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Abstract—Constrained interval type-2 (CIT2) fuzzy sets are
a class of type-2 fuzzy sets that has been recently proposed as
a way to extend type-1 membership functions to interval type-2
(IT2) while keeping a semantic connection between the IT2 fuzzy
set and the concept it models. Recent work has shown how their
mathematical properties can be used to design CIT2 fuzzy logic
systems that are able to provide explanations for their outputs.
Although the CIT2 representation can be a valuable alternative
to the IT2 one, no software library for their implementation
is available for the research community. The aim of this paper
is to introduce a new Java library, Juzzy Constrained, that has
been developed as an extension of the popular type-1 and type-2
Java toolkit Juzzy, adding support for CIT2 sets and systems.
Throughout the paper, the main classes and the structure of the
new library are described, together with a working example that
illustrates how to build a CIT2 fuzzy system from scratch and
how it can be used to produce explanations for the output.

Index Terms—Juzzy, Constrained Interval Type-2, XAI, type-2
fuzzy logic

I. INTRODUCTION

The use of interval type-2 (IT2) [1] fuzzy sets and systems
has rapidly grown over time. The development of practical
and fast defuzzification algorithms (e.g. [2]) together with
the increase in performance [3]–[5], led to the development
of IT2 fuzzy logic systems (FLS) in controller design [6],
classification and regression [7], modeling of data and words
[8].

More recently, fuzzy logic has been adopted to build inter-
pretable systems: the use of the rule-base structure together
with the partitioning of the input and output variables with
fuzzy sets (FSs) with a clear semantic meaning (i.e. a lin-
guistic label) allow for the design of FLSs that show an
understandable decision process. In the context of explainable
artificial intelligence (XAI) [9], many T1 FLSs have been
produced with the ability of providing clear explanations for
each of the classifications produced by the system [10]–[12].
Implementing IT2 FLS with the same characteristics, however,
has proven to be more challenging. In fact, although T1
and IT2 FLS share the same rule-based structure, there is
a difference in how the output of the system is produced.
As discussed in other research works [13], [14], the use of

centroid defuzzification procedures like the Karnik-Mendel
algorithm (KM) [2], makes it hard to find a direct link between
the endpoints of the interval centroid and the rule-base of
the FLS as well as producing a detailed explanation like for
T1 FLSs. To ensure a higher level of interpretability when
going from T1 to IT2 and type-2 (T2) membership functions,
constrained type-2 (CT2) [15] and constrained interval type-2
(CIT2) [13] have been introduced. By the imposition of addi-
tional mathematical constraints on the footprint of uncertainty
(FOU) and the shape of the embedded sets (ES), they establish
a standard process to “extend” T1 fuzzy sets to IT2 ones while
keeping a strong semantic relation between the constrained
set and the concept it models. It has also been shown [13],
[14] how the additional constraints make it easier to explain
the interval centroid produced by CIT2 FLS thanks to the
use of embedded sets with a “meaningful” shape. Therefore,
these properties make CIT2 FLSs a valuable alternative to IT2
FLSs in contexts in which producing explainable outputs is
important (e.g. XAI applications).

This new class of fuzzy sets has recently started to be
explored, with a particular focus on CIT2 fuzzy sets. Although
many practical applications of CIT2 FLS have already been
shown [13], [14], there is no library that can be used by
the research community to easily deploy CIT2 FLS. The
aim of this paper is to present the first software library,
named Juzzy Constrained, that implements CIT2 fuzzy sets
and systems and also to collect constructive feedback on the
CIT2 representation from the research community. Written in
Java, Juzzy Constrained is an extension of the already well-
known Java library Juzzy [16] and follows its conventions to
facilitate its use for developers. The new toolkit makes possible
the design of CIT2 FLS using the defuzzification algorithms
proposed in [13], [14] and is capable of using the constrained
representation to provide human-readable explanations for the
constrained interval centroids produced by the systems.

