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Abstract

A bipolar structure called BLF expresses knowledge about decisions
in terms of decision principles that are ranked and polarized according
to the utility of the consequences of these decisions. A BLF allows us to
compare decisions under incomplete knowledge. For a given decision, the
BLF returns a vector of utility/dis-utility in terms of achievement of pos-
itive/negative goals. Decisions are compared thanks to these vectors. In
this paper we focus on the link between the uncertain knowledge aggrega-
tion made by the BLF and classical aggregation functions used in decision
under uncertainty and multi-criteria approaches. The main benefit of a
BLF is that thanks to the bipolar scale, positive and negative goals can
be dealt with independently under their own point of view (each of them
being either pessimistic or optimistic).

1 Introduction

Decision is one of the most challenging rational act in everyday life, indeed peo-
ple are always trying to find the best decision to make in professional situations
as well as in the private sphere. However, making a good decision, even an excel-
lent one, is not enough, since the main issue is to convince the actors (including
possibly oneself) that it is the right thing to do. In order to convince people,
it is necessary to be able to accompany this decision with explanations justify-
ing that this choice takes into account criteria which have been previously well

∗This is a draft version, the paper has been accepted in 30th IEEE International Confer-
ence on Fuzzy Systems (FUZZ-IEEE 2021), Luxembourg, July 11-14.
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agreement n°ANR-19-PI3A-0004.

1



established and approved. This kind of explanation is not often present in the
literature, because many approaches select a decision on the basis of black-box
numeric methods that are not easy to interpret.

Decision theory is based on at least three parameters: i) the set of alter-
natives (or decisions); ii) the evaluation of the possible outcomes: it can be
relational or numerical (then it is called utility); iii) the link between decisions
and outcomes. In [1], the authors consider three possible epistemic situations
about the link between decisions and outcomes: 1) when the link is determin-
istic: we face a problem of decision under certainty; 2) when each action leads
to one set of possible specific outcomes with a known probability associated to
each outcome: it is called decision under risk; 3) when an action may lead to
outcomes whose probability is completely unknown: it is a decision under uncer-
tainty. In this paper we are interested in decision under uncertainty where this
uncertainty is more ordinal than numerical. Namely we use possibility theory to
encode the uncertain knowledge about the outcomes. We distinguish two cases
of uncertainty: binary uncertainty, called “ignorance”, where a world is either
completely possible or impossible, and gradual uncertainty where the worlds are
more or less certain and their certainty can be compared. Another parameter is
the ability to distinguish between good and bad aspects of the outcomes, called
bipolarity, see e.g. [2]

In this paper we are going to study the decision selection process that can be
done with a Bipolar Layered Framework (BLF). We aim at comparing the results
of the BLF to the ones obtained by classical qualitative decision approaches. In
this context, we are not considering that numerical utility values are available
hence we can not use the Choquet expected utility or maxmin Expected utility
but we can use their qualitative counterparts Sugeno and maxmin/maxmax
criteria. Maxmin criteria is a pessimistic criterion which focuses on the worst
possible utility that can be obtained for a situation resulting from the decision,
maxmax is an optimistic one: it compute the best possible utilitity that could be
reached by a decision. Besides, when dealing with uncertainty, it is convenient to
have both a compact and exception tolerant representation of information. This
is why default rules [3] are used to relate alternatives to outcomes in the BLF.
The translation of default rules into constraints about the uncertainty levels
of worlds was used by [4] in order to relate BLF to qualitative decision theory
and also to propose a process to build a BLF from a possibility distribution
on alternatives given a utility function on outcomes. Then [5] proposed to use
a BLF in order to select the pieces of information to obtain in order to make
a better decision. Lastly, [6] have extended the BLF framework in order to
express the strength of some arguments and also the possibility to express that
some features may strengthen the confidence in some arguments.

