-measures [25] are obtained for each algorithm. Pa-
rameter setting for the algorithms adopted was performed as
follows. The parameter of C4.5 which regulates the minimum
number of instances per leaf was set to 5. We set the number of
lingustic variables for the fuzzy representation of each variable
to 6 in FARC-HD. The number of optimizations was set to 1
and the number of folds to 4 in FURIA.

V. RESULTS

The average accuracies from cross-validation computed
for C4.5, FURIA FARC-HD are 92.2%, 96.1%, and 97.8%
respectively. Table III shows the average F-measures by class
for the three algorithms considered. The higher values were
obtained from the FURIA algorithm for all classes, except for
Trichiurus lepturus.

Figure 6 shows the 9 rules generated by C4.5. The attributes
LD (which is the root of the tree) and SL were the most
frequent, appearing in 9 and 6 of the rules, respectively.

From the 16 rules generated by FARC-HD (Figure 7),
the most relevant attributes are SL, WL, and LD, which are
related to the description of the location where the school
was detected. Triangular membership functions are generated
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by FARC-HD for each variable3. FURIA generated 14 rules

3A nominal representation is proposed for each variable as follows. The
lingustic variables for the WL attribute are: MuchToWest, RoughlyToWest,
CenterToWest, CenterToEast, RoughlyToEast, MuchToEast. The linguistic
variables for the SD attribute are: VeryShallow, RoughlyShallow, AvgToShal-
low, AvgToDeep, RoughlyDeep, VeryDeep. The other variables are repre-
sented similarly.

(Figure 8), where 12 of them adopted the attribute SL. Other
frequent attributes are SD and WL, similarly to FARC-HD.
The membership functions corresponding to the rules gener-
ated from FURIA are shown in Figure 9.

The rules were analyzed by specialists, which pointed out
that results from FURIA are especially coherent with the actual
behavior, noticeably with respect to the spatial distribution
shown by the corresponding species. The classes “manjuba”
and “others” were harder to be correctly classified by the
FURIA algorithm. The statistical analysis of those two classes
indicated that they differed only in terms of LD (lower in
“manjuba”) and WL (lower in “others”). This might result
from the composition of both classes, which are formed by
mixed schools (with more than one species), whose biological
needs and ecological interactions can generate greater variabil-
ity in their spatiotemporal distributions and in the morphology
of schools in the water column.

The attributes SL and LD were revealed as very important
for the composition of the rules. Those descriptors are directly
related to other abiotic (eg, temperature and water salinity)
and biotic (food availability) factors that influence the places
where these marine beings inhabit [26], [27]. According to
[27], depth is the main structuring factor of marine megafauna
communities (macroscopic animals).

Morphological descriptors SH and SW were not relevant
for the rule’s composition. This results from a relatively
small variability of the way fish schools are formed in this
region, which do not vary much between species. In general
the schools had an average height of 2.4 to 3.1 meters and
average width between 4.4 to 8 meters, except the schools
of Dactylopterus volitans and Trichiurus lepturus which pre-
sented greater sizes.

VI. CONCLUSION

The adoption of fuzzy rules was revealed as an efficient
approach for the classification of hydroacoustic records of
fishing hauls. All F-measure values obtained from the FURIA
algorithm in the classification of the records are above 0.91.
The superiority of FURIA over other fuzzy classifiers has been
reported in the literarure [15], [28], notably under the case of
unbalanced classes. This can be noticed from our case since
FURIA was able to deliver the highest overall F-measure from
the class which has the lowest number of instances (Trachurus
lathami). According to [28] this behavior results from the fact
that the accuracy of FURIA is not restricted by the choice of
a linguistic partition, and the antecedents of the rules change
dynamically when an instance appears that is not covered by
the rule. The replacement of rules is performed by its minimal
generalizations [29].

Future work should consider higher number of species,
other locations, and the differentiation on the periods of
the year. The methodology could be applied to other types
of hydroacoustic data. Also, fuzzy rule-based classification
systems based on the generalization of the Choquet integral
can also be applied, as in [30]–[33]
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tectados na zona econômica exclusiva da região nordeste do brasil–uma
classificação em ecotipos funcionais,” Atlântica, Rio Grande, vol. 33,
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