The rest of the paper is organized as follows: after a short
description of other software libraries focused on T1 and T2
fuzzy logic (Sec. II), CIT2 fuzzy sets will be briefly described,
highlighting their main characteristics and the motivations



behind their introduction (Sec. III). Then, the new library
Juzzy Constrained will be analyzed, describing its structure,
its main classes and its relation with Juzzy (Sec. IV). Finally, a
working example will be presented: a CIT2 FLS will be built
from scratch, with the help of code snippets to facilitate the
understanding of the usage of the toolkit (Sec. V).

II. RELATED WORKS

Many tools for the development of T1 and T2 FLS have
been released over the years. One of the most famous ones is
the Fuzzy Logic Toolbox for MATLAB1. It allows developers
to design T1 fuzzy sets and systems through a set of functions
or the use of a graphical interface. The sets built with the
toolbox, the control surfaces and the rules can then be easily
visualized. Similar toolboxes that include IT2 fuzzy sets have
been proposed in [17]–[20].

Software libraries for different programming languages have
also been released. In [21] a Python toolkit for the automatic
generation of T1, IT2 and T2 fuzzy sets from data has been
presented; [22], instead, describes a software library in R for
the modelling of T1, IT2 and T2 FLS that also includes
functions for the graphical visualization of fuzzy sets and
control surfaces.

Software for the creation of fuzzy systems has also been
included in famous suites for machine learning such as KEEL
[23] and Weka [24]. Both offer various methods to learn
fuzzy rules and sets from data (e.g. with the use of genetic
algorithms) and to perform fuzzy clustering.

After the introduction of the IEEE Standard for Fuzzy
Markup Language for the definition of fuzzy sets and systems
in a “human-readable and hardware independent way” [25],
new software libraries adhering to the novel standard have
been developed such as JFML [26] and VisualJFML [27].

A. Juzzy

Juzzy Online [28], is a toolkit for the design, execution and
sharing of T1 and T2 fuzzy sets and systems through the use
of an online dashboard that is usable with no knowledge of
programming.

A Java version of the same tool has been released. Juzzy
[16] is a library for the implementation of T1, IT2 and T2
fuzzy sets and systems. It is written in Java, it is open-
source and available online at http://juzzy.wagnerweb.net/,
http://www.lucidresearch.org/software.html and on the Maven
Central Repository2. The toolkit implements T2 fuzzy sets
with the zSlices representation [29] and also supports multi-
core execution of the code.

III. CONSTRAINED INTERVAL TYPE-2 FUZZY SETS

Constrained type-2 (CT2) and constrained interval type-2
(CIT2) fuzzy sets were proposed [15] as a new way to model
vague concepts using T2 and IT2 fuzzy sets starting from a
T1 set modeling the same word or concept. The rest of the
paper and the library presented here will focus only on CIT2

1https://www.mathworks.com/products/fuzzy-logic.html
2https://search.maven.org/artifact/com.github.chwagnlucid/Juzzy/2.0/jar

since most of the research work in this area [13], [14], [30]
is focused on CIT2 only.

CIT2 fuzzy sets start from a T1 fuzzy set, called generator
set (GS), that models a given concept. The uncertainty in this
case, is represented by the fact that the exact location on the
x-axis of the GS is not known. This situation may arise, for
example, when different people are asked to place the fuzzy
set modeling the label medium height on the x-axis, as shown
by the Gaussian MFs in black in Fig. 1

Figure 1. Different Gaussian fuzzy sets modeling the concept of medium
height (in black). A possible FOU of a CIT2 that contains them is depicted
in grey

This uncertainty causes a blurring around the GS that
determines the footprint of uncertainty (FOU). The constrained
approach proposed a standard way of carrying out this opera-
tion:

• The “width” of the blurring is modeled as an interval (in
the continuous case) and called displacement interval.

• The FOU of the generated CIT2 fuzzy set is defined as
the points covered by the translation along the x-axis of
the GS within the displacement interval (e.g. the shaded
gray area in Fig. 1).