There are very few bipolar approaches that are able to handle uncertain
knowledge apart from [7] and [8], and few deal with multi-criteria namely [9].
As far as we know, none of them deal with both, i.e., uncertainty and multiple-
criteria, we will come back to them in the final discussion. This paper studies
the role played by the bipolar setting of the BLF in the decision mechanism:
for this purpose we are going to compare the results that can be obtained by
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different bipolar distributions of the goals in the BLF with the results that could
be obtained with classical qualitative approaches of decision under ignorance
(based on the decision maker optimism).

In this paper, we first give some background about qualitative decision and
recall the classical example of Savage. In a second section we present the BLF
and illustrate it on several representation variants of Savage’s example. Then
we introduce the main result of this paper: the BLF is a generalization of the
maxmin and maxmax criteria in the case of total ignorance. Thus, this paper
establishes that, in addition to 1) its visual aspect, 2) its ability to facilitate the
justification of the decision, 3) its clear identification of relevant information,
the BLF generalizes the classical approaches of decision making under qualitative
uncertainty.

2 Notations, Background and Savage’s Example

2.1 Notations

We consider a set Ω of alternatives (or worlds) on which information is avail-
able. This information can be expressed in two languages LF (a propositional
language based on a vocabulary VF ) for expressing information about some fea-
tures that are believed to hold for an alternative and LG (another propositional
language based on a distinct vocabulary VG) representing information about the
achievement of some tangible results (called goals) when an alternative is se-
lected. In the propositional languages used here, the logical connectors or, and,
not are denoted respectively by ∨, ∧, and ¬. A literal is a propositional symbol
x or its negation ¬x. Note that we use ¬l to represent the literal which is the
negation of l, i.e., if l = x then ¬l = ¬x and if l = ¬x then ¬l = x. The set of
literals of LG are denoted by LITG. Classical inference, logical equivalence and
contradiction are denoted respectively by |=, ≡, ⊥. We use the symbol  as a
defeasible entailment symbol: ϕ g is interpreted by when an alternative sat-
isfies ϕ then generally the goal g is achieved by this alternative (but exceptions
may arise).

In our framework, decisions are characterized by formulas representing their
observable effect. Among the formulas of LF some formulas (we call D this
subset of decision formulas) can be distinguished because the user can act on
them. A decision d ∈ LF is a way to select a set of alternatives (or worlds)
denoted Ωd, we say that ϕ ∈ LG∪LF is satisfied by the decision d, abbreviated
d |= ϕ, if and only if Ωd |= ϕ (ϕ holds in every world of Ωd).

2.2 Savage’s Omelet[10]

Example 1 (Savage’s Omelet). Someone has just broken five good eggs into a
bowl when an agent comes and volunteer to finish making the omelet. The sixth
egg lies unbroken beside the bowl. For some reason it must either be used for
the omelet or wasted altogether. The agent must decide what to do with this
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unbroken egg. The agent must decide among three acts only. Namely:

• bi: to break an egg to join the other five eggs,

• bb: to break an egg into a saucer for inspection,

• ta: to throw an egg away without inspection.

In this example, the features for describing the problem are VF = {e6, st, nb},
representing respectively “to have a good sixth egg”, “there is a shell on the table”
(meaning that the 6th egg has been broken by the agent, ¬st means that the egg
was thrown away directly to the garbage), “a new bowl is on the table”, yielding
to eight possible situations. The three main issues at stake in this problem are:
ensure to have an omelet with a maximum number of eggs and avoid to waste too
many eggs (minimize the number of squandered eggs), avoid extra-dishes. The
values associated to these issues are determined by the situation, for instance in
situation ω3 the sixth egg is a bad egg, there is no new bowl on the table hence
the decision maker has chosen to brake it inside the bowl hence the omelet is
wasted, giving an omelet size of 0, five eggs are squandered, and there is no
extra-dishes (see Table 1). The acts are linked with the features as follows: bi
causes st ∧ ¬nb; bb causes st ∧ nb and ta causes ¬st.

worlds description goals
good
6th egg
e6

shell on
table st

new
bowl
nb

omelet
size

squan-
dered

extra-
dishes

ω1 0 0 0 5 0* 0
ω2 0 0 1 5 0* 1
ω3 0 1 0 0 5 0
ω4 0 1 1 5 0* 1
ω5 1 0 0 5 1 0
ω6 1 0 1 5 1 1
ω7 1 1 0 6 0 0
ω8 1 1 1 6 0 1

Table 1: The eight situations with their realized goals1.