• Within this FOU, the only embedded sets that are con-
sidered acceptable (acceptable embedded sets, AES) are
the ones that have the same shape as the GS, i.e. the
ones that represent a valid translation of the GS within
the displacement interval. Only the AES are processed in
operations that work with the embedded sets.

For more details, see [13]. Processing only AESs rather than
all the embedded sets makes a significant difference in the
explainability of some fuzzy operators, as analyzed in [13].
Specifically, for the centroid defuzzification, the endpoints of
the constrained interval centroid are determined by acceptable
embedded sets with a meaningful shape. As shown in Sec. V,
the properties of these AES can be used to produce human-
readable explanations for the system output while providing
both a formal and intuitive understanding of how they have
been obtained. Therefore, the CIT2 modeling, represents a
valuable alternative to IT2 systems in all the cases in which
it is important to understand the decision process of the
classification model (e.g. in the XAI field).



Figure 2. The class diagram of Juzzy Constrained

IV. JUZZY CONSTRAINED

The Java library for CIT2 fuzzy sets and systems has been
conceived as an extension of Juzzy: it makes use of its T1
membership functions to define the generator sets of CIT2
fuzzy sets and also adopts some of its conventions (e.g. for
the creation of rules) and utility classes (such as Input and
Output to model the input and output variables of a CIT2
FLS). Therefore, for Juzzy Constrained to work, also Juzzy
must be included in the given Java project.

The source-code released under the BSD 3-Clause
license, the documentation and the JAR archive of
Juzzy Constrained are freely available on GitHub at
https://github.com/PasqualeDAlterio/JuzzyConstrained and
http://www.lucidresearch.org/software.html. The library is
also available on the Maven Central Repository and can
be quickly included in any Java Maven project (for more
information, see the GitHub page).

A. Library structure

The packages included in the library are shown in Fig. 3.
The package CIT2_Generator includes the T1 member-
ship functions that are usable as generator sets. Triangular,
Gaussian, Gauangle and trapezoidal membership functions are
currently supported. Each one of them is a wrapper of the
correspondent T1MF defined in Juzzy; the main difference
between them is that each of the CIT2_Generator must
implement a method that returns all the points of local (and
global) maximum and a method that returns all points of local
minimum of the membership function, as requested by the
CIT2_Generator interface. These two methods are needed
to determine the upper and lower membership functions of the
CIT2 fuzzy set, as discussed in Theorem 1, in the Appendix.

Figure 3. The package structure of the library

The CIT2 package is the core of the library: it implements
CIT2 fuzzy sets and systems using the same style used by
Juzzy. Once the sets have been defined they can be used
to build antecedents and consequents that are then organized
in CIT2_Rule. Once the rules are created, they can be
organized in a CIT2_Rulebase to implement a FLS.
CIT2_Explanations contains all the objects that are

used in the generation of the explanation of the output of
a CIT2_Rulebase. They mostly focus on organizing and
formatting information in a humanly readable piece of text in
order to show how the endpoints of the constrained centroid
have been obtained. The remaining packages offer additional
utilities and tools that were not originally implemented in
Juzzy but are useful in the Juzzy Constrained context (e.g.
an IT2 fuzzy set where the upper and lower bounds can have
arbitrary shape or a T1 fuzzy set modeling the result of the
inference operation).

Fig. 2 shows the class diagrams with all the main classes
used in Juzzy Constrained and their relation with the orig-
inal classes in Juzzy. Each CIT2 fuzzy set, to be instan-
tiated, needs a CIT2_Generator. This interface extends
the T1MF_Interface defined in Juzzy, since the generator



set is a T1 set, and requires the implementation of three
additional methods: getMaxPoints, getMinPoints and
shiftFunction. The first two, as described earlier in this
section, are needed to determine the boundary functions of
the generated CIT2 fuzzy; the shifting method, instead, is
needed to generate the acceptable embedded sets: since they
are translations along the x-axis of the generator set, this
method takes a real number value as an argument and returns
a new T1 membership function representing the generator set
shifted by value. Additionally, since CIT2 fuzzy sets are a
special case of IT2 fuzzy sets, i.e. they have been obtained
by adding a set of additional mathematical constrained to
the original IT2 definition, the class CIT2 extends the Juzzy
abstract class IntervalT2MF_Prototype.

The generator sets implemented in the library extend
CIT2_Generator_Prototype, i.e. an abstract class that
already implements some functionalities that are used by
all the generators provided. To add a new generator mem-
bership function, it is only required to implement the
CIT2_Generator interface. This operation, as it will be
shown in Sec. V, is straightforward for all the widely used T1
membership functions.

All the classes related to the the construction of a rule and a
rule-base follow the same conventions used in Juzzy, making
them easy to work with for the developers that are already
used to the T1, IT2 and T2 rule-bases of the original library.

B. Defuzzification algorithms, other features and limitations
The toolkit provides two algorithms for the defuzzification

of the output of a CIT2 FLS. The first one, implemented by the
method sampleCentroid in the class CIT2_Rulebase,
is based on the sampling approach proposed in [13], itself
an adaptation for CIT2 sets of the sampling method for
T2 fuzzy sets [31]. Since the extensive computation of the
centroid by processing all the acceptable embedded sets has
a prohibitive cost (similarly to what happens with “standard”
T2 fuzzy sets) and each of these embedded sets only gives a
small contribution to the final result, the idea is to calculate
an approximation by sampling a subset of the acceptable
embedded sets and use only them to compute the constrained
centroid.

The other defuzzification algorithm included in Juzzy Con-
strained is the one presented in [14], based on the concept of
switch indices instead of the switch points used by the KM
procedure for IT2 fuzzy sets [2]. This approximation method
is faster than the sampling one as it uses the properties of CIT2
fuzzy sets to quickly identify the small subset of acceptable
embedded sets that will be used to determine the constrained
centroid. For more details about this algorithm, please refer
to [14]. This approach can also be used to produce human-
readable explanations for CIT2 FLSs as shown in [32] and in
Sec. V.

In addition to the methods implemented in Juzzy for the
visualization of T1 and IT2 fuzzy sets, Juzzy Constrained
integrates the popular Java graphical library JFreeChart3. This

3http://www.jfree.org/jfreechart/

represents a more flexible way of building plots, since they
are easily and widely customizable, while also giving the
opportunity of better highlight the FOUs of the CIT2 and IT2
fuzzy sets, as shown in Fig. 4.

Being currently still under development, Juzzy Constrained
has some limitations. Specifically, CIT2_Rule only imple-
ments the and operator in the antecedent composition and
does so with the min T-Norm. In addition to that, each
rule can currently has only one consequent. At the moment,
this limitation can be overcome by replacing a rule with n
consequents with n replicas of the rule, one per consequent.
In future works, we plan on expanding the library by adding
the support to multiple-consequent rules and more antecedent
connectors.

V. APPLICATIONS AND EXAMPLES

This section will show how Juzzy Constrained can be used
in practice to develop CIT2 FLS, starting from the creation
of CIT2 fuzzy sets and then illustrating how they can be put
together to make rules and rulebases.

The example analyzed in this paper is the tipping problem.
This system has been chosen for its simplicity and not to show
the full potential of CIT2 FLSs. A more thorough analysis of
the advantages of the use of CIT2 FLSs and case studies on
real world datasets can be found in [32]. The tipping problem
has the following structure: it has 2 input variables, food and
service, and the goal is to use them to determine the adequate
percentage to give as tip.

The first thing to do, is to instantiate the generator sets.
Their creation is identical to the creation of T1 fuzzy sets in
Juzzy. Here there is an example of how the generator sets for
the service membership functions can be created.