In our framework, the three quantitative criteria can be represented by binary
propositional variables in LG: at least one (respectively five) egg(s) is squan-
dered, abbreviated s1 (respectively s5); an omelet of size of at least 5 (respec-
tively 6) eggs is obtained, abbreviated o5 (respectively o6), extra-dishes is pro-
duced, abbreviated ed. These issues are called “goals”, VG = {s1, s5, o5, o6, ed},
they have different importance, this can be expressed by a utility function u. Here
we consider: u(s5) < u(s1) < u(ed) < u(o5) < u(o6). These utilities induce the
following strict preference ordering between worlds (according to the goals they
achieve shown in Table 1): ω3 < ω6 < ω5 < ω2 = ω4 < ω1 < ω8 < ω7. 2

1A bad egg that has been thrown away is not considered as squandered.
2Note that ω2 and ω6 are situations where the sixth egg has been thrown away but a new

bowl is on the table (these situations cannot occur when we consider only the three actions
bb, bi and ta).
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2.3 Decision criteria under ignorance

In the context of decision under ignorance, the knowledge about the world is
drastic in the sense that a world is either known to be possible or known to
be impossible. In other words making a decision d leads to obtain a set of
selected worlds that are completely possible while the other ones are considered
impossible to be achieved by the decision d. Moreover, we dispose of a utility
function on the set of worlds u : Ω→ R which is given.

Hence, the choice of the best decision d depends on the extreme evaluations
of the worlds achieved by that decision d: [11] defines the minmax preference
as follows:

Definition 1 (minmax preference). Given two decisions d1 and d2, d1 is min-
max preferred to d2 if{

minω∈Ωd1 u(ω) ≥ minω∈Ωd2 u(ω) and
maxω∈Ωd1 u(ω) ≥ maxω∈Ωd2 u(ω)

Example 2. bi (which leads to ω3 and ω7) is minmax incomparable with bb
(leading to ω4 and ω8) and with ta (leading to ω1 and ω5). bb is minmax
preferred to ta since the max utility for bb is to get all the goals achieved except
¬ed (in ω8) which is better than the best world reachable with ta, also the worse
utility for bb is to reach ω4 which does not squandered any egg while the worst
world for ta (ω5) squanders a good egg.

Another approach is to focus on one of these extreme evaluations in order to
choose the best decision. Two criteria have been proposed one based on minimal
possible utility and one on the maximal possible utility, namely the maxmin
and maxmax criteria. maxmin is a pessimistic criterion since it focuses on the
worst possible utility that can be obtained with a decision and maxmax is an
optimistic criterion since it focuses on the best possible utility reachable with
a decision.

Definition 2 (pessimistic and optimistic criterion).
The best pessimistic decision value is maxd∈D minω∈Ωd u(ω)
The best optimistic decision value is maxd∈D maxω∈Ωd u(ω)

In other words, d1 is pessimistically preferred to d2 if minω∈Ωd1 u(ω) ≥
minω∈Ωd2 u(ω) and it is optimistically preferred if maxω∈Ωd1 u(ω) ≥ maxω∈Ωd2 u(ω).

Example 3. The best pessimistic decision is bb (which leads to ω4 at worst)
and the best optimistic decision is bi (which leads to ω7 at best).

Pessimistic and optimistic approaches have extreme behaviors. Recently a
criterion which generalizes it by allowing for taking into account the optimism
of the decision maker in a qualitative context have been proposed in [12]. This
criterion is the Re

∗ criteria where e ∈ [−1, 1] models the optimism of the decision
maker, it is a threshold under which the decision maker will consider that the
worst utility and over which she will assume to obtain the best one.
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Definition 3 (Re
∗-criterion). The best Re

∗ decision value is: maxd∈D

{
minω∈Ωd u(ω) if minω∈Ωd u(ω) < e

maxω∈Ωd u(ω) otherwise

Example 4. If the threshold of optimism is that the decision is good as soon
as no more than one egg is squandered: e = u(s1) then bb is Re

∗-preferred to ta
and bi.

3 Bipolar Layered Framework

3.1 Definition

A Bipolar Layered Framework (BLF) is a visual structure [4] that represents all
explicit information known about a decision domain in a compact way. Hence,
it contains both the knowledge for reasoning about the achievement of goals and
the preference information associated to these goals: namely their polarities and
their importance level. The polarity of a goal is positive if it is a desirable result,
negative when this result should be avoided. In order to compare this approach
to classical ones we rephrase the definition of [4]:

Definition 4 (BLF). Given a utility function u: LITG →]− 1, 1[.

A BLF is a tuple (G,P, I, l).
• G ⊆ LITG is a set of literals goals s.t. ∀g ∈ G, u(g) 6= 0. G is separated

into G⊕ and G	 where G⊕ = {g ∈ G|u(g) > 0} and G	 = {g ∈ G|u(g) <
0}.

• P is a set of decision principles (DPs). A decision principle is an expres-
sion ϕ g where ϕ ∈ LF , g ∈ LITG which expresses that there is a causal
link between ϕ and g of the form generally when ϕ holds g is realized

• I is a set of inhibitors. An inhibitor is a pair (ψ,ϕ  g) where ψ ∈ LF

and ϕ g ∈ P which expresses that when ψ holds the causal link between
ϕ and g is broken

• l : G → [0, 1] represents the level of importance of each goal of the BLF,
it is defined by ∀g ∈ G⊕, l(g) = u(g) and ∀g ∈ G	, l(g) = −u(g).

Note that a BLF is a compact representation of a possibility distribution
π and a utility function u on worlds (see [4] where a process for generating
automatically the BLF from π and u is explained). A BLF is associated to a
visual representation as defined below (an example is shown in Fig 1).

Definition 5 (BLF Visual representation). A BLF (G,P, I, l) is associated
with a tripartite layered graph where the arcs are defined by I and the vertices
are separated in three sets: 	 = {ϕ  g ∈ P|g ∈ G	}, the set of DPs with a
negative achievement; ⊕ = {ϕ g ∈ P|g ∈ G⊕}, the set of DPs with a positive
achievement; Inhib = {ψ ∈ LG|(ψ, p) ∈ I}, the set of formulas inhibiting some
DP in P.

The vertices of 	 and ⊕ are associated with the level l of their goals. The
vertices of Inhib are not layered.
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3.2 Reasoning with a BLF

It amounts to take into account the argumentation graph (coming from the
visual representation of the BLF) that concerns each goal in order to check
whether this goal is realized in the current context K ⊂ LF . The goals (∈ LG)
that are realized are the conclusions of the uninhibited DPs in the BLF given
that K holds:

Definition 6 (realized goals). Given a BLF B = (G,P, I, l), a goal g in LITG
is realized wrt B and K ∈ LF if there is one DP p in P s.t. K |= p and p
concludes g and p is not inhibited when knowing only K.

3.3 Deciding with a BLF

One can define many ways to take into account the positive and negative realized
goals in order to compare decision. In [13], the authors consider that decisions
are supported by positive and negative abstract arguments and they proposed
three bipolar qualitative decision rules in order to compare decisions: namely
Pareto dominance, bipolar possibility preference and bipolar leximin preference.
In this article, we only present the two first ones, they are based on the order of
magnitude of a decision d which is defined by a pair composed of a utility (the
highest utility of its realized positive goals) and a dis-utility (the lowest utility
of its realized negative goals).