T1MF_Generator_Gauangle unfriendlyServiceMF=
new T1MF_Generator_Gauangle("Unfriendly",0.0, 0.0, 6);

unfriendlyServiceMF.setLeftShoulder(true);
T1MF_Generator_Gauangle okServiceMF =

new T1MF_Generator_Gauangle("OK",2.5, 5.0, 7.5);
T1MF_Generator_Gauangle friendlyServiceMF =

new T1MF_Generator_Gauangle("Friendly",4, 10, 10);
friendlyServiceMF.setRightShoulder(true);

With the generator sets, it is possible to create CIT2 fuzzy
sets. In addition to the generator sets, also the displacement
intervals need to be specified. They determine how “wide” the
shifting and therefore the FOU will be. In the example below,
the positive shifting values shifting_size_2 is used to
generate the displacement interval [-shifting_size_2,
shifting_size_2].

CIT2 cit2_unfriendlyServiceMF = new CIT2(
unfriendlyServiceMF.getName(),
unfriendlyServiceMF, shifting_size_2);

CIT2 cit2_okServiceMF = new CIT2(
okServiceMF.getName(), okServiceMF,
shifting_size_2);

CIT2 cit2_friendlyServiceMF = new CIT2(friendlyServiceMF.
getName(), friendlyServiceMF, shifting_size_2);

The definition of the input and output variables, is taken
from Juzzy since it uses the same Input and Output
objects.



Input food = new Input("Food Quality", new Tuple(0,10));
Input service =new Input("Service Level", new Tuple(0,10));
Output tip = new Output("Tip", new Tuple(0,30));

The partitioning of the variables can then be plotted using
JFreeChart as shown below. The results of this operation for
the food, service and tip are shown respectively in Fig. 4, Fig.
5 and Fig. 6.
JFreeChartPlotter.plotMFs("Food partitioning", new CIT2[]{

cit2_badFoodMF, cit2_greatFoodMF},
food.getDomain(), 1000);

JFreeChartPlotter.plotMFs("Service partitioning", new CIT2
[]{cit2_friendlyServiceMF, cit2_okServiceMF,
cit2_unfriendlyServiceMF}, service.getDomain(), 1000);

JFreeChartPlotter.plotMFs("Tip partitioning", new CIT2[]{
cit2_lowTipMF, cit2_mediumTipMF, cit2_highTipMF}, tip.
getDomain(), 1000);

Figure 4. Partitioning of the food variable

Figure 5. Partitioning of the service variable

Once the CIT2 fuzzy sets have been defined, they can
be paired with the input and output variables to define
the antecedents and the consesequents that will be used in
the rulebase. In this case, Juzzy Constrained follows the
same conventions used by Juzzy, making the creation of
CIT2_Antecedent and CIT2_Consequent very similar
to the creation of IT2 antecedents and consequents in the
original library.
CIT2_Antecedent unfriendlyService =

new CIT2_Antecedent(cit2_unfriendlyServiceMF, service);
CIT2_Antecedent okService =

new CIT2_Antecedent(cit2_okServiceMF, service);
CIT2_Antecedent friendlyService =

new CIT2_Antecedent(cit2_friendlyServiceMF, service);

Figure 6. Partitioning of the tip variable

Once the antecedents and consequents have been defined,
they can be put together to create the rulebase. Again, the
initialization of a CIT2 rulebase is very similar to the creation
of T1 and IT2 rulebases in Juzzy.
CIT2_Rulebase rulebase = new CIT2_Rulebase();
rulebase.addRule(new CIT2_Rule(new CIT2_Antecedent[]{

badFood, unfriendlyService}, lowTip));
rulebase.addRule(new CIT2_Rule(new CIT2_Antecedent[]{

badFood, okService}, lowTip));
rulebase.addRule(new CIT2_Rule(new CIT2_Antecedent[]{

badFood, friendlyService}, mediumTip));
rulebase.addRule(new CIT2_Rule(new CIT2_Antecedent[]{

greatFood, unfriendlyService}, lowTip));
rulebase.addRule(new CIT2_Rule(new CIT2_Antecedent[]{

greatFood, okService}, mediumTip));
rulebase.addRule(new CIT2_Rule(new CIT2_Antecedent[]{

greatFood, friendlyService}, highTip));

After the input values are set, there are two algorithms that
can be used to do the inference and defuzzify the result: the
sampling strategy [13] and the switch index method [14]. In
the first case, the algorithm can be executed invoking the
method rulebase.samplingDefuzzification(50)
where 50 is the number of samples used to compute the con-
strained centroid. The function returns a Tuple representing
the centroid.
food.setInput(7);
service.setInput(8);
Tuple constrained_centroid_sampling=

rulebase.samplingDefuzzification(50);
Tuple constrained_centroid_si=

rulebase.switchIndexDefuzzification(100);
ExplainableCentroid result=

rulebase.explainableDefuzzification(100);

The switch index approach, instead, can be
used in two different ways: using the method
rulebase.switchIndexDefuzzification(100)
where 100 is the level of discretization used to defuzzify
the acceptable embedded sets, the library returns a
Tuple containing the value of the constrained centroid,
just like in the sampling method case; the method
rulebase.explainableDefuzzification(100),
instead, returns the constrained centroid and the explanation
for its generation in an ExplainableCentroid object.

As already discussed in other research works [13], [14], the
properties of CIT2 fuzzy sets can be used to link the endpoints
of the centroid to the specific acceptable embedded sets that



Figure 7. FOU obtained from the inference (on the left) and the acceptable embedded sets determining the endpoints of the constrained centroid (on the
right)

generated them. They can then be used to determine which
rules and input values led to the creation of the constrained
interval centroid, in order to create a human-readable expla-
nation. The selected acceptable embedded sets also have an
interpretable structure: the consequent membership functions
that contributed to their generation are clearly visible and
so are the firing strengths of the rules they belong to (i.e.
the heights at which they have been “truncated”). For other
IT2 defuzzification procedures like the KM one, on the other
hand, there is no guarantee that the chosen embedded sets will
have any meaningful shape nor that it is possible to link them
directly to the rules to produce an explanation. The ability to
provide interpretable results when computing the constrained
interval centroid is one of the reasons why CIT2 fuzzy sets
can represent a valuable alternative to IT2 fuzzy sets in the
context of XAI.

Once the ExplainableCentroid object is obtained, the
acceptable embedded sets determining the constrained centroid
can be plotted as shown below, together with the fired FOU.
The plots for this example are show in Fig. 7.

JFreeChartPlotter.plotMFs("Resulting FOU", new
IntervalT2MF_Interface[]{rulebase.getFiredFOU()}, tip.
getDomain(), 1000);

JFreeChartPlotter.plotMFs("AES determining the endpoints",
new T1MF_Interface[]{left_aes, right_aes}, tip.
getDomain(), 1000);

System.out.println("The recommended tip percentage is in
the range:"+result.getIntervalCentroid());

//Print the explanations
System.out.println(result.printableExplanation());

The ExplainableCentroid structure also
stores the information necessary for the creation of
the human-readable explanation using the method
result.printableExplanation(). The piece of
text below, links each of the endpoints of the constrained
centroid to the rules in the rulebase that generated them,
also showing the firing values of the rules, the input values

and their membership degrees with respect to the antecedent
membership functions.
The recommended t i p p e r c e n t a g e i s i n t h e r a n g e : l e f t =

18 .06 and r i g h t = 19 .67
The l e f t m o s t c e n t r o i d ( 1 8 . 0 6 ) i s o b t a i n e d from f i r i n g t h e

f o l l o w i n g r u l e s :
Medium : 0 . 3 5 o b t a i n e d b e c a u s e Food Q u a l i t y IS Bad [ 0 . 2 5 ,

0 . 3 5 ] AND S e r v i c e Leve l IS F r i e n d l y [ 0 . 7 1 , 0 . 8 8 ] u s i n g
t h e UPPER membership d e g r e e o f each i n p u t t e r m s

High : 0 . 6 5 o b t a i n e d b e c a u s e Food Q u a l i t y IS G r e a t [ 0 . 6 5 ,
0 . 7 5 ] AND S e r v i c e Leve l IS F r i e n d l y [ 0 . 7 1 , 0 . 8 8 ] u s i n g
t h e LOWER membership d e g r e e o f each i n p u t t e r m s