Definition 7 (utility, disutility of a decision). Let d ∈ LF be a decision and B=
(G, P, I, l) a BLF, the BLF Pareto-evaluation of d is a pair (disutB(d), utB(d))
s.t.:

disutB(d) = maxg∈G	(l(g))|g is realized wrt B and d)
utB(d) = maxg∈G⊕(l(g)|g is realized wrt B and d)

Pareto dominance decision rule The Pareto dominance ([13]) of a decision
d1 over a decision d2 occurs when the best positive argument in favor of d1 is
better than the one of d2 and the worst negative argument supporting d1 is less
worse than the worst one supporting d2. In order to compare two decisions d1

and d2 we consider the list of realized goals in each situation wrt the BLF.

Definition 8 (Pareto dominance). Given a BLF B= (G, P, I, l), d1 and d2

in LF ,

d1 is B-Pareto-preferred to d2 if

{
utB(d1) ≥ utB(d2) and
disutB(d1) ≤ disutB(d2)

Bipolar possibility preference rule The bipolar possibility preference ([13])
occurs when the most important argument among all the positive arguments in
favor of d1 and negative arguments in favor of d2, is more important than the
most important argument among positive arguments for d2 and negative argu-
ments for d1.
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Definition 9 (biposs preference). Given a BLF B = (G,P, I, l), d1 and d2 in
LF ,

d1 is B-biposs-preferred to d2 if
max(utB(d1), disutB(d2)) ≥ max(utB(d2), disutB(d1))

3.4 Savage’s example viewed in the BLF decision context

All the knowledge contained in Table 1 together with the levels of importance of
the goals can be described more compactly by the BLF B of Figure 1. Here the
negative goals are G	 = {s1, s5, ed}, the positive goals are G⊕ = {o5, o6}. For-
mally B = {G,P, I, l} where G = G⊕ ∪ G	, P = {p1, . . . , p6}, I = {(¬e6, p2),
(¬e6, p6), (¬nb, p3)} and l is s.t. l(p1) < l(p2) < l(p3) = l(p4) < l(p5) < l(p6).
On the right of Fig. 1 are the DPs with positive goals ordered by importance
from bottom to top, on the left are the DPs with negative goals ordered by
importance from bottom to top. In this example, we have two inhibitors: ¬e6

and ¬nb.
The BLF depends on the beliefs of the decision maker, in Savage’s example

the beliefs about the sixth egg play an important role. Fig. 1 shows the BLF
when the decision maker believes that e6 is more plausible than ¬e6, Fig. 2
contains the BLF corresponding to the opposite belief, in Fig. 3 we show the
case where e6 is as plausible as its negation. In Fig. 4 we propose to take into
account the fact that not getting at least an omelet with five eggs is the worst
possible situation, this is done by adding the negative goal ¬o5 with the highest
level of importance.

	 Inhib ⊕
p6 : st o6

p5 : st ∧ ¬e6 ∧ ¬nb s5
p4 : ¬st o5p3 : st o5

p2 : ¬st s1

p1 : st ∧ nb ed

¬e6

¬nb

Figure 1: BLF B1 given that e6 is more plausible than ¬e6

	 Inhib ⊕
p6 : st ∧ e6  o6

p5 : st ∧ ¬nb s5
p4 : ¬st o5p3 : st ∧ nb o5

p2 : ¬st ∧ e6  s1

p1 : st ∧ nb ed

e6

Figure 2: BLF B2 given that ¬e6 is more plausible than e6

B1 and B2 are translating two different situations wrt the default beliefs
about the sixth egg, an interesting point to notice concerns the DP p3. In the
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BLF B1, p3 says that if there is shell on the table (st) then generally we are
sure to get an omelet of size 5 (o5), unless a new bowl is not used (¬nb) which
would inhibit p3 and will make the realization of o5 nomore guaranteed. In B2
p3 has been changed into the DP stating that generally when there is shell and
a new bowl on the table then the goal o5 is achieved, with no exception (no
inhibitor). In B1 when nothing is known about the new bowl, we will think
that o5 is achieved, because there is a greater plausibility that the sixth egg is
good hence even if we do not use a new bowl the omelet will have a size of at
least 5. In B2, in order to be sure that we get an omelet of size at least 5, we
have to know that a new bowl has been used because the sixth egg is more likely
to be bad.

	 Inhib ⊕
p6 : st ∧ e6  o6

p5 : st ∧ ¬e6 ∧ ¬nb s5
p4 : ¬st o5p3 : st ∧ nb o5

p2 : ¬st ∧ e6  s1

p1 : st ∧ nb ed

Figure 3: BLF B3 given that e6 is as plausible as ¬e6

	 Inhib ⊕
p8 : st ∧ ¬e6 ∧ ¬st ¬o5

p6 : st ∧ e6  o6

p5 : st ∧ ¬e6 ∧ ¬nb s5

p7 : ¬st ¬o6

p4 : ¬st o5p3 : st ∧ nb o5

p2 : ¬st ∧ e6  s1

p1 : st ∧ nb ed

Figure 4: B4: ¬o5 worst negative goal (e6 as plaus. as ¬e6)

Let us show how to reason with the four different BLFs. First we can
compute the realized goals for the different BLFs given the action (see Definition
6). For instance, in B1 when we know that action bi has been performed then
we know K = {st ∧ ¬nb}, only the DP p6 is fired and non inhibited in the
context K, yielding o6. With action bb, the context becomes K = {st ∧ nb},
then p6, p3 and p1 are fired and non inhibited yielding to the achievement of
the goals {o6, o5, ed}. Note that all the DPs or Inhibitors containing e6 cannot
be fired because we do not know if the sixth egg is good or bad (K does not
contain any information about e6). All the goals considered to be realized by
the different actions according to the four BLFs are described in Table 2.

Once the realized goals are known for a decision d, we are in position to
compute ut(d) and disut(d) in each BLF according to Definition 7. Thanks to
Definitions 8 and 9, in the BLF B1 (where the sixth egg is more likely to be good)
we obtain that it is better wrt Pareto-dominance to break the egg inside the
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Decision B1 B2 B3 B4
bi (causes st ∧ ¬nb) {o6} {s5} ∅ ∅
bb (causes st ∧ nb) {o6, o5, ed} {o5, ed} {o5, ed} {o5, ed}
ta (causes ¬st) {s1, o5} {o5} {o5} {¬o6, o5}

Table 2: Realized goals for decision bi, bb and ta in each BLF

bowl, indeed bi is Pareto-preferred to bb and ta. However, bi is biposs-equivalent
to bb and biposs-preferred to ta since the disutility of the extra-dish is neglected
in front of the utility of achieving o6. In the BLF B2 (where the sixth egg is
more plausibly bad) as well as in B3 (where we do not have any information
about the sixth egg) the best decision for Pareto-dominance is to throw it away
directly ta. In B2 and B3, ta is biposs-equivalent to bb and preferred to bi. In
B4 (where not having an omelet is a negative goal) bb is preferred to ta with
regard to Pareto-dominance and incomparable with bi while bb is the Bi-poss
most preferred decision.

This example shows that the way the decision maker expresses its goals has
a great influence on the results. Indeed, we may consider that a positive goal g
can be expressed by g ∈ G⊕ and be associated with a positive utility u(g) > 0.
But for this same goal g a designer may be more interested to consider that it
is important not to achieve ¬g hence he can define g′ = ¬g ∈ G	 and associate
with g′ a negative utility u(g′) = u(g)− 1. A third choice is to express both the
fact that achieving g is a positive thing and that avoiding ¬g is also important
(as it was done with o5). In other words, either the agent wishes g or the agent
wants to avoid ¬g or both.