The r i g h t m o s t c e n t r o i d ( 1 9 . 6 7 ) i s o b t a i n e d from f i r i n g t h e
f o l l o w i n g r u l e s :

Medium : 0 . 2 5 o b t a i n e d b e c a u s e Food Q u a l i t y IS Bad [ 0 . 2 5 ,
0 . 3 5 ] AND S e r v i c e Leve l IS F r i e n d l y [ 0 . 7 1 , 0 . 8 8 ] u s i n g
t h e LOWER membership d e g r e e o f each i n p u t t e r m s

High : 0 . 7 5 o b t a i n e d b e c a u s e Food Q u a l i t y IS G r e a t [ 0 . 6 5 ,
0 . 7 5 ] AND S e r v i c e Leve l IS F r i e n d l y [ 0 . 7 1 , 0 . 8 8 ] u s i n g
t h e UPPER membership d e g r e e o f each i n p u t t e r m s

A. Adding a new CIT2 generator membership function

Juzzy Constrained currently supports 4 types of generator
sets: Gaussian, Gauangle, triangular and trapezoidal. To add
additional shapes, it is necessary to define a new class that
implements the CIT2_Generator interface. The new class
needs to provide methods that return the points of minimum
and maximum of the membership function (so that the FOU
of the CIT2 fuzzy set can be determined, see Theorem 1, in
the Appendix) and a method for the shifting of the generator
set (to generate the acceptable embedded sets).

Although implementing the methods that determine the
points of minimum and maximum may seem challenging, it is
relatively easy for many shapes. In the code snippet below, the
implementation of these method is shown for the trapezoidal
membership function.
@Override
protected ArrayList<Interval> computeMinPoints()
{

ArrayList<Interval> min_points=new ArrayList<>();
min_points.add(new Interval(trapezoid.getA()));
min_points.add(new Interval(trapezoid.getD()));
return min_points;}



@Override
protected ArrayList<Interval> computeMaxPoints()
{

ArrayList<Interval> max_points=new ArrayList<>();
max_points.add(new Interval(trapezoid.getB(), trapezoid

.getC()));
return max_points;

}

The minimum and maximum points are stored in
Interval objects which store generic intervals of the form
[a, b]. The reason why intervals are used rather than points
is that in some membership functions the points of minimum
or maximum are infinite and all within a given interval. For
example, in the case of a trapezoidal membership function, the
points of maximum are all the points that make the shorter
base, i.e. all the points in the segment BC. The minimum
points, instead, are only A and B; in this case the Interval
object is initialized using a single value a, representing the
interval [a, a].

In other functions, the points of local minimum or maximum
may not exist. For example, the Gaussian shape does not
have any points of local minimum. In that situation, the
getMinPoints() method can return a null value.

VI. CONCLUSION

In this paper, the new open-source library Juzzy Constrained
has been presented. This toolkit, written in Java, has been
developed as an extension of the fuzzy library Juzzy (for type-
1 and type-2 fuzzy logic) and adds the support to constrained
interval type-2 (CIT2) fuzzy sets and systems. This new class
of fuzzy sets represents a useful alternative to the standard
interval type-2 representation in the contexts in which a high
level of interpretability is needed. Through the addition of
some mathematical constraints, it ensure that a meaningful
connection is kept between the shape of the footprint of the
uncertainty, the embedded sets and the concept the CIT2 set
is modeling. In the literature, it has also been shown how
these properties can be used to produce explainable systems
by processing only embedded sets with a meaningful shape
for the determination of the interval centroid.

The paper demonstrates the library and showcases the
properties and utility of CIT2 models using a worked, practical
example, clearly highlighting the advantages of CIT2 FLSs
from an XAI point of view.

The toolkit presented here, is the first one to support CIT2
fuzzy sets and systems. The aim of this paper is therefore to
present the new library to the research community and also to
receive feedback on the project and CIT2 fuzzy sets in general.