4 Deciding under ignorance and fuzzy-BLF

4.1 Fuzzy-BLF

In order to compare BLF with classical decision under uncertainty. We first
introduce the notion of fuzzy BLF which imposes the restriction that the positive
and negative goals should be nested and that a more important goal subsumes
a less important one.

Definition 10 (Fuzzy BLF). A BLF B =(G, P, I, l) is a fuzzy BLF if{
∀g, g′ ∈ G⊕, if l(g) ≥ l(g′) then g |= g′ and
∀g, g′ ∈ G	, if l(g) ≥ l(g′) then g |= g′

Remark 1. Any BLF can be transformed into a Fuzzy BLF by transforming
each goal in a lower level to the disjunction of the goals of the higher levels,
the two BLFs are equivalent wrt decision making when the original BLF has
each positive (resp. negative) goal on a distinct level (as it is the case in our
examples).
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4.2 Bipolarity and optimism of the decision maker

We show that the aggregation on the positive/negative scale of a BLF is the
minmax function over the possible worlds. In other words, the BLF is pessimistic
about achieving the goals.

Proposition 1. Given a fuzzy-BLF B and a decision d ∈ LF , it holds that3

utB(d) = minω∈Ωd ut(ω) disutB(d) = minω∈Ωd disut(ω)

The proofs of Prop.1 is based on a series of Lemmas that we detail below.

Lemma 1. Given a fuzzy-BLF B =(G, P, I, l) and a decision d ∈ LF , if
minω∈Ωd ut(ω) > 0 then there is a goal g ∈ G⊕ such that g is realized wrt (B
and d) and l(g) = minω∈Ωd ut(ω).

Proof. Let ω∗ be a world with minimum utility among the worlds in Ωd: minω∈Ωd ut(ω) =
ut(ω?). Due to Def. 7, if ut(ω?) > 0 then ∃g∗ ∈ G⊕ such that ω? |= g? and
l(g∗) > 0. The minimality of ω∗ implies that for all ω ∈ Ωd there is a goal g′

s.t. ω |= g′ and l(g′) > l(g?). Due to Def. 10, g′ |= g?, hence for all ω ∈ Ωd,
ω |= g?, i.e., g? is realized wrt (B and d).

Lemma 2. Given a fuzzy-BLF B and a decision d ∈ LF , there is no goal
g ∈ G⊕ realized wrt to B and d such that l(g) > minω∈Ωd utB(ω).

Proof. Let us suppose that there is a realized goal g ∈ G⊕ such that l(g) >
minω∈Ωd ut(ω). If d |= g, i.e., any world in Ωd satisfies g. Hence, due to Def. 7,
any world ω ∈ Ωd verifies ut(ω) ≥ l(g) which contradicts l(g) > minω∈Ωd ut(ω).

For negative goals, the two similar lemmas also hold.

Lemma 3. Given a decision d ∈ LF and a fuzzy-criterion BLF B = (G,P, I, l),
if minω∈Ωd disut(ω) > 0 then there is a goal g ∈ G	 such that g is realized wrt
(B and d) and l(g) = minω∈Ωd disut(ω)

Lemma 4. Given a decision d ∈ LF and a fuzzy-BLF B = (G,P, I, l), there
is no goal g ∈ G	 realized wrt (B and d) such that l(g) > minω∈Ωd disut(ω).

Proof. From Lemma 1 and Lemma 2, minω∈Ωd ut(ω) = max(l(g)|g ∈ G⊕ is real-
ized wrt B and d = utB(d) and from Lemma 3 and Lemma 4, minω∈Ωd disut(ω)
= max(l(g)|g ∈ G	 is realized wrt Bd) = disutB(d); still using the convention
maxg∈∅ l(g) = 0.

Proposition 2. Considering a fuzzy-BLF B = (G,P, I, l) based on u,

• if G	 = ∅, i.e., G = G⊕, then the B-Pareto and the B-Biposs preference
orderings on decisions are the same as the maxmin pessimistic criterion
relative to utB.

3With minω∈∅ ut(ω) = 0 and minω∈∅ disut(ω) = 0.
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• if G⊕ = ∅, i.e., G = G	, then the B-Pareto and the B-Biposs prefer-
ence ordering on decisions is the same as the maxmax optimistic criterion
relative to (1− disutB).

• if ∀g ∈ G⊕ then ¬g ∈ G	 and vice versa with l(g) = l(¬g). then d1 is
B-Pareto-preferred to d2 iff d1 is minmax preferred to d2

Proof. It is enough to note that if G	 = ∅ then, for all d in LF , disutB(d) = 0.
Hence, the B-Pareto preference (Def. 8) and the B-biposs preference criteria
are using only utB(d) = minω∈Ωd ut(ω) to rank decisions, i.e., d1 is B-Pareto
preferred to d2 if utB(d1) ≥ utB(d2), and it is the same for B-biposs.

The proof of the second item is similar since in that case the B-Pareto pref-
erence and the B-biposs criteria are using only disutB(d) = minω∈Ωd disut(ω)
= 1 −maxω∈Ωd(1 − disut(ω)). From the two first point it is easy to check the
third item.

Note that, in Proposition 2, the negative case is related to a utility function
that is equal to one minus the one used by the BLF, because in the BLF the
negative goals (which have a negative utility) are associated to a positive level
in [0,1] that translates their (negative) importance, hence we reverse this scale
in order to compare our approach with the standard ones. Besides, Proposition
2 shows that the BLF-Pareto criterion and the BLF-biposs criterion are gen-
eralisation of the criteria maxmin and maxmax, indeed a decision based on an
optimistic (respectively pessimistic) criteria can be computed by using Pareto
or biposs criteria on a BLF containing only negative goals (respectively posi-
tive goals). Intuitively, moving goals from the positive side to the negative one
amounts to move from considering that their existence is wished to consider-
ing that their absence is dreaded. The converse move that takes a goal from a
negative side to a positive side is transforming something that is dreaded into
something whose absence is wished. By balancing goals on the positive and
negative sides, the decision maker may mitigate her pessimism. One special
case is the Re

∗-BLF (see Def.11) with Pareto preference rules which capture the
Re
∗ behavior.

Definition 11. A Re
∗-BLF is a fuzzy-BLF such that

• there is a universal positive goal gu and a DP: >  gu with l(gu) >
maxg∈G	 l(g),

• for all g in G⊕ \ {gu}, ¬g ∈ G	 and vice-versa,

• maxg∈G⊕ l(g) < e,

• and if l(g) > l(g′) then l(¬g) > l(¬g′).

Proposition 3. An optimal solution using Pareto preference rules on a Re
∗-BLF

is optimal for Re
∗ preference.
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5 Discussion and concluding remarks

We have shown that the BLF allows us to generalise the methods for solving
qualitative decision problems under uncertainty because they were defined only
on one scale. The extension to a bipolar scale is important to help to differen-
tiate the ways to deal with the uncertainty associated with positive or negative
goal, since their interpretation is not necessarily symmetric. The fact that the
same problem may be represented with different polarities yields the main re-
sult that BLF generalizes the main classical qualitative decision approaches.
Moreover, we have provided a formal characterization of the fact that BLF is a
generalization of maxmin and maxmax criterion and we have situated it wrt to
Re
∗-criterion.

The reader may wonder about the link with Cumulative Prospect Theory
(CPT) of Tversky and Kahneman [14]. Admittedly, CPT only deals with deci-
sion making under risk (i.e. known probabilities), but it shares with BLF the
distinction between positive and negative outcomes. More precisely, CPT starts
with gains together with their probabilities and computes utilities according to
risk adverse attitude. Hence it is a transformation of gain using a utility func-
tion. In contrast, our model thanks to the bipolarity, is dealing with utility
and dis-utility with either pessimistic attitude (closely related to risk adverse
attitude) or optimistic attitude.
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