The structure of the library, its main classes and the de-
fuzzification algorithms provided have been discussed, while
in Sec. V a CIT2 fuzzy logic system is built from scratch,
with the help of code snippets to facilitate the understanding
of how the toolkit can be used.

Being still under development, the library has some limita-
tion such as the fact that rules only support a single consequent
or that the antecedents can only be connected using the
and operator. In future works, we plan on improving these

aspects, adding rules with multiple consequents and different
connectors for the antecedents as well as making the library
compliant with the fuzzy markup language.
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APPENDIX

A. Determining the boundary functions of a CIT2 fuzzy set

The CIT2_Generator interface used in this library re-
quires a method that returns all the points of local maximum
and one that returns all the points of local minimum of a
membership function for it to be used as a generator set. The
reason why these points are needed is to easily determine the
boundary functions of the generated CIT2 fuzzy set. As shown
in [13], these two membership functions for a generic CIT2
fuzzy set Ă can be expressed as:

µĂ(x) = sup
S∈CAESĂ

µS(x) (1)

µ
Ă

(x) = inf
S∈CAESĂ

µS(x) (2)

where Ă is a CIT2 set and the CAES is the collection of its
acceptable embedded sets. The following theorem proves that
to determine the upper and lower bounds of the FOU of a
CIT2 fuzzy set, it is sufficient to know the generator set, its
points of local minimum and maximum and the displacement
interval used.

Theorem 1. Given a CIT2 fuzzy set Ă, to determine its
upper membership function µĂ it is sufficient to know the T1
generator set G (with a continuous membership function) its

displacement interval [a, b] with a ≤ 0, b ≥ 0, a, b ∈ R and
the set M of all the local points of maximum of µG.

Proof. To prove the theorem, we will show that the upper-
bound function of Ă µĂ can be expressed as:

µĂ(x) =

max

(
?, max

k∈M
(µG(k))

)
M 6= ∅

? otherwise
(3)

where M is the set of all the local points of maximum of
µG in [x− b, x− a] and ? is:

? = max

(
µG(x− a), µG(x− b)

)
(4)

Since each S in (1) is obtained as a shifting of G using the
values in the displacement interval (see [13] for more details),
it can be rewritten as:

µĂ(x) = max
z∈[a,b]

µG(x− z) (5)

Using (5), we can rewrite the upperbound membership
function (3) as:

max
z∈[a,b]

µG(x− z) =

max

(
?, max

k∈M
(µG(k))

)
M 6= ∅

? otherwise
(6)

At this point, we need to prove that the upperbound mem-
bership function (5) is determined either by µG(x − a) and
µG(x− b) or by one of the points of maximum of µG in the
interval [x− b, x− a], i.e. by one of the points in M . To do
so, we consider the two possible scenarios:

1) max
z∈[a,b]

µG(x− z) = ? (7)

2) max
z∈[a,b]

µG(x− z) 6= ? (8)

In (7), we assume that the upperbound membership function
is determined by maximum between µG(x−a) and µG(x−b).
In this case, (3) trivially holds, both when M is empty and
when it contains at least one element. In (8), instead, we need
to prove that when the upperbound membership function is
not determined by µG(x − a) and µG(x − b), then it is be
determined by one of the points of maximum in M . In fact,
since the upperbound membership degree of x is different from
both µG(x − a) and µG(x − b), it must be determined by
another value w that is different from x−a and x−b. Formally:

∃w ∈ (x− b, x− a) : ∀z ∈ [a, b], µG(w) ≥ µG(x− z) (9)

By definition, w is a point of local maximum in [x−b, x−a]
and must therefore be equal to the maximum k ∈ M in (6)
when M 6= ∅. Therefore the thesis holds in 2) as well. Since
(6) holds in all the possible cases, it is true.

Similarly, it can be proven that to determine the lowerbound
membership function of a CIT2 fuzzy set it is sufficient to
know the generator set, its points of local minimum and the
displacement interval used.


